RATIONAL TORAL RANKS IN CERTAIN ALGEBRAS

YASUSUKE KOTANI and TOSHIHIRO YAMAGUCHI

Received 24 March 2004 and in revised form 17 September 2004

Abstract

We calculate the rational toral ranks of two spaces whose cohomologies are isomorphic and note that rational toral rank is a rational homotopy invariant but not a cohomology invariant.

2000 Mathematics Subject Classification: 55P62, 57S99.

1. Introduction. Let $\mathrm{rk}_{0}(Y)$ be the rational toral rank of a simply connected space Y, that is, the largest integer r such that an r-torus $T^{r}=S^{1} \times \cdots \times S^{1}$ (r-factors) can act continuously on a CW-complex which has the rational homotopy type of Y with all its isotropy subgroups finite. For example, $\mathrm{rk}_{0}(Y)=1$ if Y has the rational homotopy type of an odd-dimensional sphere $S^{2 n+1}$.

Let \mathbb{Q} be the field of the rational numbers. For a finite-dimensional \mathbb{Q}-commutative graded algebra A^{*} with $A^{0}=\mathbb{Q}$ and $A^{1}=0$, we put

$$
\begin{gather*}
20_{A^{*}}=\left\{\text { rational homotopy type of } Y \mid H^{*}(Y ; \mathbb{Q}) \cong A^{*}\right\}, \tag{1.1}\\
r_{A^{*}}=\left\{\operatorname{rk}_{0}(Y) \mid H^{*}(Y ; \mathbb{Q}) \cong A^{*}\right\},
\end{gather*}
$$

the set of rational toral ranks in $2 \emptyset_{A^{*}}$. For example, we see that if $A^{*}=A^{\text {even }}$, then the Euler characteristic is nonzero, so there must be fixed points; hence, $r_{A^{*}}=\{0\}$. Note that $2 \nu_{A^{*}}$ and $r_{A^{*}}$ are not empty sets since there exists the formal space whose cohomology is isomorphic to A^{*} (see below), and that $r_{A^{*}}$ is at most finite even if $2 \emptyset_{A^{*}}$ is infinite. In this paper, we calculate $r_{A^{*}}$ for certain commutative graded algebras A^{*}.

Theorem 1.1. For the following four algebras A^{*} :
(1) $A^{*} \cong H^{*}\left(S^{2} \vee S^{2} \vee S^{5} ; \mathbb{Q}\right)$,
(2) $A^{*} \cong H^{*}\left(\left(S^{3} \times S^{8}\right) \#\left(S^{3} \times S^{8}\right) ; \mathbb{Q}\right)$,
(3) $A^{*} \cong H^{*}\left(\left(S^{2} \vee S^{2}\right) \times S^{3} ; \mathbb{Q}\right)$,
(4) $A^{*} \cong H^{*}\left(\left(S^{2} \times S^{5}\right) \#\left(S^{2} \times S^{5}\right) ; \mathbb{Q}\right)$,
the rational toral ranks in $2 \emptyset_{A^{*}}$ are listed in Table 1.1, where $2 \emptyset_{A^{*}}=\{X, Y\}$ with a formal space X and a nonformal space Y.

Here \vee and \# denote a one point union (wedge) and a connected sum, respectively. For these A^{*}, we can check that $2 b_{A^{*}}$ is two points as in [5] or [6].

What do we know about the set $r_{A^{*}}$, namely, the function $\mathrm{rk}_{0}: 2 \mathrm{~h}_{A^{*}} \rightarrow\{0,1,2, \ldots\}$? For example, We consider the following questions.

Question 1.2. Suppose that A^{*} is a Poincaré duality algebra. Then, for $X, Y \in 2 \emptyset_{A^{*}}$, is $\mathrm{rk}_{0}(X) \leq \mathrm{rk}_{0}(Y)$ if X is formal?

Table 1.1. The rational toral ranks in $2 \nu_{A^{*}}$.

Algebra	$\mathrm{rk}_{0}(X)$	$\mathrm{rk}_{0}(Y)$
(1)	0	0
(2)	0	1
(3)	1	0
(4)	1	1

A simply connected space Y is called (rationally) elliptic if $\operatorname{dim} \pi_{*}(Y) \otimes \mathbb{Q}<\infty$ and $\operatorname{dim} H^{*}(Y ; \mathbb{Q})<\infty$.

Question 1.3. For $X, Y \in 2 \emptyset_{A^{*}}$, is $\mathrm{rk}_{0}(X) \leq \mathrm{rk}_{0}(Y)$ if Y is elliptic?
Question 1.4. Is $\boldsymbol{r}_{A^{*}}=\{a, a+1, \ldots, b-1, b\}$ for some integers $a \leq b$? Namely, are there no gaps in the sequence of integers of $r_{A *}$?

Notice that, for our examples, the answer is positive for these questions.
For the proof of Theorem 1.1, we use the Sullivan minimal model $M(Y)$ of a simply connected space Y of finite type. It is a free \mathbb{Q}-commutative differential graded algebra (d.g.a.) $(\wedge V, d)$ with a \mathbb{Q}-graded vector space $V=\bigoplus_{i>1} V^{i}$, where $\operatorname{dim} V^{i}<$ ∞ and a minimal differential, that is, $d\left(V^{i}\right) \subset\left(\wedge^{+} V \cdot \wedge^{+} V\right)^{i+1}$ and $d \circ d=0$. Here $\wedge V=$ (the \mathbb{Q}-polynomial algebra over $\left.V^{\text {even }}\right) \otimes\left(\right.$ the \mathbb{Q}-exterior algebra over $V^{\text {odd }}$) and $\wedge^{+} V$ is the ideal of $\wedge V$ generated by elements of positive degree. Denote the degree of an element x of a graded algebra as $|x|$. Then $x y=(-1)^{|x||y|} y x$ and $d(x y)=$ $d(x) y+(-1)^{|x|} x d(y)$. Notice that $M(Y)$ determines the rational homotopy type of Y. See [3] for a general introduction and notation: for example, for the notion of KoszulSullivan (KS) extension. Especially note that $H^{*}(M(Y)) \cong H^{*}(Y ; \mathbb{Q})$ and a space Y is said to be formal if there is a d.g.a. map $M(Y) \rightarrow\left(H^{*}(Y ; \mathbb{Q}), 0\right)$ which induces an isomorphism of cohomologies. The formal minimal model $M_{A^{*}}$ is constructed by a free commutative resolution of the algebra $A^{*}[5]$. Throughout this paper, $\mathbb{Q}\langle x, y, \ldots\rangle$ denotes the \mathbb{Q}-graded vector space generated by $\{x, y, \ldots\}$.
2. Preliminaries. Let Y be a simply connected space of finite type with minimal model $M(Y)=(\wedge V, d)$. If an r-torus T^{r} acts on Y, there is a KS extension, with $\left|t_{i}\right|=2$ for $i=1, \ldots, r$,

$$
\begin{equation*}
\left(\mathbb{Q}\left[t_{1}, \ldots, t_{r}\right], 0\right) \rightarrow\left(\mathbb{Q}\left[t_{1}, \ldots, t_{r}\right] \otimes \wedge V, D\right) \rightarrow(\wedge V, d) \tag{2.1}
\end{equation*}
$$

which is induced from the Borel fibration [2]

$$
\begin{equation*}
Y \rightarrow E T^{r} \times_{T^{r}} Y \rightarrow B T^{r} . \tag{2.2}
\end{equation*}
$$

