ON THE MAPPING $x y \rightarrow(x y)^{n}$ IN AN ASSOCIATIVE RING

SCOTT J. BESLIN and AWAD ISKANDER

Received 26 August 2002

We consider the following condition (*) on an associative ring R : (*). There exists a function f from R into R such that f is a group homomorphism of $(R,+), f$ is injective on R^{2}, and $f(x y)=(x y)^{n(x, y)}$ for some positive integer $n(x, y)>1$. Commutativity and structure are established for Artinian rings R satisfying (*), and a counterexample is given for nonArtinian rings. The results generalize commutativity theorems found elsewhere. The case $n(x, y)=2$ is examined in detail.

2000 Mathematics Subject Classification: 16D70, 16P20.
Let R be an associative ring, not necessarily with unity, and let R^{+}denote the additive group of R. In [3], it was shown that R is commutative if it satisfies the following condition.
(I) For each x and y in R, there exists $n=n(x, y)>1$ such that $(x y)^{n}=x y$.

We generalize this result by considering the condition below.
(II) There exists a function f from R into R such that f is a group homomorphism of R^{+}, f is injective on R^{2}, and $f(x y)=(x y)^{n(x, y)}$ for some positive integer $n=$ $n(x, y)>1$ depending on x and y.

An example of a ring satisfying (II) for $n(x, y)=2$ is given by $R=B \oplus N$, where B is a Boolean ring and N is a zero ring (a ring with trivial product, $x y=0$ for all x and y). In this case, we may take f to be the identity mapping. It was shown in [2] that a ring which is product-idempotent (i.e., $(x y)^{2}=x y$ for every x and y) must be of the form $B \oplus N$. We will see that Artinian rings R for which (II) is true are not far removed from this structure.

In this paper, we give the structure of an Artinian ring R satisfying (II) without invoking the commutativity theorems of Bell [1]. We then exhibit an infinite noncommutative ring for which f is surjective but not injective. Throughout this paper, the notation $J(R)$ denotes the Jacobson radical of the ring R. If r is in R, the symbol \bar{r} denotes the coset $r+J(R)$.

The proposition below states that rings satisfying (II) obey the central-idempotent property.

Proposition 1 (see [3]). Let R be a ring satisfying (II). Ife is an idempotent in R, then e is central.

Proof. Since $f(y x)=(y x)^{n(y, x)}=y(x y) x \cdots y x$, we have that $x y=0$ in R implies $y x=0$, for any x and y in R. Now, for every r in $R,\left(e^{2}-e\right) r=e(e r-r)=0$. Thus, $(e r-r) e=0$ or ere $=r e$. Similarly, ere $=e r$. Hence, $e r=r e$.

Theorem 2. Let R be an Artinian ring satisfying (II). If $(x y)^{m}=0$ for some positive integer m, then $x y=0$.

Proof. Suppose that $(x y)^{m}=0$ and $(x y)^{m-1} \neq 0, m>1$. Then, $f\left[(x y)^{m-1}\right]=$ $\left[(x y)^{m-1}\right]^{n}=0$. Since f is injective on $R^{2},(x y)^{m-1}=0$, a contradiction.

Corollary 3. If R is an Artinian ring satisfying (II), then $R \cdot J(R)=J(R) \cdot R=(0)$.
Proof. Since R is Artinian, the ideal $J(R)$ is nilpotent.
Corollary 4. For an Artinian ring R satisfying (II), $J(R)$ is a zero ring.
Corollary 5. For an Artinian ring R satisfying (II), $R / J(R)$ is commutative.
Proof. If not, there is a direct summand of $R / J(R)$ isomorphic to a full matrix ring over a division ring. Hence, there exist \bar{u} and \bar{v} in $R / J(R)$ such that $\bar{u} \bar{v} \neq 0$ and $\bar{u} \bar{v} \bar{u}=0$. It follows that $u v \neq 0$ in R and that $u v u$ is in $J(R)$. But then $f(u v)=$ $(u v)^{n(u, v)}=u v \cdot u v \cdots u v=(u v u) v \cdots u v=0$. Thus, by the injective property of f on $R^{2}, u v=0$, a contradiction.

