## A FACTORIZATION THEOREM FOR LOGHARMONIC MAPPINGS

## ZAYID ABDULHADI and YUSUF ABUMUHANNA

Received 24 March 2002

We give the necessary and sufficient condition on sense-preserving logharmonic mapping in order to be factorized as the composition of analytic function followed by a univalent logharmonic mapping.

2000 Mathematics Subject Classification: 30C55, 30C62, 49Q05.

Let *D* be a domain of  $\mathbb{C}$  and denote by H(D) the linear space of all analytic functions defined on *D*. A logharmonic mapping is a solution of the nonlinear elliptic partial differential equation

$$\overline{f_{\overline{z}}} = \left(a\frac{\overline{f}}{f}\right)f_z,\tag{1}$$

where  $a \in H(D)$  and |a(z)| < 1 for all  $z \in D$ . If f does not vanish on D, then f is of the form

$$f = H \cdot \overline{G},\tag{2}$$

where *H* and *G* are locally analytic (possibly multivalued) functions on *D*. On the other hand, if *f* vanishes at  $z_0$ , but is not identically zero, then *f* admits the local representation

$$f(z) = (z - z_0)^m |z - z_0|^{2\beta m} h(z) \overline{g(z)},$$
(3)

where

- (a) *m* is a nonnegative integer,
- (b)  $\beta = \overline{a(0)}(1 + a(0))/(1 |a(0)|^2)$  and therefore  $\Re \beta > -1/2$ ,
- (c) *h* and *g* are analytic in a neighbourhood of  $z_0$ .
- In particular, if *D* is a simply connected domain, then *f* admits a global representation of the form (3) (see, e.g., [2]). Univalent logharmonic mappings defined on the unit disk *U* have been studied extensively (for details, see, e.g., [1, 2, 3, 4, 5, 6]).

In the theory of quasiconformal mappings, it is proved that for any measurable function  $\mu$  with  $|\mu| < 1$ , the solution of Beltrami equation  $f_{\overline{z}} = \mu f_z$  can be factorized in the form  $f = \psi \circ F$ , where *F* is a univalent quasiconformal mapping and  $\psi$  is an analytic function (see [8]). Moreover, for sense-preserving

harmonic mappings, the answer was negative. In [7], Duren and Hengartner gave a necessary and sufficient condition on sense-preserving harmonic mapping f for the existence of such factorization. Since logharmonic mappings are preserved under precomposition with analytic functions, it is a natural question to ask whether every sense-preserving logharmonic mapping can be factorized in the form  $f = F \circ \phi$  for some univalent logharmonic mapping F and some analytic function  $\phi$ .

It is instructive to begin with two simple examples.

**EXAMPLE 1.** Let *f* be the logharmonic mapping  $f(z) = z^2/|1-z|^4$  defined on the unit disc *U*. Then *f* is sense-preserving in *U* with dilatation a(z) = z. We claim that *f* has no decomposition of the desired form in any neighborhood of the origin. Suppose on the contrary that  $f = F \circ \phi$ , where  $\phi$  is analytic near the origin and *F* is univalent logharmonic mapping on the range of  $\phi$ . Then *F* is sense-preserving because *f* is. Without loss of generality, we suppose that  $\phi(0) = 0$ . Then *F* has a representation  $F = \zeta H(\zeta) \overline{G(\zeta)}$ , where *H* and *G* are analytic and have power series expansion

$$H(\zeta) = \sum_{n=0}^{\infty} A_n \zeta^n, \qquad G(\zeta) = \sum_{n=0}^{\infty} B_n \zeta^n, \tag{4}$$

where  $|A_0| = |B_0| = 1$ .

Since the analytic part of f(z) is  $\phi(z)H(\phi(z)) = z^2/(1-z)^2$ , the function  $\phi$  must have an expansion of the form

$$\phi(z) = c_2 z^2 + c_3 z^3 + \cdots .$$
 (5)

It follows that  $G \circ \phi$  has an expansion of the form  $B_0 + C_1 z^2 + C_2 z^3 + \cdots$ . However, the given form of f shows that  $G(\phi(z)) = 1/(1-z)^2 = 1+2zz + 3z^2 + \cdots$ , this leads to contradiction. Hence, f has no factorization of the form  $f = F \circ \phi$  of the required form in any neighborhood of the origin.

