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A PROCEDURE FOR GENERATING INFINITE SERIES IDENTITIES
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A procedure for generating infinite series identities makes use of the generalized method
of exhaustion by analytically evaluating the inner series of the resulting double summa-
tion. Identities are generated involving both elementary and special functions. Infinite sums
of special functions include those of the gamma and polygamma functions, the Hurwitz
Zeta function, the polygamma function, the Gauss hypergeometric function, and the Lerch
transcendent. The procedure can be automated with Mathematica (or equivalent software).

2000 Mathematics Subject Classification: 26A06, 26B15.

1. Introduction. The generalized method of exhaustion [5] provides series expan-

sions for Riemann integrals of the form

∫ b
a
f (x)dx = (b−a) lim

N→∞

N∑
n=1

2n−1∑
m=1

(−1)m+12−nf
(
a+m(b−a)

2n

)

= (b−a)
∞∑
n=1

2n−1∑
m=1

(−1)m+12−nf
(
a+m(b−a)

2n

)
.

(1.1)

The first expression is identical to the limit of the Riemann sum of order 2N for f(x)
over [a,b], except for the missing endpoints f(a) or f(b), which can be neglected

when N →∞. Thus, convergence of the expansion is guaranteed for N →∞ when the

integral exists.

The double summation expression can be reduced to that of a single summation

when the inner finite series can be evaluated analytically. Analytical sums are occasion-

ally expressible in terms of elementary functions or (more often) in terms of special

functions. Some examples of special functions are the gamma and polygamma func-

tions, the Gauss hypergeometric function, the Hurwitz Zeta function, and the Lerch

transcendent. Identities involving these and other functions can stimulate solutions to

engineering or physics problems [6], or lead to new insights into existing solutions.

The analytical evaluation of the inner series can often be automated with the use of

software such as Mathematica. A few of the more important results are presented in

this paper, along with a table of integrals permitting analytical evaluations of the inner

series.

2. Generation of identities. The simplest analytic expressions resulting from the

use of (1.1) involve geometric series, one form of which is as follows:

2n−1∑
m=1

(−1)m+1emx/2
n = 1+ ex−1

ex/2n+1
. (2.1)
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This result can then be applied to the following definite integral:

∫ x
0
ezdz = ex−1= x

∞∑
n=1

2n−1∑
m=1

(−1)m+12−nemx/2
n

(2.2)

= x
∞∑
n=1

2−n
(

1+ ex−1
ex/2n+1

)
(2.3)

= x+(ex−1
)
x

∞∑
n=1

2−n

ex/2n+1
, (2.4)

or

1
x
= 1
ex−1

+
∞∑
n=1

2−n

ex/2n+1
. (2.5)

Integration (and some algebra) leads to

lnx = (x−1)
∞∏
n=1

2
1+x2−n . (2.6)

Setting x = iθ in (2.2) and following a similar procedure leads to the well-known re-

sult [4]

sinθ = θ
∞∏
n=1

cos
(
θ
2n

)
. (2.7)

A second expression for the logarithm can be derived from (1.1) as follows:

∫ x
1

dz
z
= lnx =

∞∑
n=1

2n−1∑
m=1

(−1)m+1(x−1)
2n+m(x−1)

. (2.8)

Using the identity [1]

ψ0(z)=
∫∞

0

[
e−t

t
− e−zt

1−e−t
]
dt, (2.9)

where ψ0(x)= (d/dx) lnΓ(x) is the digamma function, it can be shown that

ψ0

(
2n+ 2n

(x−1)

)
−ψ0

(
1+ 2n

(x−1)

)
=

2n−1∑
m=1

(x−1)
2n+m(x−1)

,

ψ0

(
2n+ 1

2
+ 2n

(x−1)

)
−ψ0

(
1
2
+ 2n

(x−1)

)
=

2n∑
m=1

2(x−1)
2n+1+(2m−1)(x−1)

,

(2.10)
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and thus,

2n−1∑
m=1

(−1)m+1(x−1)
2n+m(x−1)

= 1
2
ψ0

(
1+ 2n−1

x−1

)
− 1

2
ψ0

(
1
2
+ 2n−1

x−1

)

+ 1
2
ψ0

(
1
2
+ 2n−1x
x−1

)
− 1

2
ψ0

(
2n−1x
x−1

)
.

