THE BOOLEAN ALGEBRA OF GALOIS ALGEBRAS

George Szeto and Lianyong Xue

Received 8 February 2002

Let *B* be a Galois algebra with Galois group *G*, $J_g = \{b \in B \mid bx = g(x)b$ for all $x \in B\}$ for each $g \in G$, and $BJ_g = Be_g$ for a central idempotent e_g , B_a the Boolean algebra generated by $\{0, e_g \mid g \in G\}$, *e* a nonzero element in B_a , and $H_e = \{g \in G \mid ee_g = e\}$. Then, a monomial *e* is characterized, and the Galois extension *Be*, generated by *e* with Galois group H_e , is investigated.

2000 Mathematics Subject Classification: 16S35, 16W20.

1. Introduction. The Boolean algebra of central idempotents in a commutative Galois algebra plays an important role for the commutative Galois theory (see [1, 3, 6]). Let *B* be a Galois algebra with Galois group *G*, *C* the center of *B*, and $J_g = \{b \in B \mid bx = g(x)b \text{ for all } x \in B\}$ for each $g \in G$. In [2], it was shown that $BJ_g = Be_g$ for some idempotent e_g of C. Let B_a be the Boolean algebra generated by $\{0, e_g \mid g \in G\}$. Then in [5], by using B_a , the following structure theorem for *B* was given. There exist $\{e_i \in B_a \mid i = a\}$ 1,2,...,*m* for some integer *m*} and some subgroups H_i of *G* such that B = $\oplus \sum_{i=1}^{m} Be_i \oplus Bf$ where $f = 1 - \sum_{i=1}^{m} e_i$, Be_i is a central Galois algebra with Galois group H_i for each i = 1, 2, ..., m, and Bf = Cf which is a Galois algebra with Galois group induced by and isomorphic with *G* in case $1 \neq \sum_{i=1}^{m} e_i$. In [4], let K be a subgroup of G. Then, K is called a nonzero subgroup of G if $\prod_{k \in K} e_k \neq 0$ in B_a , and K is called a maximal nonzero subgroup of G if $K \subset K'$, where K' is a nonzero subgroup of G such that $\prod_{k \in K} e_k = \prod_{k \in K'} e_k$, then K = K'. We note that any nonzero subgroup is contained in a unique maximal nonzero subgroup of G. In [4], it was shown that there exists a one-to-one correspondence between the set of nonzero monomials in B_a and the set of maximal nonzero subgroups of G, and that, for a nonzero monomial e in B_a such that $H_e \neq \{1\}$, Be is a central Galois algebra with Galois group H_e if and only if e is a minimal nonzero monomial in B_a . The purpose of the present paper is to characterize a monomial e in B_a in terms of the maximal nonzero subgroups of G. Then, the Galois extension Be, generated by a nonzero idempotent e and by a monomial e with Galois group H_e , is investigated, respectively. Let $G(e) = \{g \in G \mid g(e) = e\}$ for each $e \neq 0$ in B_a . We will show that (1) H_e is a normal subgroup of G(e), and (2) Be is a Galois extension of $(Be)^{H_e}$ with Galois group H_e and $(Be)^{H_e}$ is a Galois extension of $(Be)^{G(e)}$ with Galois group $G(e)/H_e$. In particular, when e is a monomial, $G(e) = N(H_e)$ (the normalizer

G. SZETO AND L. XUE

of H_e), and when e is an atom (a minimal nonzero element) of B_a , Be is a central Galois algebra over Ce with Galois group H_e and Ce is a commutative Galois algebra with Galois group $G(e)/H_e$. This generalizes and improves the result of the components of B in [5, Theorem 3.8] for a Galois algebra.