In particular, the fact that (2.1) is a KS extension entails that, $D t_{i}=0$ and for $v \in V$, $D v \equiv d v$ modulo the ideal $\left(t_{1}, \ldots, t_{r}\right)$, that is,

$$
\begin{equation*}
D v=d v+\sum_{i_{1}+\cdots+i_{r}>0} h_{i_{1}, \ldots, i_{r}} t_{1}{ }^{i_{1}} \cdots t_{r}{ }^{i_{r}} \tag{2.3}
\end{equation*}
$$

with $h_{i_{1}, \ldots, i_{r}} \in \wedge V$. The differential D also satisfies $D \circ D=0$.

Lemma 2.1 [4, Proposition 4.2]. Suppose that $\operatorname{dim} H^{*}(Y ; \mathbb{Q})<\infty$. Then, $\mathrm{rk}_{0}(Y) \geq r$ if and only if there is a KS extension (2.1) satisfying $\operatorname{dim} H^{*}\left(\mathbb{Q}\left[t_{1}, \ldots, t_{r}\right] \otimes \wedge V, D\right)<\infty$.

So we may try to construct inductively for $1, \ldots, i$, the KS extensions:

$$
\begin{equation*}
\left(\mathbb{Q}\left[t_{i}\right], 0\right) \rightarrow\left(\mathbb{Q}\left[t_{1}, \ldots, t_{i}\right] \otimes \wedge V, D_{i}\right) \rightarrow\left(\mathbb{Q}\left[t_{1}, \ldots, t_{i-1}\right] \otimes \wedge V, D_{i-1}\right) \tag{2.4}
\end{equation*}
$$

satisfying $\operatorname{dim} H^{*}\left(\mathbb{Q}\left[t_{1}, \ldots, t_{i}\right] \otimes \wedge V, D\right)<\infty$ in general. In the following, we consider the particular case of $i=1$.

Lemma 2.2. Suppose that $H^{n+2}(\wedge V, d)=0$ and $H^{n}(\mathbb{Q}[t] \otimes \wedge V, D)=\mathbb{Q}\left\langle\gamma_{1}, \ldots, \gamma_{m}\right\rangle$. Then, $H^{n+2}(\mathbb{Q}[t] \otimes \wedge V, D) \subset \mathbb{Q}\left\langle\gamma_{1} t, \ldots, \gamma_{m} t\right\rangle$. Moreover, if $H^{n+1}(\wedge V, d)=0$, then the inclusion is an equality.

Proof. Let $\alpha+\alpha^{\prime} t$ be a D-cocycle in $(\mathbb{Q}[t] \otimes \wedge V)^{n+2}$ with $\alpha \in(\wedge V)^{n+2}$ and $\alpha^{\prime} \in$ $(\mathbb{Q}[t] \otimes \wedge V)^{n}$. Then we have $D \alpha=-D\left(\alpha^{\prime}\right) t$, and consequently, $d \alpha=0$.

Since $H^{n+2}(\wedge V, d)=0$, there is an element $\beta \in(\wedge V)^{n+1}$ such that $d \beta=\alpha$. Let $D \beta=$ $\alpha+\alpha^{\prime \prime} t$ for some $\alpha^{\prime \prime} \in(\mathbb{Q}[t] \otimes \wedge V)^{n}$. Then, since

$$
\begin{equation*}
0=D^{2} \beta=D \alpha+D\left(\alpha^{\prime \prime}\right) t=-D\left(\alpha^{\prime}-\alpha^{\prime \prime}\right) t \tag{2.5}
\end{equation*}
$$

we see that $\alpha^{\prime}-\alpha^{\prime \prime}$ is a D-cocycle in $(\mathbb{Q}[t] \otimes \wedge V)^{n}$.
Since $H^{n}(\mathbb{Q}[t] \otimes \wedge V, D)=\mathbb{Q}\left\langle\gamma_{1}, \ldots, \gamma_{m}\right\rangle$, we can denote $\alpha^{\prime}-\alpha^{\prime \prime}=c_{1} \gamma_{1}+\cdots+c_{m} \gamma_{m}+$ $D \beta^{\prime}$ for some $c_{1}, \ldots, c_{m} \in \mathbb{Q}$ and $\beta^{\prime} \in(\mathbb{Q}[t] \otimes \wedge V)^{n-1}$. Then we have

$$
\begin{align*}
\alpha+\alpha^{\prime} t & =\alpha+\left(\alpha^{\prime \prime}+c_{1} \gamma_{1}+\cdots+c_{m} \gamma_{m}+D \beta^{\prime}\right) t \\
& =c_{1} \gamma_{1} t+\cdots+c_{m} \gamma_{m} t+D\left(\beta+\beta^{\prime} t\right) . \tag{2.6}
\end{align*}
$$

Hence $\left[\alpha+\alpha^{\prime} t\right]=\left[c_{1} \gamma_{1} t+\cdots+c_{m} \gamma_{m} t\right]$ in $H^{n+2}(\mathbb{Q}[t] \otimes \wedge V, D)$. Thus we have $H^{n+2}(\mathbb{Q}[t] \otimes \wedge V, D) \subset \mathbb{Q}\left\langle\gamma_{1} t, \ldots, \gamma_{m} t\right\rangle$.