(2.11)

This leads to the result

lnx = 1
2

∞∑
n=0

[
ψ0

(
1+ 2n

x−1

)
−ψ0

(
1
2
+ 2n

x−1

)]

+ 1
2

∞∑
n=0

[
ψ0

(
1
2
+ 2nx
x−1

)
−ψ0

(
2nx
x−1

)]
.

(2.12)

The next example involves the exponential integral, that is,

∫ x
0

ez−1
z

dz = Ei(x)− lnx−γ =
∞∑
n=1

2n−1∑
m=1

(−1)m+1 emx/2
n−1
m

. (2.13)

Here, γ is the Euler-Mascheroni constant. From (2.13), Mathematica yields the result

2n−1∑
m=1

(−1)m+1 emx/2
n−1
m

= ln
(

1
2
+ 1

2
ex/2

n
)
+2−nex2F1

(
2n,1,1+2n,−ex/2n)

+ 1
2
ψ0
(
2n−1)− 1

2
ψ0

(
1
2
+2n−1

)
,

(2.14)

where 2F1 is the Gauss hypergeometric function. Noting that [2, 3, 7]

γ = 1
2

∞∑
n=1

[
ψ0

(
1
2
+2n−1

)
−ψ0

(
2n−1)]= ∞∑

n=1

∞∑
k=0

(−1)k

2n+k , (2.15)

an identity for the exponential integral becomes

Ei(x)= lnx+
∞∑
n=1

ln
(

1
2
+ 1

2
ex/2

n
)
+ex

∞∑
n=1

2−n2F1
(
2n,1,1+2n,−ex/2n). (2.16)

The identity (2.6) leads to

∞∑
n=1

ln
(

1
2
+ 1

2
ex/2

n
)
= ln

(
ex−1

)− lnx (2.17)
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Table 2.1. Some integrals having summable inner series.

Integral Infinite series of the following function(s)∫x
0 (sinz/z)dz Gauss hypergeometric function∫x

0 (sin2z/z2)dz Lerch transcendent, trigamma function∫x
0 (sin3z/z3)dz Lerch transcendent∫x
0 (sinz/

√
z)dz Lerch transcendent∫x

0 ln(a+bz)dz Logarithm of gamma function∫x
0 [ln(a+bz)]2dz Logarithm of gamma function, Hurwitz Zeta function∫x

0 (dz/(a+z2)) Digamma function, hyperbolic tangent∫x
0 (zdz/(a+z)) Digamma function∫x

0 (sin2z/(a+z2))dz Gauss hypergeometric function, digamma function∫x
0 (a+bz)cdz Hurwitz Zeta function∫x

0 ez lnzdz Lerch transcendent

so that

Ei(x)= ln
(
ex−1

)+ex ∞∑
n=1

2−n2F1
(
2n,1,1+2n,−ex/2n). (2.18)

An identity for the gamma function can be generated with the integral

∫ x
0
zae−zdz = Γ(a+1)−Γ(a+1,x)= x

∞∑
n=1

2n−1∑
m=1

(−1)m+12−n
(
mx
2n

)a
e−mx/2

n
. (2.19)

It can be shown that

2n−1∑
m=1

(−1)m+12−n
(
mx
2n

)a
e−mx/2

n

= 2−n(1+a)xa
[
e−xΦ

(−e−x/2n ,−a,2n)+e−x/2nΦ(−e−x/2n ,−a,1)].
(2.20)

Here,Φ(z,s,b)=∑∞
k=0zk(b+k)−s is the Lerch transcendent. The identity for the gamma

function is as follows:

