
IJMMS 2004:46, 2443–2451
PII. S0161171204312020

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

THE EQUIVALENCE OF MANN ITERATION AND ISHIKAWA
ITERATION FOR ψ-UNIFORMLY PSEUDOCONTRACTIVE

OR ψ-UNIFORMLY ACCRETIVE MAPS

B. E. RHOADES and ŞTEFAN M. ŞOLTUZ
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1. Introduction. Let X be a real Banach space, B a nonempty, convex subset of X,

and T a self-map of B, and let x0 =u0 ∈ B. The Mann iteration (see [2]) is defined by

un+1 =
(
1−αn

)
un+αnTun, n= 0,1,2, . . . . (1.1)

The Ishikawa iteration is defined (see [1]) by

xn+1 =
(
1−αn

)
xn+αnTyn,

yn =
(
1−βn

)
xn+βnTxn, n= 0,1,2, . . . .

(1.2)

The sequences {αn} ⊂ (0,1), {βn} ⊂ [0,1) satisfy

lim
n→∞αn = lim

n→∞βn = 0,
∞∑

n=1

αn =+∞. (1.3)

The map J :X → 2X
∗

given by

Jx := {f ∈X∗ : 〈x,f 〉 = ‖x‖, ‖f‖ = ‖x‖}, ∀x ∈X, (1.4)

is called the normalized duality mapping.

Remark 1.1. The above J satisfies

〈
x,j(y)

〉≤ ‖x‖‖y‖, ∀x ∈X, ∀j(y)∈ J(y). (1.5)
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Proof. Denote j(y) by f . Since f ∈X∗, we have

〈x,f 〉 ≤ ‖f‖‖x‖. (1.6)

From (1.4), we know that ‖f‖ = ‖y‖. Hence (1.5) holds.

Let

Ψ := {ψ |ψ : [0,+∞) �→ [0,+∞) is a nondecreasing map such that ψ(0)= 0
}
. (1.7)

The following definition is from [3].

Definition 1.2. Let X be a real Banach space. Let B be a nonempty subset of X. A

map T : B → B is called ψ-uniformly pseudocontractive if there exist the map ψ ∈ Ψ
and j(x−y)∈ J(x−y) such that

〈
Tx−Ty,j(x−y)〉≤ ‖x−y‖2−ψ(‖x−y‖), ∀x,y ∈ B. (1.8)

The map S : X → X is called ψ-uniformly accretive if there exist the map ψ ∈ Ψ and

j(x−y)∈ J(x−y) such that

〈
Sx−Sy,j(x−y)〉≥ψ(‖x−y‖), ∀x,y ∈X. (1.9)

Taking ψ(a) := ψ(a) ·a, for all a ∈ [0,+∞), ψ∈ Ψ , we get the usual definitions

of ψ-strongly pseudocontractivity and ψ-strongly accretivity. Taking ψ(a) := γ ·a2,

γ ∈ (0,1), for all a∈ [0,+∞), ψ∈ Ψ , we get the usual definitions of strong pseudocon-

tractivity and strong accretivity.

Denote by I the identity map.

Remark 1.3. T is ψ-uniformly pseudocontractive if and only if S = (I − T) is ψ-

uniformly accretive.

Let F(T) denote the fixed point set with respect to B for the map T .

In [9], the following conjecture was given: “if the Mann iteration converges, then

so does the Ishikawa iteration.” In a series of papers [5, 6, 7, 8, 9, 10], the authors

have given a positive answer to this conjecture, showing the equivalence between Mann

and Ishikawa iterations for several classes of maps. In this paper, we show that the

convergence of Mann iteration is equivalent to the convergence of Ishikawa iteration,

for the most general class ofψ-uniformly pseudocontractive andψ-uniformly accretive

maps.

Lemma 1.4 [4]. Let X be a real Banach space and let J : X → 2X
∗

be the duality

mapping. Then the following relation is true:

‖x+y‖2 ≤ ‖x‖2+2
〈
y,j(x+y)〉, ∀x,y ∈X, ∀j(x+y)∈ J(x+y). (1.10)
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Lemma 1.5 [3]. Let {θn} be a sequence of nonnegative real numbers, let {λn} be a

real sequence satisfying

0≤ λn ≤ 1,
∞∑

n=0

λn =+∞, (1.11)

and let ψ∈ Ψ . If there exists a positive integer n0 such that

θ2
n+1 ≤ θ2

n−λnψ
(
θn+1

)+σn, (1.12)

for all n≥n0, with σn ≥ 0, for all n∈N, and σn = o(λn), then limn→∞θn = 0.

