A FACTORIZATION THEOREM FOR LOGHARMONIC MAPPINGS

ZAYID ABDULHADI and YUSUF ABUMUHANNA

Received 24 March 2002

We give the necessary and sufficient condition on sense-preserving logharmonic mapping in order to be factorized as the composition of analytic function followed by a univalent logharmonic mapping.

2000 Mathematics Subject Classification: 30C55, 30C62, 49Q05.

Let D be a domain of \mathbb{C} and denote by $H(D)$ the linear space of all analytic functions defined on D. A logharmonic mapping is a solution of the nonlinear elliptic partial differential equation

$$
\begin{equation*}
\overline{f_{\bar{z}}}=\left(a \frac{\bar{f}}{f}\right) f_{z} \tag{1}
\end{equation*}
$$

where $a \in H(D)$ and $|a(z)|<1$ for all $z \in D$. If f does not vanish on D, then f is of the form

$$
\begin{equation*}
f=H \cdot \bar{G}, \tag{2}
\end{equation*}
$$

where H and G are locally analytic (possibly multivalued) functions on D. On the other hand, if f vanishes at z_{0}, but is not identically zero, then f admits the local represenation

$$
\begin{equation*}
f(z)=\left(z-z_{0}\right)^{m}\left|z-z_{0}\right|^{2 \beta m} h(z) \overline{g(z)}, \tag{3}
\end{equation*}
$$

where
(a) m is a nonnegative integer,
(b) $\beta=\overline{a(0)}(1+a(0)) /\left(1-|a(0)|^{2}\right)$ and therefore $\Re \beta>-1 / 2$,
(c) h and g are analytic in a neighbourhood of z_{0}.

In particular, if D is a simply connected domain, then f admits a global representation of the form (3) (see, e.g., [2]). Univalent logharmonic mappings defined on the unit disk U have been studied extensively (for details, see, e.g., [1, 2, 3, 4, 5, 6]).

In the theory of quasiconformal mappings, it is proved that for any measurable function μ with $|\mu|<1$, the solution of Beltrami equation $f_{\bar{z}}=\mu f_{z}$ can be factorized in the form $f=\psi \circ F$, where F is a univalent quasiconformal mapping and ψ is an analytic function (see [8]). Moreover, for sense-preserving
harmonic mappings, the answer was negative. In [7], Duren and Hengartner gave a necessary and sufficient condition on sense-preserving harmonic mapping f for the existence of such factorization. Since logharmonic mappings are preserved under precomposition with analytic functions, it is a natural question to ask whether every sense-preserving logharmonic mapping can be factorized in the form $f=F \circ \phi$ for some univalent logharmonic mapping F and some analytic function ϕ.

It is instructive to begin with two simple examples.
Example 1. Let f be the logharmonic mapping $f(z)=z^{2} /|1-z|^{4}$ defined on the unit disc U. Then f is sense-preserving in U with dilatation $a(z)=z$. We claim that f has no decomposition of the desired form in any neighborhood of the origin. Suppose on the contrary that $f=F \circ \phi$, where ϕ is analytic near the origin and F is univalent logharmonic mapping on the range of ϕ. Then F is sense-preserving because f is. Without loss of generality, we suppose that $\phi(0)=0$. Then F has a representation $F=\zeta H(\zeta) \overline{G(\zeta)}$, where H and G are analytic and have power series expansion

$$
\begin{equation*}
H(\zeta)=\sum_{n=0}^{\infty} A_{n} \zeta^{n}, \quad G(\zeta)=\sum_{n=0}^{\infty} B_{n} \zeta^{n}, \tag{4}
\end{equation*}
$$

where $\left|A_{0}\right|=\left|B_{0}\right|=1$.
Since the analytic part of $f(z)$ is $\phi(z) H(\phi(z))=z^{2} /(1-z)^{2}$, the function ϕ must have an expansion of the form

$$
\begin{equation*}
\phi(z)=c_{2} z^{2}+c_{3} z^{3}+\cdots . \tag{5}
\end{equation*}
$$

It follows that $G \circ \phi$ has an expansion of the form $B_{0}+C_{1} z^{2}+C_{2} z^{3}+\cdots$. However, the given form of f shows that $G(\phi(z))=1 /(1-z)^{2}=1+2 z z+$ $3 z^{2}+\cdots$, this leads to contradiction. Hence, f has no factorization of the form $f=F \circ \phi$ of the required form in any neighborhood of the origin.