**EXAMPLE 2.** Let  $f(z) = z^2 |z^2|$  be defined in the unit disc *U*. Now, *f* is sensepreserving logharmonic mapping in *U* since the dilatation a(z) = 1/3. But here *f* has the desired factorization  $f = F \circ \phi$ , with  $F(\zeta) = \zeta |\zeta|$  and  $\phi(z) = z^2$ .

Now, we state and prove the factorization theorem.

**THEOREM 3.** Let f be a nonconstant logharmonic mapping defined on a domain  $D \subset \mathbb{C}$  and let a be its dilatation function. Then, f can be factorized in the form  $f = F \circ \phi$ , for some analytic function  $\phi$  and some univalent logharmonic mapping F if and only if

(a)  $|a(z)| \neq 1$  on *D*;

(b)  $f(z_1) = f(z_2)$  implies  $a(z_1) = a(z_2)$ .

Under these conditions, the representation is unique up to a conformal mapping; any other representation  $f = F_1 \circ \phi_1$  has the form  $F_1 = F \circ \psi^{-1}$  and  $\phi_1 = \psi \circ \phi$  for some conformal mapping defined on  $\phi(D)$ .

**PROOF.** Suppose that  $f = F \circ \phi$ , where *F* is a univalent logharmonic mapping and  $\phi$  is an analytic function. Let  $A(\zeta)$  be the dilatation function of *F*. Then simple calculations give that  $f_z = F_w(\phi)\phi'$ ,  $f_{\overline{z}} = F_{\overline{w}}(\phi)\overline{\phi'}$ , and  $a(z) = A(\phi(z))$ . Since *F* is univalent, the Jacobian is nonzero and hence  $|a(z)| = |A(\phi(z))| \neq 1$  (see [2]). Also, *F* is univalent and  $f(z_1) = f(z_2)$  implies that  $\phi(z_1) = \phi(z_2)$ . Hence,  $a(z_1) = a(z_2)$ .

Next, suppose that the two conditions are satisfied. We want to show that f can be factorized in the form  $f = F(\phi)$ . This is equivalent to finding a univalent continuous function G defined on f(D) so that  $G \circ f$  is analytic. In view of the Cauchy-Riemann conditions, this is equivalent to

$$(G_w b + G_{\overline{w}})\overline{f_z} = 0, (6)$$

where  $b(z) = \overline{a(z)}(f(z)/\overline{f(z)}) = f_{\overline{z}}/\overline{f_z}$ .

Hence,  $-b(f^{-1}(w)) = G_{\overline{w}}/G_w$ . Let  $\mu(w) = G_{\overline{w}}/G_w$ . Now, we show that  $\mu$  is well defined. Suppose that  $f(z_1) = f(z_2) = w$ . Then, as  $b(z_1) = \overline{a(z_1)}(f(z_1)/\overline{f(z_1)})$ ,  $b(z_2) = \overline{a(z_2)}(f(z_2)/\overline{f(z_2)})$ , and  $a(z_1) = a(z_2)$ , it follows that  $b(z_1) = b(z_2)$ . Hence,  $\mu(w)$  is well defined and  $|\mu(w)| \neq 1$  for all  $w \in f(D)$ .

Let  $\{D_n\}$  be an exhaustion of D,  $\Omega_n = f(D_n)$  and let  $\mu_n$  be the restriction of  $\mu$  to  $\Omega_n$ . Extend  $\mu_n$  to  $\overline{\mathbb{C}}$  by assuming that  $\mu_n \equiv 0$  on  $\mathbb{C} \setminus \Omega_n$ . Then the Beltrami equation  $G_{\overline{w}} = \mu_n G_w$  has a quasiconformal solution  $G_n$  from  $\mathbb{C}$  on  $\mathbb{C}$ , see [8]. Let  $G_n(\infty) = \infty$ , then  $G_n$  is a homeomorphism on  $\overline{\mathbb{C}}$ . Replace the solution  $G_n$  with the solution

$$H_n(w) = \frac{G_n(w) - G_n(w_0)}{G_n(w_1) - G_n(w_0)},$$
(7)