We now obtain the structure of an Artinian ring R satisfying (II).
THEOREM 6. If R is an Artinian ring satisfying (II), then R decomposes as a direct sum of rings $e R \oplus N$, where e is an idempotent in R and N is a zero ring.

Proof. By Corollary 5, the ring $S=R / J(R)$ is a direct sum of fields; hence S has an identity \bar{t}, which lifts to a central idempotent e in R such that $e-t$ is in $J(R)$. Let $N=\{r-e r: r \in R\}$. It is easy to see that N is an ideal of R, and that the intersection of N with $e R$ is (0). Clearly, $R=e R+N$, and so we may write $R=e R \oplus N$. Now, $e-t$ in $J(R)$ implies that $(e-t)^{2}=0$ or $e=2 e t-t^{2}$. Hence, if r is in $R,\left(2 \bar{e} \cdot \bar{t}-\bar{t}^{2}\right) \bar{r}=\bar{e} \cdot \bar{r}=\overline{e r}$ or $2 \bar{e} \cdot \bar{t} \cdot \bar{r}-\bar{t}^{2} \cdot \bar{r}=2 \bar{e} \cdot \bar{r}-\bar{r}=\overline{e r}$, since \bar{t} is the identity of S. Thus, $\overline{e r}-\bar{r}=0$ or $r-e r$ is in $J(R)$. Therefore, N is a zero subring of $J(R)$.

Corollary 7. If R is an Artinian ring satisfying (II), then R is a direct sum $F \oplus N$, where F is a direct sum of fields and N is a zero ring.

Proof. By Theorem 2, the ring $e R$ in Theorem 6 has no nonzero nilpotent elements, and hence is a direct sum of fields by Corollary 5.

Corollary 8. Let R be as in Theorem 2. Then R is commutative.
Corollary 9. Let R be as in Theorem 2. Then $J(R)$ consists precisely of the nilpotent elements $\left\{x: x^{2}=0\right\}$.

REMARK 10. The function f maps the ideal $e R$ of Theorem 6 into itself, since $f(e x)=$ $(e x)^{n}=e^{n} x^{n}=e x^{n}$.

Remark 11. The specific fields in the direct sum F of Corollary 7 depend, of course, on the integers $n(x, y)$. A Boolean ring is acceptable for any value of n. The prime field with p elements, p a prime, is acceptable for $n=(p-1) m+1, m$ a positive
integer. A finite field of order p^{k} is acceptable for $n=p$. Of course, an infinite field of characteristic p need not be a p th root field.

We now exhibit an infinite noncommutative ring R for which $f(x y)=(x y)^{2}$ on R^{2}.
Let \mathbb{Z}_{4} be the ring of integers modulo 4 . Let R be the free \mathbb{Z}_{4}-module with countable base $A=\left\{a_{i}: i=1,2,3, \ldots\right\}$. On A, define the multiplication $a_{1} a_{2}=a_{3}, a_{2} a_{1}=-a_{3}$, $a_{i} a_{j}=0$ otherwise. One may verify that this yields an associative multiplication which extends to a ring multiplication on R considered as an abelian group. Clearly, the ring R is noncommutative. Define $f: A \rightarrow A \cup\{0\}$ via $f\left(a_{1}\right)=f\left(a_{3}\right)=0$ and $f\left(a_{i}\right)=a_{\rho(i)}$, $i \neq 1,3$, where ρ is any bijection of $\{2,4,5, \ldots\}$ onto the set of positive integers. The map f extends to a group homomorphism of R^{+}. Now, $f\left(a_{i} a_{j}\right)=f(0)=0=\left(a_{i} a_{j}\right)^{2}$ for $(i, j) \neq(1,2)$ or $(2,1)$. Moreover, $f\left(a_{1} a_{2}\right)=f\left(a_{3}\right)=0=\left(a_{1} a_{2}\right)^{2}=a_{3}^{2}$. Similarly, $f\left(a_{2} a_{1}\right)=0=\left(a_{2} a_{1}\right)^{2}$. It is then easy to check that $f(x y)=(x y)^{2}$ for every x and y in R, since $a_{i} a_{j} a_{k}=0$ for all a_{i}, a_{j}, a_{k} in A.