ExAmple 2. Let $f(z)=z^{2}\left|z^{2}\right|$ be defined in the unit disc U. Now, f is sensepreserving logharmonic mapping in U since the dilatation $a(z)=1 / 3$. But here f has the desired factorization $f=F \circ \phi$, with $F(\zeta)=\zeta|\zeta|$ and $\phi(z)=z^{2}$.

Now, we state and prove the factorization theorem.
Theorem 3. Let f be a nonconstant logharmonic mapping defined on a domain $D \subset \mathbb{C}$ and let a be its dilatation function. Then, f can be factorized in the form $f=F \circ \phi$, for some analytic function ϕ and some univalent logharmonic mapping F if and only if
(a) $|a(z)| \neq 1$ on D;
(b) $f\left(z_{1}\right)=f\left(z_{2}\right)$ implies $a\left(z_{1}\right)=a\left(z_{2}\right)$.

Under these conditions, the representation is unique up to a conformal mapping; any other represenation $f=F_{1} \circ \phi_{1}$ has the form $F_{1}=F \circ \psi^{-1}$ and $\phi_{1}=$ $\psi \circ \phi$ for some conformal mapping defined on $\phi(D)$.

Proof. Suppose that $f=F \circ \phi$, where F is a univalent logharmonic mapping and ϕ is an analytic function. Let $A(\zeta)$ be the dilatation function of F. Then simple calculations give that $f_{z}=F_{w}(\phi) \phi^{\prime}, f_{\bar{z}}=F_{\bar{w}}(\phi) \overline{\phi^{\prime}}$, and $a(z)=$ $A(\phi(z))$. Since F is univalent, the Jacobian is nonzero and hence $|a(z)|=$ $|A(\phi(z))| \neq 1$ (see [2]). Also, F is univalent and $f\left(z_{1}\right)=f\left(z_{2}\right)$ implies that $\phi\left(z_{1}\right)=\phi\left(z_{2}\right)$. Hence, $a\left(z_{1}\right)=a\left(z_{2}\right)$.

Next, suppose that the two conditions are satisfied. We want to show that f can be factorized in the form $f=F(\phi)$. This is equivalent to finding a univalent continuous function G defined on $f(D)$ so that $G \circ f$ is analytic. In view of the Cauchy-Riemann conditions, this is equivalent to

$$
\begin{equation*}
\left(G_{w} b+G_{\bar{w}}\right) \overline{f_{z}}=0, \tag{6}
\end{equation*}
$$

where $b(z)=\overline{a(z)}(f(z) / \overline{f(z)})=f_{\bar{z}} / \overline{f_{z}}$.
Hence, $-b\left(f^{-1}(w)\right)=G_{\bar{w}} / G_{w}$. Let $\mu(w)=G_{\bar{w}} / G_{w}$. Now, we show that μ is well defined. Suppose that $f\left(z_{1}\right)=f\left(z_{2}\right)=w$. Then, as $b\left(z_{1}\right)=\overline{a\left(z_{1}\right)}\left(f\left(z_{1}\right) /\right.$ $\left.\overline{f\left(z_{1}\right)}\right), b\left(z_{2}\right)=\overline{a\left(z_{2}\right)}\left(f\left(z_{2}\right) / \overline{f\left(z_{2}\right)}\right)$, and $a\left(z_{1}\right)=a\left(z_{2}\right)$, it follows that $b\left(z_{1}\right)=$ $b\left(z_{2}\right)$. Hence, $\mu(w)$ is well defined and $|\mu(w)| \neq 1$ for all $w \in f(D)$.