2. Definitions and notations. Let *B* be a ring with 1, *C* the center of *B*, *G* an automorphism group of *B* of order *n* for some integer *n*, and *B^G* the set of elements in *B*, fixed under each element in *G*. *B* is called a Galois extension of *B^G* with Galois group *G* if there exist elements $\{a_i, b_i \text{ in } B, i = 1, 2, ..., m\}$ for some integer *m* such that $\sum_{i=1}^{m} a_i g(b_i) = \delta_{1,g}$ for each $g \in G$. *B* is called a Galois algebra over *R* if *B* is a Galois extension of *R* which is contained in *C*, and *B* is called a central Galois extension if *B* is a Galois algebra with Galois group *G*. Let $J_g = \{b \in B \mid bx = g(x)b$ for all $x \in B\}$. In [2], it was shown that $BJ_g = Be_g$ for some central idempotent e_g of *B*. We denote $(B_a; +, \cdot)$, the Boolean algebra generated by $\{0, e_g \mid g \in G\}$, where $e \cdot e' = ee'$ and e + e' = e + e' - ee' for any *e* and *e'* in B_a . An order relation \leq is defined as usual, that is, $e \leq e'$ in B_a if $e \cdot e' = e$. Throughout, e + e', for $e, e' \in B_a$, means the sum in the Boolean algebra algebra $(B_a; +, \cdot), H_e = \{g \in G \mid e \leq e_g\}$ for an $e \neq 0$ in B_a , and a monomial *e* in B_a is $\prod_{a \in S} e_g \neq 0$ for some $S \subset G$.

3. The Boolean algebra. In this section, we will characterize a monomial e in B_a in terms of the maximal nonzero subgroups of G. We begin with several lemmas.

LEMMA 3.1. Let $\{e_i, f \mid i = 1, 2, ..., m\}$ be given in [5, Theorem 3.8]. Then,

- (1) $\{e_i, f \mid i = 1, 2, ..., m\}$ is the set of all minimal elements of B_a in case $f \neq 0$,
- (2) for each $e \neq 0$ in B_a , there exists a unique subset Z_e of the set $\{1, 2, ..., m\}$ such that $e = \sum_{i \in Z_e} e_i$ or $e = \sum_{i \in Z_e} e_i + f$.

PROOF. (1) By the proof of [5, Theorem 3.8], either $e_i = \prod_{g \in H_i} e_g$, where H_i is a maximum subset (subgroup) of G such that $\prod_{g \in H_i} e_g \neq 0$, or $e_i = (1 - \sum_{j=1}^t e_j) \prod_{g \in H_i} e_g$ for some t < i, where H_i is a maximum subset (subgroup) of G such that $(1 - \sum_{j=1}^t e_j) \prod_{g \in H_i} e_g \neq 0$; so, either e_i is a minimal element of B_a or e_i is a minimal element of $(1 - \sum_{j=1}^t e_j)B_a$. Noting that any minimal element in $(1 - \sum_{j=1}^t e_j)B_a$ is also a minimal element in B_a , we conclude that each e_i is a minimal element in B_a . Next, we show that f is also a minimal element of B_a in case $f \neq 0$. In fact, by the proof of [5, Theorem 3.8], $e_g f = 0$ for any $g \neq 1$ in G; so, for any $e \in B_a$, ef = 0 or ef = f. This implies that f is a minimal element of B_a in case $f \neq 0$. Moreover, $\sum_{i=1}^m e_i + f = 1$; so, $\{e_i, f \mid i = 1, 2, ..., m\}$ is the set of all minimal elements of B_a in case $f \neq 0$.

(2) Since $1 = \sum_{i=1}^{m} e_i + f$, a sum of all minimal elements of B_a , the statement is immediate.

LEMMA 3.2. Let e be a nonzero element in B_a . Then,

- (1) there exists a monomial e' of B_a such that $e \le e'$ and $H_e = H_{e'}$,
- (2) H_e is a maximal nonzero subgroup of G.

PROOF. (1) For any nonzero element *e* in B_a , let $e' = \prod_{g \in H_e} e_g$. We claim that $e \leq e'$ and $H_e = H_{e'}$. In fact, for any $h \in H_e$, $e \leq e_h$; so, $e \leq \prod_{h \in H_e} e_h = e'$. Moreover, for any $h \in H_e$, $e_h \geq \prod_{g \in H_e} e_g = e'$; so, $h \in H_{e'}$. Hence, $H_e \subset H_{e'}$. On the other hand, for any $h \in H_{e'}$, $e_h \geq e' = \prod_{g \in H_e} e_g \geq e$; so, $h \in H_e$. Thus, $H_{e'} \subset H_e$. Therefore, $H_e = H_{e'}$.

(2) By [4, Theorem 3.2], $H_{e'}$ is a maximal nonzero subgroup of *G* for e' is a monomial. Hence, H_e (= $H_{e'}$) is a maximal nonzero subgroup of *G*.