Suppose that $c_{1} \gamma_{1} t+\cdots+c_{m} \gamma_{m} t=D\left(\eta+\eta^{\prime} t\right)$ for some $\eta \in(\wedge V)^{n+1}$ and $\eta^{\prime} \in(\mathbb{Q}[t] \otimes$ $\wedge V)^{n-1}$. Then we have $d \eta=0$ since $d \eta \notin \operatorname{Ideal}(t)$. If $H^{n+1}(\wedge V, d)=0$, there is an element $\theta \in(\wedge V)^{n}$ such that $d \theta=\eta$. Let $D \theta=\eta+\eta^{\prime \prime} t$ for some $\eta^{\prime \prime} \in(\mathbb{Q}[t] \otimes \wedge V)^{n-1}$. Then we have

$$
\begin{equation*}
\left(c_{1} \gamma_{1}+\cdots+c_{m} \gamma_{m}\right) t=D\left(\eta+\eta^{\prime} t\right)=D\left(D \theta-\eta^{\prime \prime} t+\eta^{\prime} t\right)=D\left(\eta^{\prime}-\eta^{\prime \prime}\right) t . \tag{2.7}
\end{equation*}
$$

However, $c_{1} \gamma_{1}+\cdots+c_{m} \gamma_{m} \notin \operatorname{Im} D$ unless $c_{1}=\cdots=c_{m}=0$. Thus, if $H^{n+1}(\wedge V, d)=0$, $\gamma_{1} t, \ldots, \gamma_{m} t$ are linearly independent in $H^{n+2}(\mathbb{Q}[t] \otimes \wedge V, D)$.

A commutative graded algebra A^{*} with $\operatorname{dim} A^{*}<\infty$ will be said to have formal dimension n if $A^{n} \neq 0$ and $A^{i}=0$ for all $i>n$. For example, the formal dimensions of (1), (2), (3), and (4) are $5,11,5$, and 7 , respectively.

Lemma 2.3 [4, Lemma 5.4]. Suppose that $H^{*}(\wedge V, d)$ and $H^{*}(\mathbb{Q}[t] \otimes \wedge V, D)$ have formal dimensions n and n^{\prime}, respectively. Then $n^{\prime}=n-1$. If one algebra satisfies Poincaré duality, so does the other.

From Lemma 2.1 the following corollary may be useful to estimate a rational toral rank to be nonzero.

Corollary 2.4. Suppose that $H^{*}(\wedge V, d)$ has formal dimension n. Then, $\operatorname{dim} H^{*}(\mathbb{Q}[t]$ $\otimes \wedge V, D)<\infty$ if and only if $H^{n}(\mathbb{Q}[t] \otimes \wedge V, D)=H^{n+1}(\mathbb{Q}[t] \otimes \wedge V, D)=0$.

Proof. The "if" part is proved as follows. Since $H^{n+2 i}(\wedge V, d)=0$ for $i>0$, we have $H^{n+2 i}(\mathbb{Q}[t] \otimes \wedge V, D)=0$ for $i \geq 0$ from Lemma 2.2. Similarly, since $H^{n+2 i-1}(\wedge V, d)=0$ for $i>0$, we have $H^{n+2 i-1}(\mathbb{Q}[t] \otimes \wedge V, D)=0$ for $i>0$ from Lemma 2.2. Hence we have $H^{n+i}(\mathbb{Q}[t] \otimes \wedge V, D)=0$ for $i \geq 0$, that is, $\operatorname{dim} H^{*}(\mathbb{Q}[t] \otimes \wedge V, D)<\infty$.

The "only if" part follows from Lemma 2.3.
Proposition 2.5. Suppose that $H^{*}(\wedge V, d)$ has formal dimension n and $(\wedge Z, D)$ is a minimal d.g.a. Then $H^{*}(\wedge Z, D)$ has formal dimension $n-1$ and $Z^{\leq n}=\mathbb{Q}\langle t\rangle \oplus V^{\leq n}$ with $D \equiv d \bmod (t)$ on $V^{\leq n}$ if and only if $Z=\mathbb{Q}\langle t\rangle \oplus V$ and $D \equiv d \bmod (t)$, that is, there is a $K S$ extension

$$
\begin{equation*}
(\mathbb{Q}[t], 0) \rightarrow(\wedge Z, D)=(\mathbb{Q}[t] \otimes \wedge V, D) \longrightarrow(\wedge V, d) \tag{2.8}
\end{equation*}
$$

such that $\operatorname{dim} H^{*}(\mathbb{Q}[t] \otimes \wedge V, D)<\infty$.
Proof. The "if" part is obvious from Lemma 2.3.
Now we show the "only if" part. For some $k \geq n$, assume that $Z^{\leq k}=\mathbb{Q}\langle t\rangle \oplus V^{\leq k}$ with $D v \equiv d v \bmod (t)$ for $v \in V^{\leq k}$. Then an element in $H^{k+2}\left(\wedge Z^{\leq k}, D\right)$ can be written using $\left[\alpha+\alpha^{\prime} t\right]$ with $\alpha \in\left(\wedge V^{\leq k}\right)^{k+2}$ and $\alpha^{\prime} \in\left(\wedge Z^{\leq k}\right)^{k}$. Since $D\left(\alpha+\alpha^{\prime} t\right)=0$, we have $d \alpha=0$. Now we give a map

$$
\begin{equation*}
\rho_{k+1}: H^{k+2}\left(\wedge Z^{\leq k}, D\right) \longrightarrow H^{k+2}\left(\wedge V^{\leq k}, d\right) \tag{2.9}
\end{equation*}
$$

where $\rho_{k+1}\left(\left[\alpha+\alpha^{\prime} t\right]\right)=[\alpha]$. It is well defined. Indeed, if $\left[\alpha_{1}+\alpha_{1}^{\prime} t\right]=\left[\alpha_{2}+\alpha_{2}^{\prime} t\right]$ in $H^{k+2}\left(\wedge Z^{\leq k}, D\right)$, then $\alpha_{1}+\alpha_{1}^{\prime} t=\alpha_{2}+\alpha_{2}^{\prime} t+D\left(\beta+\beta^{\prime} t\right)$ for some $\beta \in\left(\wedge V^{\leq k}\right)^{k+1}$ and $\beta^{\prime} \in\left(\wedge Z^{\leq k}\right)^{k-1}$. Let $D \beta=d \beta+\beta^{\prime \prime} t$. Then we have

$$
\begin{equation*}
\left(\alpha_{1}-\alpha_{2}\right)+\left(\alpha_{1}^{\prime}-\alpha_{2}^{\prime}\right) t=d \beta+\left(\beta^{\prime \prime}+D\left(\beta^{\prime}\right)\right) t . \tag{2.10}
\end{equation*}
$$

So $\alpha_{1}-\alpha_{2}=d \beta$. Hence $\left[\alpha_{1}\right]=\left[\alpha_{2}\right]$ in $H^{k+2}\left(\wedge V^{\leq k}, d\right)$.
Since ρ_{k+1} is bijective, from the following paragraphs we see that $Z^{k+1}=V^{k+1}$ with $D v \equiv d v \bmod (t)$ for $v \in V^{k+1}$ from the construction of minimal d.g.a.'s such that $H^{>k}(\wedge Z, D)=H^{>k}(\wedge V, d)=0$. Thus we have inductively $Z=\mathbb{Q}\langle t\rangle \oplus V$ with $D v \equiv$ $d v \bmod (t)$ for $v \in V$.