Let $\left\{D_{n}\right\}$ be an exhaustion of $D, \Omega_{n}=f\left(D_{n}\right)$ and let μ_{n} be the restriction of μ to Ω_{n}. Extend μ_{n} to $\overline{\mathbb{C}}$ by assuming that $\mu_{n} \equiv 0$ on $\mathbb{C} \backslash \Omega_{n}$. Then the Beltrami equation $G_{\bar{w}}=\mu_{n} G_{w}$ has a quasiconformal solution G_{n} from \mathbb{C} on \mathbb{C}, see [8]. Let $G_{n}(\infty)=\infty$, then G_{n} is a homeomorphism on $\overline{\mathbb{C}}$. Replace the solution G_{n} with the solution

$$
\begin{equation*}
H_{n}(w)=\frac{G_{n}(w)-G_{n}\left(w_{0}\right)}{G_{n}\left(w_{1}\right)-G_{n}\left(w_{0}\right)}, \tag{7}
\end{equation*}
$$

where $w_{0}, w_{1} \in \Omega_{1}$ and $w_{1} \neq w_{0}$. This is possible because f is not constant on D_{1}. Then, H_{n} is also a homeomorphic solution to the Beltrami equation, normalized to satisfy $H_{n}\left(w_{0}\right)=0, H_{n}\left(w_{1}\right)=1$, and $H_{n}(\infty)=\infty$. This and the fact that each H_{n} is K-quasiconformal mapping on Ω_{j} imply that H_{n} converges locally uniformly to a K-quasiconformal mapping H on Ω_{j}. It follows that H is a homeomorphism on Ω and H satisfies the equation

$$
\begin{equation*}
H_{\bar{w}}=\mu H_{w} \quad \text { on } \Omega . \tag{8}
\end{equation*}
$$

Hence, $\phi=H \circ f$ is analytic in D.
Next, we show that $F=H^{-1}$ is logharmonic mapping. Note that $f=F \circ \phi$ was assumed to be logharmonic in D. Then, near any point $\zeta=\phi(z)$ where $\phi^{\prime}(z) \neq 0$, we can then deduce that $F=f \circ \phi^{-1}$ is logharmonic, where ϕ^{-1} is a local inverse. But F is locally bounded, so the (isolated) images of critical points of ϕ are removable, and F is logharmonic mapping on $\phi(D)$.

Finally, we prove the uniqueness. Suppose that $f=F \circ \phi=F_{0} \circ \phi_{0}$. If we let $G_{0}=F_{0}{ }^{-1}$, then $G_{0} \circ f=\phi_{0}$ is nonconstant and analytic, and $G_{0 \bar{w}}=\mu G_{0 w}$. But the solution of this Beltrami equation is unique; hence, $G_{0}=G$. This completes the proof of the theorem.

References

[1] Z. Abdulhadi, Close-to-starlike logharmonic mappings, Int. J. Math. Math. Sci. 19 (1996), no. 3, 563-574.
[2] Z. Abdulhadi and D. Bshouty, Univalent functions in $H \cdot \bar{H}(D)$, Trans. Amer. Math. Soc. 305 (1988), no. 2, 841-849.
[3] Z. Abdulhadi and W. Hengartner, Spirallike logharmonic mappings, Complex Variables Theory Appl. 9 (1987), no. 2-3, 121-130.
[4] , Univalent harmonic mappings on the left half-plane with periodic dilatations, Univalent Functions, Fractional Calculus, and Their Applications (Kōriyama, 1988), Ellis Horwood Ser. Math. Appl., Horwood, Chichester, 1989, pp. 13-28.
[5] , Univalent logharmonic extensions onto the unit disk or onto an annulus, Current Topics in Analytic Function Theory, World Scientific Publishing, New Jersey, 1992, pp. 1-12.
[6] _ One pointed univalent logharmonic mappings, J. Math. Anal. Appl. 203 (1996), no. 2, 333-351.
[7] P. Duren and W. Hengartner, A decomposition theorem for planar harmonic mappings, Proc. Amer. Math. Soc. 124 (1996), no. 4, 1191-1195.
[8] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, 2nd ed., Springer-Verlag, New York, 1973.

Zayid Abdulhadi: Department of Computer Science, Mathematics and Statistics, American University of Sharjah (AUS), P.O. Box 26666, Sharjah, United Arab Emirates

E-mail address: zahadi@aus.ac.ae
Yusuf Abumuhanna: Department of Computer Science, Mathematics and Statistics, American University of Sharjah (AUS), P.O. Box 26666, Sharjah, United Arab Emirates

E-mail address: ymuhanna@aus.ac.ae

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