Next is an expression of H_e for a nonzero $e \in B_a$.

THEOREM 3.3. For any $e \neq 0$ in B_a , $H_e = \bigcap_{i \in Z_e} H_{e_i}$ or H_1 , where $e = \sum_{i \in Z_e} e_i$ or $e = \sum_{i \in Z_e} e_i + f$ as given in Lemma 3.1(2).

PROOF. We first show that for e = e' + e'' for some $e', e'' \neq 0$ in $B_a, H_e = H_{e'} \cap H_{e''}$. In fact, since $e \ge e'$ and $e \ge e''$, we have $H_e \cap H_{e'} \cap H_{e''}$. Conversely, for any $g \in H_{e'} \cap H_{e''}$, $e_g \ge e'$ and $e_g \ge e''$; so, $e_g \ge e' + e'' = e$. Hence, $g \in H_e$; so, $H_e = H_{e'} \cap H_{e''}$. Therefore, by induction, if $e = \sum_{i \in Z_e} e_i$, then $H_e = \cap_{i \in Z_e} H_{e_i}$. Now, by Lemma 3.1, for any $e \ne 0$ in B_a , $e = \sum_{i \in Z_e} e_i$ or $e = \sum_{i \in Z_e} e_i + f$. Similarly, if $e = \sum_{i \in Z_e} e_i + f$, then $H_e = H_{(\sum_{i \in Z_e} e_i) + f} = (\cap_{i \in Z_e} H_{e_i}) \cap H_f$. But, for $g \in G$ such that $e_g \ne 1$, $e_g f = 0$; so, $H_f = H_1$. Therefore, $H_e = (\cap_{i \in Z_e} H_{e_i}) \cap H_1 = H_1$ for $H_1 \cap H_{e_i}$ for each i.

We observe that there exist some $e \neq 0$ such that $H_e = \bigcap_{i \in Z_e} H_{e_i}$ and $H_e \subset H_{e_j}$ for some $j \notin Z_e$, and that not all $e \neq 0$ are monomials. Next, we identify which element $e \neq 0$ in B_a is a monomial. Two characterizations are given. We begin with a definition.

DEFINITION 3.4. An $e \neq 0$ in B_a is called a maximal *G*-element if $H_e \neq H_1$ and, for any $e' \in B_a$ such that $e \leq e'$ and $H_e = H_{e'}$, e = e'.

LEMMA 3.5. (1) If $e \neq 0$ such that ef = 0, then $e = \sum_{i \in Z_e} e_i$. (2) If e is a monomial, $e = \prod_{g \in S} e_g$ for some $S \subset G$, then e = 1 or $e = \sum_{i \in Z_e} e_i$.

PROOF. (1) By Lemma 3.1, $e = \sum_{i \in Z_e} e_i$ or $e = \sum_{i \in Z_e} e_i + f$. If $e \neq \sum_{i \in Z_e} e_i$, then $e = \sum_{i \in Z_e} e_i + f$ and $f \neq 0$. But then, $f = (\sum_{i \in Z_e} e_i + f)f = ef = 0$. This is a contradiction. Hence, $e = \sum_{i \in Z_e} e_i$.

(2) In case e = 1, we are done. In case $e \neq 1$. Since $e_g f = 0$ for each $g \in G$ such that $e_g \neq 1$, $ef = \prod_{g \in S} e_g f = 0$. Thus, by (1), $e = \sum_{i \in Z_e} e_i$.

THEOREM 3.6. Keeping the notations of Lemma 3.1 for any $e \neq 0, 1$ in B_a , the following statements are equivalent:

- (1) $e = \prod_{g \in S} e_g$ for some $S \subset G$, a monomial in B_a ;
- (2) *e* is a maximal *G*-element in B_a ;

G. SZETO AND L. XUE

(3) $e = \sum_{i \in Z_e} e_i$ where $\{e_i \mid i \in Z_e\}$ are all atoms such that $H_e \subset H_{e_i}$ and $H_e \neq H_1$.

PROOF. (1) \Rightarrow (2). Since *e* is a monomial and $e \neq 1$, $e = \prod_{g \in H_e} e_g$ where $e_g \neq 1$ for some $g \in H_e$. Thus, $H_e \neq H_1$. Next, for any e' such that $e \leq e'$ and $H_e = H_{e'}$,

$$e \le e' \le \prod_{g \in H_{e'}} e_g = \prod_{g \in H_e} e_g = e.$$
(3.1)

Hence, e = e'. This implies that *e* is a maximal *G*-element in B_a .