Now we show that ρ_{k+1} is injective. Suppose that $\rho_{k+1}\left(\left[\alpha+\alpha^{\prime} t\right]\right)=[\alpha]=0$. Then there is an element $\beta \in\left(\wedge V^{\leq k}\right)^{k+1}$ such that $d \beta=\alpha$. Let $D \beta=\alpha+\alpha^{\prime \prime} t$. Since $D(\alpha+$ $\left.\alpha^{\prime} t\right)=0$ and $D\left(\alpha+\alpha^{\prime \prime} t\right)=D^{2} \beta=0$, we have $D\left(\alpha^{\prime}-\alpha^{\prime \prime}\right)=0$. Since $H^{k}\left(\wedge Z^{\leq k}, D\right)=0$, $\alpha^{\prime}-\alpha^{\prime \prime}=D \beta^{\prime}$ for some $\beta^{\prime} \in\left(\wedge Z^{\leq k}\right)^{k-1}$. Then we have

$$
\begin{equation*}
\alpha+\alpha^{\prime} t=\alpha+\left(\alpha^{\prime \prime}+D \beta^{\prime}\right) t=D\left(\beta+\beta^{\prime} t\right) . \tag{2.11}
\end{equation*}
$$

Hence $\left[\alpha+\alpha^{\prime} t\right]=0$.
Now we show that ρ_{k+1} is surjective. Let $[\alpha] \in H^{k+2}\left(\wedge V^{\leq k}, d\right)$. Since $d \alpha=0$, we can denote $D \alpha=\gamma t$ with $\gamma \in\left(\wedge Z^{\leq k}\right)^{k+1}$. Since $H^{k+1}\left(\wedge Z^{\leq k}, D\right)=0, \gamma=D \eta$ for some $\eta \in\left(\wedge Z^{\leq k}\right)^{k}$. Then we have

$$
\begin{equation*}
D(\alpha-\eta t)=D \alpha-D(\eta) t=\gamma t-\gamma t=0 . \tag{2.12}
\end{equation*}
$$

Hence there is an element $[\alpha-\eta t] \in H^{k+2}\left(\wedge Z^{\leq k}, d\right)$ such that $f([\alpha-\eta t])=[\alpha]$.
From Lemma 2.1, we have the following.
COROLLARY 2.6. Let $M(Y)=(\wedge V, d)$ with cohomology of formal dimension n. If there is a minimal d.g.a. $(\wedge Z, D)$ such that $H^{*}(\wedge Z, D)$ has formal dimension $n-1$ and $Z \leq n=$ $\mathbb{Q}\langle t\rangle \oplus V^{\leq n}$ with $D \equiv d \bmod (t)$ on $V^{\leq n}$, then $M\left(E S^{1} \times_{S^{1}} Y\right) \cong(\wedge Z, D)$, that is, $\operatorname{rk}_{0}(Y) \geq 1$.

In the following, X is formal and Y is nonformal.

3. Examples

EXAMPLE 3.1. Let $X=S^{2} \vee S^{2} \vee S^{5}$. Then $\chi_{H}(X)=\sum_{i}(-1)^{i} \operatorname{dim} H^{i}(X ; \mathbb{Q})=2>0$. Recall

$$
\begin{equation*}
\chi_{H}\left(E S^{1} \times_{S^{1}} X\right)=\chi_{H}(X) \cdot \chi_{H}\left(B S^{1}\right) \tag{3.1}
\end{equation*}
$$

for a Borel fibration $X \rightarrow E S^{1} \times_{S^{1}} X \rightarrow B S^{1}$. Since $\chi_{H}\left(B S^{1}\right)=\infty$ we have $\chi_{H}\left(E S^{1} \times_{S^{1}}\right.$ $X)=\infty$, that is, $\operatorname{dim} H^{*}\left(E S^{1} \times_{S^{1}} X ; \mathbb{Q}\right)=\infty$. From Lemma 2.1, $\mathrm{rk}_{0}(X)=0$. By the same argument, we have $\mathrm{rk}_{0}(Y)=0$.

Note that $\chi_{H}(X)=\chi_{H}(Y)=0$ in (2), (3), and (4).
Remark 3.2. Even if X is a wedge of spaces, $\mathrm{rk}_{0}(X)$ may not be zero. For example, $M\left(S^{3} \vee S^{3} \vee S^{4}\right)=(\wedge V, d)=(\wedge(x, y, z, \ldots), d)$ with $|x|=|y|=3$ and $|z|=4$ and $d x=$ $d y=d z=0$. On the other hand, $M\left(S^{2} \vee S^{3}\right)^{\leq 4}=(\wedge Z, D)^{\leq 4}=(\wedge(t, x, y, z), D)$ with $|t|=$ 2, $D t=D x=0, D y=t^{2}$, and $D z=x t$. From Corollary 2.6, we have $\mathrm{rk}_{0}\left(S^{3} \vee S^{3} \vee S^{4}\right) \geq 1$.

Example 3.3. Let $X=\left(S^{3} \times S^{8}\right) \#\left(S^{3} \times S^{8}\right)$. Then

$$
\begin{equation*}
A^{*}=H^{*}(X ; \mathbb{Q})=\frac{\wedge(x, y) \otimes \mathbb{Q}[w, u]}{\left(x y, x u, x w-y u, y w, w^{2}, w u, u^{2}\right)} \tag{3.2}
\end{equation*}
$$

with $|x|=|y|=3,|w|=|u|=8$ and X has the minimal model

$$
\begin{equation*}
\left(\wedge V_{X}, d\right)=\left(\wedge\left(x, y, w, u, v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, z_{1}, \ldots\right), d\right) \tag{3.3}
\end{equation*}
$$

with $\left|v_{1}\right|=5,\left|v_{2}\right|=\left|v_{3}\right|=\left|v_{4}\right|=10,\left|v_{5}\right|=\left|v_{6}\right|=\left|v_{7}\right|=15,\left|z_{1}\right|=7$ and $d x=d y=$ $d w=d u=0, d v_{1}=x y, d v_{2}=x u, d v_{3}=x w-y u, d v_{4}=y w, d v_{5}=w^{2}, d v_{6}=w u$, $d v_{7}=u^{2}, d z_{1}=x v_{1}, \ldots$.