where  $w_0, w_1 \in \Omega_1$  and  $w_1 \neq w_0$ . This is possible because f is not constant on  $D_1$ . Then,  $H_n$  is also a homeomorphic solution to the Beltrami equation, normalized to satisfy  $H_n(w_0) = 0$ ,  $H_n(w_1) = 1$ , and  $H_n(\infty) = \infty$ . This and the fact that each  $H_n$  is K-quasiconformal mapping on  $\Omega_j$  imply that  $H_n$  converges locally uniformly to a K-quasiconformal mapping H on  $\Omega_j$ . It follows that H is a homeomorphism on  $\Omega$  and H satisfies the equation

$$H_{\overline{w}} = \mu H_w \quad \text{on } \Omega. \tag{8}$$

Hence,  $\phi = H \circ f$  is analytic in *D*.

Next, we show that  $F = H^{-1}$  is logharmonic mapping. Note that  $f = F \circ \phi$  was assumed to be logharmonic in *D*. Then, near any point  $\zeta = \phi(z)$  where  $\phi'(z) \neq 0$ , we can then deduce that  $F = f \circ \phi^{-1}$  is logharmonic, where  $\phi^{-1}$  is a local inverse. But *F* is locally bounded, so the (isolated) images of critical points of  $\phi$  are removable, and *F* is logharmonic mapping on  $\phi(D)$ .

Finally, we prove the uniqueness. Suppose that  $f = F \circ \phi = F_0 \circ \phi_0$ . If we let  $G_0 = F_0^{-1}$ , then  $G_0 \circ f = \phi_0$  is nonconstant and analytic, and  $G_0_{\overline{w}} = \mu G_0_w$ . But the solution of this Beltrami equation is unique; hence,  $G_0 = G$ . This completes the proof of the theorem.

## References

- Z. Abdulhadi, *Close-to-starlike logharmonic mappings*, Int. J. Math. Math. Sci. 19 (1996), no. 3, 563–574.
- [2] Z. Abdulhadi and D. Bshouty, *Univalent functions in*  $H \cdot \overline{H}(D)$ , Trans. Amer. Math. Soc. **305** (1988), no. 2, 841-849.
- [3] Z. Abdulhadi and W. Hengartner, *Spirallike logharmonic mappings*, Complex Variables Theory Appl. **9** (1987), no. 2-3, 121–130.
- [4] \_\_\_\_\_, Univalent harmonic mappings on the left half-plane with periodic dilatations, Univalent Functions, Fractional Calculus, and Their Applications (Kōriyama, 1988), Ellis Horwood Ser. Math. Appl., Horwood, Chichester, 1989, pp. 13–28.
- [5] \_\_\_\_\_, Univalent logharmonic extensions onto the unit disk or onto an annulus, Current Topics in Analytic Function Theory, World Scientific Publishing, New Jersey, 1992, pp. 1–12.
- [6] \_\_\_\_\_, One pointed univalent logharmonic mappings, J. Math. Anal. Appl. 203 (1996), no. 2, 333-351.
- [7] P. Duren and W. Hengartner, A decomposition theorem for planar harmonic mappings, Proc. Amer. Math. Soc. 124 (1996), no. 4, 1191–1195.
- [8] O. Lehto and K. I. Virtanen, *Quasiconformal Mappings in the Plane*, 2nd ed., Springer-Verlag, New York, 1973.

Zayid Abdulhadi: Department of Computer Science, Mathematics and Statistics, American University of Sharjah (AUS), P.O. Box 26666, Sharjah, United Arab Emirates *E-mail address*: zahadi@aus.ac.ae

Yusuf Abumuhanna: Department of Computer Science, Mathematics and Statistics, American University of Sharjah (AUS), P.O. Box 26666, Sharjah, United Arab Emirates *E-mail address*: ymuhanna@aus.ac.ae



Advances in **Operations Research** 



**The Scientific** World Journal







Hindawi

Submit your manuscripts at http://www.hindawi.com



Algebra



Journal of Probability and Statistics



International Journal of Differential Equations





Complex Analysis





Mathematical Problems in Engineering



Abstract and Applied Analysis



Discrete Dynamics in Nature and Society



International Journal of Mathematics and Mathematical Sciences





Journal of **Function Spaces** 



International Journal of Stochastic Analysis