(2)⇒(1). Let *e* be a maximal *G*-element and $e' = \prod_{g \in H_e} e_g$. Then, by Lemma 3.2, $e \le e'$ and $H_e = H_{e'}$. But *e* is a maximal *G*-element; so, e = e' which is a monomial.

 $(1)\Rightarrow(3)$. By Lemma 3.5, $e = \sum_{i\in Z_e} e_i$. Now, let e_j be an atom such that $H_e \subset H_{e_j}$. Then, $e_j \leq \prod_{g\in H_e_j} e_g \leq \prod_{g\in H_e} e_g$. But, by hypothesis, e is a monomial; so, $e = \prod_{g\in H_e} e_g$. Hence, $e_j \leq e$. This implies that e_j is a term in e. Thus, $e = \sum_{i\in Z_e} e_i$ where $\{e_i \mid i \in Z_e\}$ are all atoms such that $H_e \subset H_{e_i}$. Moreover, since $e = \prod_{g\in S} e_g \neq 1$, there exists $g \in G$ such that $e \leq e_g \neq 1$. Thus, $g \in H_e$ and $g \notin H_1$. Therefore, $H_e \neq H_1$.

 $(3)\Rightarrow(1)$. Let $e' = \prod_{g \in H_e} e_g$. Then, by Lemma 3.2, $e \le e'$ and $H_e = H_{e'}$. Since $H_e \ne H_1, H_{e'} \ne H_1$. Also, since e' is a monomial, $e' = \sum_{j \in Z_{e'}} e_j$ by Lemma 3.5(2). Now, suppose that $e \ne e'$. Then, there is a $j \in Z_{e'}$ but $j \notin Z_e$, that is, e_j is a term of $e' = \sum_{j \in Z_{e'}} e_j$ but not a term of $e = \sum_{i \in Z_e} e_i$. But then, $H_e = H_{e'} = \bigcap_{j \in Z_{e'}} H_{e_j} \subset H_{e_j}$ such that $j \notin Z_e$. This contradicts the hypothesis that $e = \sum_{i \in Z_e} e_i$ where $\{e_i \mid i \in Z_e\}$ are all atoms such that $H_e \subset H_{e_i}$. Thus, e = e' which is a monomial in B_a .

4. Galois extensions. In [5], it was shown that Be is a central Galois algebra with Galois group H_e for any atom $e \neq f$ of B_a . Also, for any $e \neq 0$ in B_a , Be is a Galois extension of $(Be)^{G(e)}$ with Galois group $G(e)|_{Be} \cong G(e)$ where $G(e) = \{g \in G \mid g(e) = e\}$ (see [5, Lemma 3.7]). In this section, we are going to show that, for any $e \neq 0$ in B_a (not necessary an atom), (1) H_e is a normal subgroup of G(e), and (2) Be is a Galois extension of $(Be)^{G(e)}$ with Galois group $G(e)/H_e$. This generalizes and improves the result for Be when e is an atom of B_a as given in [5, Theorem 3.8]. In particular, for a monomial e, $G(e) = N(H_e)$, the normalizer of H_e in G.

LEMMA 4.1. Let $e \neq 0$ in B_a . Then, H_e is a normal subgroup of G(e) where $G(e) = \{g \in G \mid g(e) = e\}.$

PROOF. We first claim that $H_e \subset G(e)$. In fact, by Lemma 3.1, for any $e \neq 0$ in B_a , there exists a unique subset Z_e of the set $\{1, 2, ..., m\}$ such that $e = \sum_{i \in Z_e} e_i$ or $e = \sum_{i \in Z_e} e_i + f$ where e_i are given in Lemma 3.1. Moreover, for each i,