From $D \circ D=0$, we have $D x=D y=0, D u=\lambda x t^{3}$, and $D w=-\lambda y t^{3}$ for $\lambda \in \mathbb{Q}$. Assume $\operatorname{dim} H^{*}\left(\mathbb{Q}[t] \otimes \wedge V_{X}, D\right)<\infty$. From Lemma 2.3, $\lambda \neq 0$. Let $D v_{1}=x y+a t^{3}$ for $a \in$ \mathbb{Q} and $D z_{1}=x v_{1}+h t$ for $h \in\left(\mathbb{Q}[t] \otimes \wedge V_{X}, D\right)^{6}$. Then $0=D^{2} z_{1}=-a x t^{3}+D(h) t$. But there is no element h such that $D h=a x t^{2}$. Hence we have $a=0$. Since $H^{*}(X ; \mathbb{Q})$ satisfies Poincaré duality with formal dimension 11 , so does $H^{*}\left(\mathbb{Q}[t] \otimes \wedge V_{X}, D\right)$ with formal dimension 10 from Lemma 2.3. Since $H^{3}\left(\mathbb{Q}[y] \otimes \wedge V_{X}, D\right)=\mathbb{Q}\langle x, y\rangle$ and $H^{i}\left(\wedge V_{X}, d\right)=0$ for $4 \leq i \leq 7$, we have $H^{7}\left(\mathbb{Q}[t] \otimes \wedge V_{X}, D\right)=\mathbb{Q}\left\langle x t^{2}, y t^{2}\right\rangle$ from Lemma 2.2. But

$$
\begin{equation*}
x \cdot x t^{2}=x \cdot y t^{2}=0 \tag{3.4}
\end{equation*}
$$

in $H^{10}\left(\mathbb{Q}[t] \otimes \wedge V_{X}, D\right)$ since $a=0$. This contradicts Poincaré duality. Thus $\operatorname{dim} H^{*}(\mathbb{Q}[t] \otimes$ $\left.\wedge V_{X}, D\right)=\infty$. From Lemma 2.1, we have $\mathrm{rk}_{0}(X)=0$.

Let $M(Y)=\left(\wedge V_{Y}, d\right)=(\wedge(x, y, z), d)$ with $|x|=|y|=3,|z|=5$ and $d x=d y=0$, $d z=x y$. Then $H^{*}(Y ; \mathbb{Q}) \cong A^{*}$.
Put $D x=D y=0$ and $D z=x y+t^{3}$. Then $\operatorname{dim} H^{*}\left(\mathbb{Q}[t] \otimes \wedge V_{Y}, D\right)<\infty$. From Lemma 2.1, we have $\mathrm{rk}_{0}(Y) \geq 1$. Also for any D, we have $D x=D y=0$. Thus $\operatorname{dim} H^{*}\left(\mathbb{Q}\left[t_{1}\right.\right.$, $\left.\left.t_{2}\right] \otimes \wedge V_{Y}, D\right)=\infty$. From the case of $r=2$ in Lemma 2.1, we have $\mathrm{rk}_{0}(Y)=1$.

ExAmple 3.4. Let $X=\left(S^{2} \vee S^{2}\right) \times S^{3}$. Then $A^{*}=H^{*}(X ; \mathbb{Q})=\mathbb{Q}\left[x_{1}, x_{2}\right] \otimes \wedge(y) /\left(x_{1}^{2}, x_{1} x_{2}\right.$, $\left.x_{2}^{2}\right)$ with $\left|x_{i}\right|=2,|y|=3$. When $D=d$, except for $D y=t^{2},\left(\mathbb{Q}[t] \otimes \wedge V_{X}, D\right)$ is the minimal model of $\left(S^{2} \vee S^{2}\right) \times S^{2}$. Hence $\mathrm{rk}_{0}(X) \geq 1$. In general, if $D y=0,\left[x_{i} y\right] \neq$ $0 \in H^{5}\left(\mathbb{Q}[t] \otimes \wedge V_{X}, D\right)$, then $\operatorname{dim} H^{*}\left(\mathbb{Q}[t] \otimes \wedge V_{X}, D\right)=\infty$ from Lemma 2.2. If $D y \neq$ $0, H^{\text {odd }}\left(\mathbb{Q}[t] \otimes \wedge V_{X}, D\right)=0$ from Lemma 2.3. In each case, $\operatorname{dim} H^{*}\left(\mathbb{Q}\left[t_{1}, t_{2}\right] \otimes \wedge V_{X}, D\right)$ cannot be finite. From the case of $r=2$ in Lemma 2.1, we have $\mathrm{rk}_{0}(X)=1$.

Let Y be the nonformal space with $H^{*}(Y ; \mathbb{Q}) \cong A^{*}$. Then $M(Y)=\left(\wedge V_{Y}, d\right)$ is given by

$$
\begin{equation*}
V_{Y} \leq 5=\mathbb{Q}\left\langle x_{1}, x_{2}, y, z_{1}, z_{2}, z_{3}, u_{1}, u_{2}, v_{1}, v_{2}, v_{3}\right\rangle \tag{3.5}
\end{equation*}
$$

with $\left|x_{i}\right|=2,|y|=\left|z_{i}\right|=3,\left|u_{i}\right|=4,\left|v_{i}\right|=5$ and $d x_{1}=d x_{2}=d y=0, d z_{1}=x_{1}^{2}, d z_{2}=$ $x_{1} x_{2}, d z_{3}=x_{2}^{2}, d u_{1}=x_{1} z_{2}-x_{2} z_{1}, d u_{2}=x_{1} z_{3}-x_{2} z_{2}-x_{2} y, d v_{1}=x_{1} u_{1}-z_{1} z_{2}, d v_{2}=$ $x_{1} u_{2}+x_{2} u_{1}-z_{1} z_{3}+z_{2} y, d v_{3}=x_{2} u_{2}-z_{2} z_{3}+z_{3} y$. Here $H^{5}\left(\wedge V_{Y}, d\right)=\mathbb{Q}\left\langle x_{1} y, x_{2} y\right\rangle$.