2. Main result. We are now able to prove the following result.

Theorem 2.1. Let X be a real Banach space, let B be a nonempty, convex subset of

X, and let T : B→ B be a uniformly continuous and ψ-uniformly pseudocontractive map

with T(B) bounded. If {αn}, {βn} satisfy (1.3), and u0 = x0 ∈ B, then the following are

equivalent:

(i) the Mann iteration (1.1) converges (to x∗ ∈ F(T)),
(ii) the Ishikawa iteration (1.2) converges (to the same x∗ ∈ F(T)).

Proof. The implication (ii)⇒(i) is obvious by setting, in (1.2), βn = 0, for all n ∈ N.

We will prove the implication (i)⇒(ii). Let x∗ be the fixed point of T . Suppose that

limn→∞un = x∗. Using

lim
n→∞

∥∥xn−un
∥∥= 0, (2.1)

0≤ ∥∥x∗−xn
∥∥≤ ∥∥un−x∗

∥∥+∥∥xn−un
∥∥, (2.2)

we get

lim
n→∞xn = x

∗. (2.3)

The proof is complete if we prove the relation (2.1).

Set

M := {∥∥x0−u0

∥∥+sup
{‖Tx−Ty‖, x,y ∈ B}}≥ 0. (2.4)

The condition that T(B) is bounded leads to

0≤M <+∞. (2.5)

It is clear that ‖x0 − u0‖ ≤ M . Supposing that ‖xn − un‖ ≤ M , we will prove that

‖xn+1−un+1‖ ≤M . Indeed, from (1.1) and (1.2), we have

∥∥xn+1−un+1

∥∥≤ (1−αn
)∥∥xn−un

∥∥+αn
∥∥Tyn−Tun

∥∥

≤ (1−αn
)
M+αnM =M. (2.6)
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That is,

∥∥xn−un
∥∥≤M, ∀n∈N. (2.7)

The real function f : [0,+∞) → [0,+∞), f(t) = t2, is increasing and convex. For all

λ∈ [0,1] and t1, t2 > 0, we have

(
(1−λ)t1+λt2

)2 ≤ (1−λ)t21+λt22 . (2.8)

Set t1 := ‖xn−un‖, t2 := Tyn−Tun, λ :=αn in (2.8), to obtain

∥∥xn+1−un+1

∥∥2 = ∥∥(1−αn
)(
xn−un

)+αn
(
Tyn−Tun

)∥∥2

≤ ((1−αn
)∥∥xn−un

∥∥+αn
∥∥Tyn−Tun

∥∥)2

≤ (1−αn
)∥∥xn−un

∥∥2+αnM2

≤ ∥∥xn−un
∥∥2+αnM2.

(2.9)

From (1.1), (1.2), (1.5), and (1.10), with

x := (1−αn
)(
xn−un

)
,

y :=αn
(
Tyn−Tun

)
,

x+y = xn+1−un+1,

(2.10)

we get

∥∥xn+1−un+1

∥∥2

= ∥∥(1−αn
)(
xn−un

)+αn
(
Tyn−Tun

)∥∥2

≤ (1−αn
)2∥∥xn−un

∥∥2+2αn
〈
Tyn−Tun,j

(
xn+1−un+1

)〉

= (1−αn
)2∥∥xn−un

∥∥2+2αn
〈
Txn+1−Tun+1,j

(
xn+1−un+1

)〉

+2αn
〈
Tyn−Txn+1,j

(
xn+1−un+1

)〉

+2αn
〈
Tun+1−Tun,j

(
xn+1−un+1

)〉

≤ (1−αn
)2∥∥xn−un

∥∥2+2αn
∥∥xn+1−un+1

∥∥2−2αnψ
(∥∥xn+1−un+1

∥∥)

+2αn
〈
Tyn−Txn+1,j

(
xn+1−un+1

)〉

+2αn
〈
Tun+1−Tun,j

(
xn+1−un+1

)〉

≤ (1−αn
)2∥∥xn−un

∥∥2+2αn
∥∥xn+1−un+1

∥∥2−2αnψ
(∥∥xn+1−un+1

∥∥)

+2αn
∥∥Tyn−Txn+1

∥∥∥∥xn+1−un+1

∥∥

+2αn
∥∥Tun+1−Tun

∥∥∥∥xn+1−un+1

∥∥

≤ (1−αn
)2∥∥xn−un

∥∥2+2αn
∥∥xn+1−un+1

∥∥2−2αnψ
(∥∥xn+1−un+1

∥∥)