676

 $e_i = \prod_{h \in H_{e_i}} e_h$ or $e_i = (1 - \sum_{j=1}^t e_j) \prod_{g \in H_{e_i}} e_g$ for some t < i. Noting that g permutes the set $\{e_i \mid i = 1, 2, ..., t\}$ for each $g \in G$ by the proof of [5, Theorem 3.8], we have, for each $g \in G$,

$$g(e_i) = g\left(\prod_{h \in H_{e_i}} e_h\right) = \prod_{h \in H_{e_i}} e_{ghg^{-1}} \ge \prod_{h \in H_{e_i}} e_g e_h e_{g^{-1}} = e_g e_i e_{g^{-1}}$$
(4.1)

or

$$g(e_i) = g\left(\left(1 - \sum_{j=1}^t e_j\right) \prod_{h \in H_{e_i}} e_h\right) = \left(1 - \sum_{j=1}^t e_j\right) \prod_{h \in H_{e_i}} e_{ghg^{-1}}$$

$$\geq \left(1 - \sum_{j=1}^t e_j\right) \prod_{h \in H_{e_i}} e_g e_h e_{g^{-1}}$$

$$= e_g\left(\left(1 - \sum_{j=1}^t e_j\right) \prod_{h \in H_{e_i}} e_h\right) e_{g^{-1}} = e_g e_i e_{g^{-1}}.$$

$$(4.2)$$

Now, in case $e = \sum_{i \in Z_e} e_i$, for any $h \in H_e$,

$$e = e_h e e_{h^{-1}} = \sum_{i \in Z_e} e_h e_i e_{h^{-1}} \le \sum_{i \in Z_e} h(e_i) = h(e).$$
(4.3)

Thus, h(e) = e using Lemma 3.1(2). Noting that g permutes the set $\{e_i \mid i = 1, 2, ..., m\}$ for each $g \in G$, we have g(f) = f for each $g \in G$. Thus, we have h(e) = e for each $h \in H_e$ in case $e = \sum_{i \in Z_e} e_i + f$. This proves that $H_e \subset G(e)$. Next, we show that H_e is a normal subgroup of G(e). Since for each $g \in G$, $g(e_i)$ is also an atom, g(e) = e (i.e., $g \in G(e)$) implies that g permutes the set $\{e_i \mid i \in Z_e\}$. Therefore, for each $i \in Z_e$, $g(e_i) = e_j$ and $gH_{e_i}g^{-1} = H_{e_j}$ for some $j \in Z_e$. But, by Theorem 3.3, $H_e = \cap_{i \in Z_e} H_{e_i}$ (or $H_e = H_1$ which is normal); so, for any $g \in G(e)$, $gH_eg^{-1} = g(\cap_{i \in Z_e} H_{e_i})g^{-1} = \cap_{i \in Z_e} gH_{e_i}g^{-1} = \cap_{j \in Z_e} H_{e_j} = H_e$. Therefore, H_e is a normal subgroup of G(e).

THEOREM 4.2. Let e be a nonzero element in B_a . Then,

- (1) Be is a Galois extension of $(Be)^{G(e)}$ with Galois group G(e),
- (2) Be is a Galois extension of $(Be)^{H_e}$ with Galois group H_e and $(Be)^{H_e}$ is a Galois extension of $(Be)^{G(e)}$ with Galois group $G(e)/H_e$.

PROOF. (1) Since *B* is a Galois algebra with Galois group *G*, *B* is a Galois extension with Galois group G(e). But g(e) = e for each $g \in G(e)$; so, by [5, Lemma 3.7], *Be* is a Galois extension of $(Be)^{G(e)}$ with Galois group G(e).

(2) Clearly, *Be* is a Galois extension of $(Be)^{H_e}$ with Galois group H_e by part (1). Next, we claim that $|H_e|$, the order of H_e , is a unit in *Be*. In fact, by [5, Theorem 3.8], for each atom e_i of B_a , Be_i is a central Galois algebra over Ce_i with Galois group H_{e_i} ; so, $|H_{e_i}|$, the order of H_{e_i} , is a unit in Be_i (see [2, Corollary 3]). Hence, $|H_e| (= | \cap H_{e_i}|)$ is a unit in *Be* if $e = \sum_{i \in Z_e} e_i$. If $e = \sum_{i \in Z_e} e_i + f$ and $f \neq 0$, then $H_e = H_1 = \{g \in G \mid e_g = 1\} = \{g \in G \mid g(c) = c \text{ for each } c \in C\}$. Hence, by [2, Proposition 5], $|H_e|$ is a unit in *B*. Thus, $(Be)^{H_e}$ is a Galois extension of $(Be)^{G(e)}$ with Galois group $G(e)/H_e$ for H_e is a normal subgroup of G(e) by Lemma 4.1.