The function f above is not injective. We prove the following theorem which insures the commutativity of any ring S, given injectivity of f on the subring S^{2} alone.

THEOREM 12. Let f be a function from a ring S into S such that $f(x+y)=f(x)+$ $f(y)$ and $f(x y)=(x y)^{2}$. Assume further that f is injective on s^{2}. Then S is commutative.

Proof. Let x, y, z, and t be arbitrary elements of S. Now, $f(2 x y)=2(x y)^{2}=$ $(2 x y)^{2}=4(x y)^{2}$, so $2(x y)^{2}=f(2 x y)=0$. Hence, $2 x y=0$ by injectivity. Moreover, if $x y=0$, then $f(y x)=y(x y) x=0$ implies $y x=0$. From $(x y)^{2}+(z y)^{2}=f(x y)+$ $f(z y)=f((x+z) y)=[(x+z) y]^{2}=(x y+z y)^{2}=(x y)^{2}+x y z y+z y x y+(z y)^{2}$, we obtain $x y z y=z y x y$. Now, $f(x t y z+y z x t)=f(x t y z)+f(y z x t)=x t y z \cdot x t y z+$ $y z x t \cdot y z x t=(x t) y(z x t) y z+y z x t \cdot y z x t=x t y z y(z x t)+y z x t \cdot y z x t$. Hence, $x t y z(x t y z+y z x t)=0$. Thus, $(x t y z+y z x t) x t y z=x t y z \cdot x t y z+y z x t \cdot x t y z=$ $x t y z \cdot x t y z+y z \cdot x(t) x(t y z)=x t y z \cdot x t y z+y z x(t y z) x t=f(x t y z+y z x t)=0$. Therefore, $x t y z+y z x t=0$ or $(x t)(y z)=(y z)(x t)$. Hence, S^{2} is commutative.

Now, $f(x y z)=(x y z)(x y z)=x(y z x)(y z)=x(y z)^{2} x$. Similarly, $f(y z x)=$ $x(y z)^{2} x$. So, $x y z=y z x$.

Finally, $f(x y)=(x y)(x y)=x(y x y)=x^{2} y^{2}=y^{2} x^{2}=(y x)(y x)=f(y x)$. Thus, $x y=y x$, and S is commutative. This completes the proof.

Remark 13. The ring R in the example preceding Theorem 12 does not have a unity. It can be shown that if S is any ring in which every element is a square, and squaring is an endomorphism of S^{+}, then S is commutative. It follows that a ring R satisfying (II) for $n=2$ and having a right or left identity is commutative.

In view of Remark 13 and Theorem 12, we make the following conjecture and leave it as a problem.

Conjecture 14. Let S be a ring and $n \geq 2$ a positive integer. If the function $f(x)=$ x^{n} on S is surjective (injective) and f is a group endomorphism of S^{+}, then S is commutative.

References

[1] H. E. Bell, A commutativity study for periodic rings, Pacific J. Math. 70 (1977), no. 1, 29-36.
[2] S. Ligh and J. Luh, Direct sum of J-rings and zero rings, Amer. Math. Monthly 96 (1989), no. 1, 40-41.
[3] M. Ó. Searcóid and D. MacHale, Two elementary generalisations of Boolean rings, Amer. Math. Monthly 93 (1986), no. 2, 121-122.

Scott J. Beslin: Department of Mathematics and Computer Science, Nicholls State University, Thibodaux, LA 70310, USA

E-mail address: scott.beslin@nichol1s.edu
Awad Iskander: Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA

E-mail address: awadiskander@juno.com

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