Γ(a+1)−Γ(a+1,x)

= xa+1
∞∑
n=1

2−n(1+a)
[
e−xΦ

(−e−x/2n ,−a,2n)+e−x/2nΦ(−e−x/2n ,−a,1)]. (2.21)

Table 2.1 lists some integrals permitting analytical evaluation of the inner series

when expanded with (1.1), and the form of the resulting infinite series.
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3. Method of exhaustion variants. By using an approach similar to that in [5], a

family of expansions similar to (1.1) can be generated for the definite integral, that is,

∫ b
a
f (x)dx = (b−a)

∞∑
n=1

3n−1∑
m=1

3−nf
(
a+m(b−a)

3n

)

−(b−a)
∞∑
n=1

3n−1−1∑
m=1

3−n+1f
(
a+m(b−a)

3n−1

)

= (b−a)
∞∑
n=1

4n−1∑
m=1

4−nf
(
a+m(b−a)

4n

)

−(b−a)
∞∑
n=1

4n−1−1∑
m=1

4−n+1f
(
a+m(b−a)

4n−1

)

= (b−a)
∞∑
n=1

5n−1∑
m=1

5−nf
(
a+m(b−a)

5n

)

−(b−a)
∞∑
n=1

5n−1−1∑
m=1

5−n+1f
(
a+m(b−a)

5n−1

)
,

(3.1)

and so forth.

Or, in general,

∫ b
a
f (x)dx = (b−a)

∞∑
n=1

pn−1∑
m=1

p−nf
(
a+m(b−a)

pn

)

−(b−a)
∞∑
n=1

pn−1−1∑
m=1

p−n+1f
(
a+m(b−a)

pn−1

)
, p = 2,3,4, . . . .

(3.2)

Note that

(b−a)
N∑
n=1

pn−1∑
m=1

p−nf
(
a+m(b−a)

pn

)

−(b−a)
N∑
n=1

pn−1−1∑
m=1

p−n+1f
(
a+m(b−a)

pn−1

)
, p = 2,3,4, . . . ,

(3.3)

is precisely the Riemann sum of order pN for f(x) over [a,b], except for the missing

terms f(a) or f(b), which can be neglected in the limit N →∞. Thus, as N →∞, (3.2)

is valid for all Riemann integrable functions.

Each of these expressions leads to distinct identities, once the inner finite series is

summed. A family of identities can thus be generated similar to each presented in the

last section. For example, a family of identities for the logarithm similar to (2.6) is as



3658 ANTHONY A. RUFFA

follows:

lnx = (x−1)
∞∏
n=1

2
1+x1/2n

= (x−1)
∞∏
n=1

3
1+x1/3n+x2/3n

= (x−1)
∞∏
n=1

4
1+x1/4n+x2/4n+x3/4n

= (x−1)
∞∏
n=1

5
1+x1/5n+x2/5n+x3/5n+x4/5n

= (x−1)
∞∏
n=1

p∑p−1
q=0 xq/p

n
, p = 2,3,4, . . . .

(3.4)

A family of identities similar to (2.7) can also be generated

sinx = x
∞∏
n=1

1
2

(
e−ix/2

n+eix/2n)= x ∞∏
n=1

cos
(
x
2n

)

= x
∞∏
n=1

1
3

(
e−2ix/3n+1+e2ix/3n)= x ∞∏

n=1

(
1− 4

3
sin2

(
x
3n

))

= x
∞∏
n=1

1
4

(
e−3ix/4n+e−ix/4n+eix/4n+e3ix/4n)

= x
∞∏
n=1

1
5

(
e−4ix/5n+e−2ix/5n+1+e2ix/5n+e4ix/5n)

= x
∞∏
n=1

p∑
q=1

1
p
e(2q−p−1)ix/pn , p = 2,3,4, . . . .