Now we show that $t^{3} \neq 0$ in $H^{6}\left(\mathbb{Q}[t] \otimes \wedge V_{Y}, D\right)$. Let $D x_{1}=D x_{2}=0, D y=a x_{1} t+$ $b x_{2} t+c t^{2}$ for $a, b, c \in \mathbb{Q}$ and $D z_{i}=d z_{i}+a_{i} x_{1} t+b_{i} x_{2} t+c_{i} t^{2}$ for $a_{i}, b_{i}, c_{i} \in \mathbb{Q}$. Assume that $t^{3}=D\left(p x_{1} y+q x_{2} y+e y t+f z_{1} t+g z_{2} t+h z_{3} t\right)$ for some $p, q, e, f, g, h \in \mathbb{Q}$. Since the right-hand side is equal to

$$
\begin{align*}
(p a+ & f) x_{1}^{2} t+(p b+q a+g) x_{1} x_{2} t+(q b+h) x_{2}^{2} t \\
& +\left(p c+e a+f a_{1}+g a_{2}+h a_{3}\right) x_{1} t^{2}+\left(q c+e b+f b_{1}+g b_{2}+h b_{3}\right) x_{2} t^{2} \tag{3.6}\\
& +\left(e c+f c_{1}+g c_{2}+h c_{3}\right) t^{3}
\end{align*}
$$

we have

$$
\begin{gather*}
p c+e a-p a a_{1}-p b a_{2}-q a a_{2}-q b a_{3}=0, \\
q c+e b-p a b_{1}-p b b_{2}-q a b_{2}-q b b_{3}=0, \tag{3.7}\\
e c-p a c_{1}-p b c_{2}-q a c_{2}-q b c_{3}=1 .
\end{gather*}
$$

On the other hand, let $D u_{i}=d u_{i}+e_{i} y t+f_{i} z_{1} t+g_{i} z_{2} t+h_{i} z_{3} t$ for $e_{i}, f_{i}, g_{i}, h_{i} \in \mathbb{Q}$ and $D v_{i}=d v_{i}+l_{i} u_{1} t+m_{i} u_{2} t$ for $l_{i}, m_{i} \in \mathbb{Q}$. Since

$$
\begin{align*}
0= & D^{2} u_{1} \\
= & \left(a_{2}+f_{1}\right) x_{1}^{2} t+\left(b_{2}-a_{1}+g_{1}\right) x_{1} x_{2} t+\left(-b_{1}+h_{1}\right) x_{2}^{2} t \\
& +\left(c_{2}+e_{1} a+f_{1} a_{1}+g_{1} a_{2}+h_{1} a_{3}\right) x_{1} t^{2} \\
& +\left(-c_{1}+e_{1} b+f_{1} b_{1}+g_{1} b_{2}+h_{1} b_{3}\right) x_{2} t^{2} \\
& +\left(e_{1} c+f_{1} c_{1}+g_{1} c_{2}+h_{1} c_{3}\right) t^{3}, \\
0= & D^{2} u_{2} \\
= & \left(a_{3}+f_{2}\right) x_{1}^{2} t+\left(b_{3}-a_{2}-a+g_{2}\right) x_{1} x_{2} t+\left(-b_{2}-b+h_{2}\right) x_{2}^{2} t \\
& +\left(c_{3}+e_{2} a+f_{2} a_{1}+g_{2} a_{2}+h_{2} a_{3}\right) x_{1} t^{2} \\
& +\left(-c_{2}-c+e_{2} b+f_{2} b_{1}+g_{2} b_{2}+h_{2} b_{3}\right) x_{2} t^{2} \\
& +\left(e_{2} c+f_{2} c_{1}+g_{2} c_{2}+h_{2} c_{3}\right) t^{3}, \\
0= & D^{2} v_{1} \\
= & e_{1} x_{1} y t+\left(f_{1}+a_{2}\right) x_{1} z_{1} t+\left(g_{1}-a_{1}+l_{1}\right) x_{1} z_{2} t+\left(h_{1}+m_{1}\right) x_{1} z_{3} t \\
& -m_{1} x_{2} y t+\left(b_{2}-l_{1}\right) x_{2} z_{1} t+\left(-b_{1}-m_{1}\right) x_{2} z_{2} t \\
& +\left(l_{1} e_{1}+m_{1} e_{2}\right) y t^{2}+\left(c_{2}+l_{1} f_{1}+m_{1} f_{2}\right) z_{1} t^{2} \tag{3.8}\\
& +\left(-c_{1}+l_{1} g_{1}+m_{1} g_{2}\right) z_{2} t^{2}+\left(l_{1} h_{1}+m_{1} h_{2}\right) z_{3} t^{2}, \\
0= & D^{2} v_{2} \\
= & \left(e_{2}+a_{2}\right) x_{1} y t+\left(f_{2}+a_{3}\right) x_{1} z_{1} t \\
& +\left(g_{2}-a+l_{2}\right) x_{1} z_{2} t+\left(h_{2}-a_{1}+m_{2}\right) x_{1} z_{3} t \\
& +\left(e_{1}+b_{2}-m_{2}\right) x_{2} y t+\left(f_{1}+b_{3}-l_{2}\right) x_{2} z_{1} t \\
& +\left(g_{1}-b-m_{2}\right) x_{2} z_{2} t+\left(h_{1}-b_{1}\right) x_{2} z_{3} t \\
& +\left(c_{2}+l_{2} e_{1}+m_{2} e_{2}\right) y t^{2}+\left(c_{3}+l_{2} f_{1}+m_{2} f_{2}\right) z_{1} t^{2} \\
& +\left(-c+l_{2} g_{1}+m_{2} g_{2}\right) z_{2} t^{2}+\left(-c_{1}+l_{2} h_{1}+m_{2} h_{2}\right) z_{3} t^{2}, \\
0= & D^{2} v_{3} \\
= & a_{3} x_{1} y t+\left(a_{3}+l_{3}\right) x_{1} z_{2} t+\left(-a_{2}-a+m_{3}\right) x_{1} z_{3} t \\
& +\left(e_{2}+b_{3}-m_{3}\right) x_{2} y t+\left(f_{2}-l_{3}\right) x_{2} z_{1} t \\
& +\left(g_{2}+b_{3}-m_{3}\right) x_{2} z_{2} t+\left(h_{2}-b_{2}-b\right) x_{2} z_{3} t \\
& +\left(c_{3}+l_{3} e_{1}+m_{3} e_{2}\right) y t^{2}+\left(l_{3} f_{1}+m_{3} f_{2}\right) z_{1} t^{2} \\
& +\left(c_{3}+l_{3} g_{1}+m_{3} g_{2}\right) z_{2} t^{2}+\left(-c_{2}-c+l_{3} h_{1}+m_{3} h_{2}\right) z_{3} t^{2}, \\
&
\end{align*}
$$

we have

$$
\begin{gather*}
a=-2 a_{2}+b_{3}, \quad b=a_{1}-2 b_{2}, \quad c=-a_{1} a_{2}+a_{1} b_{3}-b_{2} b_{3} \\
a_{3}=b_{1}=0, \quad c_{1}=\left(a_{1}-b_{2}\right) b_{2}, \quad c_{2}=a_{2} b_{2}, \quad c_{3}=-\left(a_{2}-b_{3}\right) a_{2} . \tag{3.9}
\end{gather*}
$$