Lemma 4.1 shows that, for any nonzero element *e* in B_a , G(e) is contained in (not necessarily equal to) the normalizer $N(H_e)$ of H_e in *G*. Next, we want to show that $G(e) = N(H_e)$ when *e* is a monomial. Consequently, for any nonzero element *e* in B_a , Be is embedded in a Galois extension Be' of $(Be')^{H_e}$ with the same Galois group H_e , and $(Be')^{H_e}$ is a Galois extension of $(Be')^{G(e')}$ with Galois group $G(e')/H_e$ such that $G(e') = N(H_e)$ for some monomial *e'* in B_a .

LEMMA 4.3. Let *e* be a nonzero element in B_a . Then, there exists a monomial e' in B_a such that $e \le e'$, $H_e = H_{e'}$, and $N(H_e) = G(e')$ where $G(e') = \{g \in G \mid g(e') = e'\}$ and $N(H_e)$ is the normalizer of H_e in G.

PROOF. By Lemma 3.2, there exists a monomial e' in B_a such that $e \le e'$ and $H_e = H_{e'}$; so, it suffices to show that $N(H_e) = G(e')$. For any $g \in N(H_e)$, $g \in N(H_{e'})$; so, by Theorem 3.3, $H_{e'} = gH_{e'}g^{-1} = g(\cap_{i \in Z_{e'}}H_{e_i})g^{-1} = \cap_{i \in Z_{e'}}gH_{e_i}g^{-1} = \cap_{i \in Z_{e'}}H_{g(e_i)} = H_{\sum_{i \in Z_{e'}}g(e_i)} = H_{g(e')}$. Noting that e' is a monomial, we have g(e') = e' by Lemma 3.2, that is, $g \in G(e')$. This implies that $N(H_e) \subset G(e')$. Conversely, $G(e') \subset N(H_{e'})$ by Lemma 4.1. But $H_e = H_{e'}$; so, $G(e') \subset N(H_{e'}) = N(H_e)$. Therefore, $N(H_e) = G(e')$.

THEOREM 4.4. Let *e* be a nonzero element in B_a . Then, there exists a monomial *e'* in B_a such that B*e* is embedded in B*e'*, B*e'* is a Galois extension of $(Be')^{H_e}$ with Galois group H_e , and $(Be')^{H_e}$ is a Galois extension of $(Be')^{N(H_e)}$ with Galois group $N(H_e)/H_e$.

PROOF. By Lemma 4.3, there exists a monomial e' in B_a such that $e \le e'$, H_e is a normal subgroup of G(e'), and $N(H_e) = G(e')$. Hence, $Be \subset Be'$. But Be' is a Galois extension of $(Be')^{H_{e'}}$ with Galois group $H_{e'}$ and $(Be')^{H_{e'}}$ is a Galois extension of $(Be')^{G(e')}$ with Galois group $G(e')/H_{e'}$ by Theorem 4.2; so, Theorem 4.4 holds.

ACKNOWLEDGMENTS. This paper was written under the support of a Caterpillar Fellowship at Bradley University, and the authors would like to thank the Caterpillar Inc. for that support.

REFERENCES

- F. DeMeyer, Separable polynomials over a commutative ring, Rocky Mountain J. Math. 2 (1972), no. 2, 299-310.
- [2] T. Kanzaki, *On Galois algebra over a commutative ring*, Osaka J. Math. 2 (1965), 309-317.
- G. Szeto, A characterization of Azumaya algebras, J. Pure Appl. Algebra 9 (1976/1977), no. 1, 65-71.
- [4] G. Szeto and L. Xue, *The Boolean algebra and central Galois algebras*, Int. J. Math. Math. Sci. 28 (2001), no. 4, 237–242.

- [5] _____, *The structure of Galois algebras*, J. Algebra **237** (2001), no. 1, 238–246.
- [6] O. E. Villamayor and D. Zelinsky, *Galois theory with infinitely many idempotents*, Nagoya Math. J. **35** (1969), 83–98.

George Szeto: Department of Mathematics, Bradley University, Peoria, IL 61625, USA *E-mail address*: szeto@hilltop.bradley.edu

Lianyong Xue: Department of Mathematics, Bradley University, Peoria, IL 61625, USA *E-mail address*: lxue@hilltop.bradley.edu

Advances in **Operations Research**

The Scientific World Journal

Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