(3.5)

The results (3.4) and (3.5) are proven below. Consider the expression

∫ x
0
etdt = ex−1

= x
∞∑
n=1

pn−1∑
m=1

p−nemx/p
n−x

∞∑
n=1

pn−1−1∑
m=1

p−n+1emx/p
n−1
, p = 2,3,4, . . . .

(3.6)

Each inner summation is a geometric series, leading to the result

pn−1∑
m=1

p−nemx/p
n−

pn−1−1∑
m=1

p−n+1emx/p
n−1 = ex−ex/pn

pn
(
ex/pn−1

) − ex−ex/pn−1

pn−1
(
ex/pn−1−1

) . (3.7)
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Next, making use of the identities

(
ex/p

n−1−1
)= (ex/pn−1

)(p−1∑
q=0

eqx/p
n
)
,

(
ex/p

n−1−1
)(
ex/p

n−1
)= e(p+1)x/pn−ex/pn−1−ex/pn+1

= (ex/pn−1
)2

(p−1∑
q=0

eqx/p
n
)
,

(3.8)

it can be shown that∫ x
0
etdt = ex−1

= x
∞∑
n=1

ex
[
ex/pn−1−pex/pn+(p−1)

]
pn
(
ex/pn−1

)2(∑p−1
q=0 eqx/p

n)

+x
∞∑
n=1

(p−1)e(p+1)x/pn−pex/pn−1+ex/pn
pn
(
ex/pn−1

)2(∑p−1
q=0 eqx/p

n) .

(3.9)

Noting that

(
ex/p

n−1
)2
p−1∑
q=0

qeqx/p
n = ex/pn−pepx/pn+(p−1)e(p+1)x/pn , (3.10)

we again show that

ex/p
n−1−pex/pn+(p−1)

=−(ex/pn−1
)2
p−1∑
q=0

qeqx/p
n+(p−1)

(
e(p+1)x/pn−ex/pn−1−ex/pn+1

)

= (p−1)
(
ex/p

n−1
)2

(p−1∑
q=0

eqx/p
n
)
−(ex/pn−1

)2
p−1∑
q=0

qeqx/p
n
,

(3.11)

so that (3.9) becomes

ex−1= xex
∞∑
n=1

p−1
pn

−x(ex−1
) ∞∑
n=1

(
ex/pn−1

)2∑p−1
q=0 qeqx/p

n

pn
(
ex/pn−1

)2∑p−1
q=0 eqx/p

n
(3.12)

or

1
x
= ex

ex−1
−

∞∑
n=1

∑p−1
q=1 qeqx/p

n

pn
∑p−1
q=0 eqx/p

n
. (3.13)

Integrating leads to

lnx = ln
(
ex−1

)− ∞∑
n=1

ln

[p−1∑
q=0

eqx/pn

p

]
, (3.14)
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or

(
ex−1

)
x

=
∞∏
n=1

p−1∑
q=0

eqx/pn

p
. (3.15)

When x = lnz,

lnz = (z−1)
∞∏
n=1

[
p∑p−1

q=0 zq/p
n

]
, p = 2,3,4, . . . . (3.16)

The identities given by (3.5) can be proven if x = iz in (3.13),

1
iz
= eiz

eiz−1
−

∞∑
n=1

∑p−1
q=1 qeiqz/p

n

pn
∑p−1
q=0 eiqz/p

n
. (3.17)

By evaluating the double geometric series, it can be shown that

p−1∑
q=0

p−1∑
r=0

ei(q−r)z/p
n =

[ p∑
q=1

ei(2q−p−1)z/2pn
]2

,

Im

{p−1∑
q=1

p−1∑
r=0

qei(q−r)z/p
n
}
= Im

{[ p∑
q=1

ei(2q−p−1)z/2pn
] p∑
q=1

(q−p/2−1/2)ei(2q−p−1)z/2pn
}
.