Hence (3.7) will be

$$
\begin{gather*}
\left(-2 a_{2}+b_{3}\right)\left(e-p b_{2}-q a_{2}\right)=0 \tag{3.10}\\
\left(a_{1}-2 b_{2}\right)\left(e-p b_{2}-q a_{2}\right)=0 \tag{3.11}\\
\left(-a_{1} a_{2}+a_{1} b_{3}-b_{2} b_{3}\right)\left(e-p b_{2}-q a_{2}\right)=1 \tag{3.12}
\end{gather*}
$$

respectively. $B y$ (3.12), $e-p b_{2}-q a_{2} \neq 0$ and $-a_{1} a_{2}+a_{1} b_{3}-b_{2} b_{3} \neq 0$. Then, by (3.10) and (3.11), $b_{3}=2 a_{2}$ and $a_{1}=2 b_{2}$, respectively. But this contradicts $-a_{1} a_{2}+a_{1} b_{3}-$ $b_{2} b_{3} \neq 0$. Thus $t^{3} \neq 0$ in $H^{6}\left(\mathbb{Q}[t] \otimes \wedge V_{Y}, D\right)$.

Since $H^{*}\left(\wedge V_{Y}, d\right)$ has formal dimension 5, from Lemma 2.3, we have $\operatorname{dim} H^{*}(\mathbb{Q}[t] \otimes$ $\left.\wedge V_{Y}, D\right)=\infty$. From Lemma 2.1, we have $\mathrm{rk}_{0}(Y)=0$.

Example 3.5. Let $X=\left(S^{2} \times S^{5}\right) \#\left(S^{2} \times S^{5}\right)$. Then

$$
\begin{equation*}
A^{*}=H^{*}(X ; \mathbb{Q})=\frac{\mathbb{Q}\left[x_{1}, x_{2}\right] \otimes \wedge\left(y_{1}, y_{2}\right)}{\left(x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}, x_{1} y_{1}-x_{2} y_{2}, x_{1} y_{2}, x_{2} y_{1}, y_{1} y_{2}\right)} \tag{3.13}
\end{equation*}
$$

with $\left|x_{i}\right|=2,\left|y_{i}\right|=5$ and X has a minimal model $M(X)=M_{A^{*}}=\left(\wedge V_{X}, d\right)$ where

$$
\begin{equation*}
V_{X}^{\leq 7}=\mathbb{Q}\left\langle x_{1}, x_{2}, z_{1}, z_{2}, z_{3}, u_{1}, u_{2}, y_{1}, y_{2}, v_{1}, v_{2}, v_{3}, w_{1}, \ldots, w_{9}, s_{1}, \ldots, s_{18}\right\rangle \tag{3.14}
\end{equation*}
$$

with $\left|x_{i}\right|=2,\left|z_{i}\right|=3,\left|u_{i}\right|=4,\left|y_{i}\right|=\left|v_{i}\right|=5,\left|w_{i}\right|=6,\left|s_{i}\right|=7$ and

$$
\begin{gathered}
d x_{1}=d x_{2}=d y_{1}=d y_{2}=0, \\
d z_{1}=x_{1}^{2}, \quad d z_{2}=x_{1} x_{2}, \quad d z_{3}=x_{2}^{2}, \\
d u_{1}=x_{1} z_{2}-x_{2} z_{1}, \quad d u_{2}=x_{1} z_{3}-x_{2} z_{2}, \\
d v_{1}=x_{1} u_{1}-z_{1} z_{2}, \quad d v_{2}=x_{1} u_{2}+x_{2} u_{1}-z_{1} z_{3}, \quad d v_{3}=x_{2} u_{2}-z_{2} z_{3}, \\
d w_{1}=x_{1} y_{1}-x_{2} y_{2}, \quad d w_{2}=x_{1} y_{2}, \quad d w_{3}=x_{2} y_{1}, \\
d w_{4}=x_{1} v_{1}-z_{1} u_{1}, \quad d w_{5}=x_{1} v_{2}-z_{1} u_{2}-z_{2} u_{1}, \quad d w_{6}=x_{1} v_{3}-z_{2} u_{2}, \\
d w_{7}=x_{2} v_{1}-z_{2} u_{1}, \quad d w_{8}=x_{2} v_{2}-z_{2} u_{2}-z_{3} u_{1}, \quad d w_{9}=x_{2} v_{3}-z_{3} u_{2}, \\
d s_{1}=x_{1} w_{1}-z_{1} y_{1}+z_{2} y_{2}, \quad d s_{2}=x_{1} w_{2}-z_{1} y_{2}, \quad d s_{3}=x_{1} w_{3}-z_{2} y_{1}, \\
d s_{4}=x_{1} w_{4}-z_{1} v_{1}, \quad d s_{5}=x_{1} w_{5}-z_{1} v_{2}+\frac{1}{2} u_{1}^{2},
\end{gathered}
$$

$$
\begin{gather*}
d s_{6}=x_{1} w_{6}+x_{1} w_{8}-z_{1} v_{3}-z_{2} v_{2}+u_{1} u_{2}, \quad d s_{7}=x_{1} w_{7}-x_{2} w_{4}+\frac{1}{2} u_{1}^{2}, \\
d s_{8}=x_{1} w_{8}-x_{2} w_{5}+u_{1} u_{2}, \quad d s_{9}=x_{1} w_{9}-x_{2} w_{6}+\frac{1}{2} u_{2}^{2} \\
d s_{10}=x_{2} w_{1}-z_{2} y_{1}+z_{3} y_{2}, \quad d s_{11}=x_{2} w_{2}-z_{2} y_{2}, \quad d s_{12}=x_{2} w_{3}-z_{3} y_{1}, \\
d s_{13}=x_{2} w_{4}-z_{2} v_{1}-\frac{1}{2} u_{1}^{2}, \quad d s_{14}=x_{2} w_{5}+x_{2} w_{7}-z_{2} v_{2}-z_{3} v_{1}-u_{1} u_{2}, \\
d s_{15}=x_{2} w_{6}-z_{2} v_{3}, \quad d s_{16}=x_{2} w_{7}-x_{1} w_{6}+z_{1} v_{3}-z_{3} v_{1}-u_{1} u_{2}, \\
d s_{17}=x_{2} w_{8}-z_{3} v_{2}-\frac{1}{2} u_{2}^{2}, \quad d s_{18}=x_{2} w_{9}-z_{3} v_{3} \tag{3.15}
\end{gather*}
$$