(3.18)

Taking the imaginary part of (3.17) and using (3.18) leads to

−1
z
= −sinz

2−2cosz
+ Im

{ ∞∑
n=1

∑p
q=1(q−p/2−1/2)ei(2q−p−1)z/2pn

pn
∑p
q=1 ei(2q−p−1)z/2pn

}
. (3.19)

Integrating leads to

− lnz =− ln
[

sin
(
z
2

)]
+

∞∑
n=1

ln

[ p∑
q=1

ei(2q−p−1)z/2pn
]
+C, (3.20)

or

sin
(
z
2

)
= zeC

∞∏
n=1

[ p∑
q=1

ei(2q−p−1)z/2pn
]
. (3.21)

Letting y = z/2,

siny = 2yeC
∞∏
n=1

[ p∑
q=1

ei(2q−p−1)y/pn
]
. (3.22)
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Finally, the integration constant C can be evaluated by setting y = 0, leading to

siny =y
∞∏
n=1

[ p∑
q=1

1
p
ei(2q−p−1)y/pn

]
. (3.23)

The remaining identities presented in the previous section also appear in other forms

below. Many of the results lead to limit representations. For example, following a pro-

cedure similar to that leading to (2.12) leads to

lnx =
∞∑
n=1

[
ψ0

(
pnx
x−1

)
−ψ0

(
1+ pn

x−1

)]

+
∞∑
n=0

[
ψ0

(
1+ pn

x−1

)
−ψ0

(
pnx
x−1

)]
, p = 2,3,4, . . .

(3.24)

or

lnx = lim
n→∞

[
ψ0

(
pnx
x−1

)
−ψ0

(
1+ pn

x−1

)]
, p = 2,3,4, . . . . (3.25)

Setting q = pn leads to

lnx = lim
q→∞

[
ψ0

(
qx
x−1

)
−ψ0

(
1+ q
x−1

)]
. (3.26)

A procedure similar to that leading to (2.18) generates the following:

Ei(x)− lnx−γ = ex
∞∑
n=1

p−n+1
2F1

(
1,pn−1,1+pn−1,ex/p

n−1)

−ex
∞∑
n=1

p−n2F1
(
1,pn,1+pn,ex/pn)

+
∞∑
n=1

ln
(

1−ex/pn−1

1−ex/pn
)
+

∞∑
n=1

[
ψ0
(
pn−1)−ψ0

(
pn
)]
, p = 2,3,4, . . . ,

(3.27)

or

Ei(x)− lnx−γ = ln
(
1−ex)+ex2F1

(
1,1,2,ex

)+ψ0(1)

−ex lim
n→∞p

−n
2F1

(
1,pn,1+pn,ex/pn)

− lim
n→∞

[
ln
(
1−ex/pn)+ψ0

(
pn
)]
, p = 2,3,4, . . . .

(3.28)

Noting that [1] ψ0(1) = −γ and 2F1(1,1,2,ex) = −e−x ln(1− ex), and setting q = pn
leads to

Ei(x)= lnx− lim
q→∞

[
ψ0(q)+ e

x

q 2F1
(
1,q,1+q,ex/q)+ ln

(
1−ex/q)]. (3.29)
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Finally, a procedure similar to that leading to (2.21) generates the following:

Γ(a+1)−Γ(a+1,x)

=−x1+a lim
n→∞p

−n(1+a)[e−xΦ(e−x/pn ,−a,pn)−e−x/pnΦ(e−x/pn ,−a,1)]. (3.30)

Setting q = pn leads to

Γ(a+1)−Γ(a+1,x)

=−x1+a lim
q→∞q

−(1+a)[e−xΦ(e−x/q,−a,q)−e−x/qΦ(e−x/q,−a,1)]. (3.31)

While (1.1) leads to expressions in the form of infinite series, (3.2) often leads to limit

representations, unless further operations (e.g., integration) are first applied to the two

individual series expressions.

4. Summary. The examples presented here illustrate a procedure for generating infi-

nite series identities, consisting of evaluating an integral using the generalized method

of exhaustion, and then analytically summing the inner finite series. Mathematica (or

equivalent software) can automate the second step, allowing rapid investigation of in-

tegrals.
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