Let ($\wedge Z, D$) be the formal minimal model $M_{B^{*}}$ for the Poincaré duality algebra

$$
\begin{equation*}
B^{*}=\frac{\mathbb{Q}\left[t, x_{1}, x_{2}\right]}{\left(x_{1} t^{2}, x_{2} t^{2}, x_{1}^{2}+x_{2} t, x_{1} x_{2}-t^{2}, x_{2}^{2}+x_{1} t\right)} \tag{3.16}
\end{equation*}
$$

with $|t|=\left|x_{i}\right|=2$. Note B^{*} has formal dimension 6 . Then

$$
\begin{equation*}
Z^{\leq 7}=\mathbb{Q}\langle t\rangle \oplus V_{X} \leq 7 \tag{3.17}
\end{equation*}
$$

with

$$
\begin{gather*}
D t=D x_{1}=D x_{2}=0, \quad D y_{1}=x_{2} t^{2}, \quad D y_{2}=x_{1} t^{2}, \\
D z_{1}=d z_{1}+x_{2} t, \quad D z_{2}=d z_{2}-t^{2}, \quad D z_{3}=d z_{3}+x_{1} t, \\
D u_{1}=d u_{1}+z_{3} t, \quad D u_{2}=d u_{2}-z_{1} t, \\
D v_{1}=d v_{1}-u_{2} t, \quad D v_{2}=d v_{2}, \quad D v_{3}=d v_{3}-u_{1} t, \\
D w_{1}=d w_{1}, \quad D w_{2}=d w_{2}+y_{1} t-z_{1} t^{2}, \quad D w_{3}=d w_{3}+y_{2} t-z_{3} t^{2}, \\
D w_{4}=d w_{4}+v_{2} t, \quad D w_{5}=d w_{5}+v_{3} t, \quad D w_{6}=d w_{6}+v_{1} t, \\
D w_{7}=d w_{7}+v_{3} t, \quad D w_{8}=d w_{8}+v_{1} t, \quad D w_{9}=d w_{9}+v_{2} t, \\
D s_{1}=d s_{1}+w_{3} t+u_{1} t^{2}, \quad D s_{2}=d s_{2}-w_{1} t, \quad D s_{3}=d s_{3}-w_{2} t+u_{2} t^{2}, \\
D s_{4}=d s_{4}-w_{5} t+w_{7} t, \quad D s_{5}=d s_{5}-w_{6} t+w_{8} t, \quad D s_{6}=d s_{6}-2 w_{4} t+w_{9} t, \\
D s_{7}=d s_{7}-w_{6} t+w_{8} t, \quad D s_{8}=d s_{8}-w_{4} t+w_{9} t, \quad D s_{9}=d s_{9}-w_{5} t+w_{7} t, \\
D s_{10}=d s_{10}-w_{2} t+u_{2} t^{2}, \quad D s_{11}=d s_{11}-w_{3} t-u_{1} t^{2}, \quad D s_{12}=d s_{12}+w_{1} t, \\
D s_{13}=d s_{13}-w_{8} t, \quad D s_{14}=d s_{14}+w_{4} t-2 w_{9} t, \quad D s_{15}=d s_{15}-w_{7} t, \\
D s_{16}=d s_{16}+2 w_{4} t-2 w_{9} t, \quad D s_{17}=d s_{17}+w_{5} t-w_{7} t, \quad D s_{18}=d s_{18}+w_{6} t-w_{8} t, \tag{3.18}
\end{gather*}
$$

that is, $D \equiv d \bmod (t)$ on $V_{X}{ }^{\leq 7}$. From Corollary 2.6, we have $\operatorname{rk}_{0}(X) \geq 1$. Also for any D satisfying $\operatorname{dim} H^{*}\left(\mathbb{Q}[t] \otimes \wedge V_{X}, D\right)<\infty$, we see $H^{\text {odd }}\left(\mathbb{Q}[t] \otimes \wedge V_{X}, D\right)=0$ from Lemma 2.3. From the case of $r=2$ in Lemma 2.1, we have $\operatorname{rk}_{0}(X)=1$.

Let $M(Y)=\left(\wedge V_{Y}, d\right)=\left(\wedge\left(x_{1}, x_{2}, z_{1}, z_{2}, z_{3}\right), d\right)$ with $\left|x_{i}\right|=2,\left|z_{i}\right|=3$ and $d x_{1}=d x_{2}=$ $0, d z_{1}=x_{1}^{2}, d z_{2}=x_{1} x_{2}, d z_{3}=x_{2}^{2}$. Then $H^{*}(Y ; \mathbb{Q}) \cong A^{*}$.

Put $D=d$ except for $D z_{2}=x_{1} x_{2}-t^{2}$. Then we have $\operatorname{dim} H^{*}\left(\mathbb{Q}[t] \otimes \wedge V_{Y}, D\right)<\infty$. From the case of $r=1$ in Lemma 2.1, $\operatorname{rk}_{0}(Y) \geq 1$. From [1], we have $\mathrm{rk}_{0}(Y)=1$. Indeed,

$$
\begin{equation*}
\operatorname{rk}_{0}(Y) \leq-\chi_{\pi}(Y)=-\sum_{i}(-1)^{i} \operatorname{dim} \pi_{i}(Y) \otimes \mathbb{Q}=\operatorname{dim} V_{Y}^{\text {odd }}-\operatorname{dim} V_{Y}^{\text {even }}=1 \tag{3.19}
\end{equation*}
$$

REFERENCES

[1] C. Allday and S. Halperin, Lie group actions on spaces of finite rank, Quart. J. Math. Oxford Ser. (2) 29 (1978), no. 113, 63-76.
[2] C. Allday and V. Puppe, Cohomological Methods in Transformation Groups, Cambridge Studies in Advanced Mathematics, vol. 32, Cambridge University Press, Cambridge, 1993.
[3] Y. Félix, S. Halperin, and J.-C. Thomas, Rational Homotopy Theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001.
[4] S. Halperin, Rational homotopy and torus actions, Aspects of Topology, London Math. Soc. Lecture Note Ser., vol. 93, Cambridge University Press, Cambridge, 1985, pp. 293306.
[5] S. Halperin and J. Stasheff, Obstructions to homotopy equivalences, Adv. Math. 32 (1979), no. 3, 233-279.
[6] H. Shiga and T. Yamaguchi, The set of rational homotopy types with given cohomology algebra, Homology Homotopy Appl. 5 (2003), no. 1, 423-436.

Yasusuke Kotani: Department of Mathematics, Faculty of Science, Kochi University, Kochi 7808520, Japan

E-mail address: kotani@math.kochi-u.ac.jp
Toshihiro Yamaguchi: Department of Mathematics Education, Faculty of Education, Kochi University, Kochi 780-8520, Japan

E-mail address: tyamag@cc. kochi-u.ac.jp

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