+2αn
∥∥Tyn−Txn+1

∥∥M+2αn
∥∥Tun+1−Tun

∥∥M

= (1−αn
)2∥∥xn−un

∥∥2+2αn
∥∥xn+1−un+1

∥∥2−2αnψ
(∥∥xn+1−un+1

∥∥)

+2αn
(
bn+cn

)
,

(2.11)
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where

bn := ∥∥Tyn−Txn+1

∥∥M,
cn := ∥∥Tun+1−Tun

∥∥M. (2.12)

From (1.2), we have
∥∥xn+1−yn

∥∥= ∥∥(βn−αn
)
xn+αnTyn−βnTxn

∥∥

≤ (βn−αn
)∥∥xn

∥∥+αn
∥∥Tyn

∥∥+βn
∥∥Txn

∥∥. (2.13)

Analogously as for (2.6), we obtain the boundedness of {xn}. Conditions (2.13) and

(1.3) lead to

lim
n→∞

∥∥xn+1−yn
∥∥= 0; (2.14)

the uniform continuity of T leads to

lim
n→∞

∥∥Tyn−Txn+1

∥∥= 0; (2.15)

thus, we have

lim
n→∞bn = 0. (2.16)

The convergence of the Mann iteration {un} implies limn→∞‖un+1−un‖ = 0. The uni-

form continuity of T implies limn→∞‖Tun+1−Tun‖ = 0, that is,

lim
n→∞cn = 0. (2.17)

Substituting (2.9) in (2.11) and using (2.7), we get

(
1−αn

)2∥∥xn−un
∥∥2+2αn

∥∥xn+1−un+1

∥∥2

≤ (1−αn
)2∥∥xn−un

∥∥2+2αn
(∥∥xn−un

∥∥2+αnM2
)

=
[(

1−αn
)2+2αn

]∥∥xn−un
∥∥2+2α2

nM2

= (1+α2
n
)∥∥xn−un

∥∥2+2α2
nM2

= ∥∥xn−un
∥∥2+α2

n
∥∥xn−un

∥∥2+2α2
nM2

≤ ∥∥xn−un
∥∥2+3α2

nM2.

(2.18)

Substituting (2.18) into (2.11), we obtain

∥∥xn+1−un+1

∥∥2

≤ (1−αn
)2∥∥xn−un

∥∥2+2αn
∥∥xn+1−un+1

∥∥2

−2αnψ
(∥∥xn+1−un+1

∥∥)+2αn
(
bn+cn

)

≤ ∥∥xn−un
∥∥2+3α2

nM2−2αnψ
(∥∥xn+1−un+1

∥∥)+2αn
(
bn+cn

)

= ∥∥xn−un
∥∥2−2αnψ

(∥∥xn+1−un+1

∥∥)+αn
(
3αnM2+2bn+2cn

)
.

(2.19)
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Denote

θn := ∥∥xn−un
∥∥2,

λn := 2αn,

σn :=αn
(
3αnM2+2bn+2cn

)
.

(2.20)

Condition (1.3) assures the existence of a positive integer n0 such that λn = 2αn ≤
1, for all n ≥ n0. Relations (1.3), (2.16), (2.17), (2.19), (2.20), and Lemma 1.5 lead to

limn→∞θn = 0; hence limn→∞‖xn−un‖ = 0.

The above result does not completely generalize the main result, stated below, from

[8], because the map T in this result is not uniformly continuous.

Theorem 2.2 [8]. Let X be a real Banach space with a uniformly convex dual and

B a nonempty, closed, convex, bounded subset of X. Let T : B → B be a continuous and

strongly pseudocontractive operator. Then for u1 = x1 ∈ B, the following assertions are

equivalent:

(i) the Mann iteration (1.1) converges to the fixed point of T ;

(ii) the Ishikawa iteration (1.2) converges to the fixed point of T .

Remark 2.3 [8]. (i) If T has a fixed point, then Theorem 2.2 holds without the con-

tinuity of T .

(ii) If B is not bounded, then Theorem 2.2 holds if {xn} is bounded.

3. The Lipschitzian case. The following result can be found in [6].

Corollary 3.1 [6]. Let X be a real Banach space, B a nonempty, convex subset of

X, and T : B → B a Lipschitzian and ψ-uniformly pseudocontractive map with T(B)
bounded. If {αn}, {βn} satisfy (1.3), then the following are equivalent:

(i) the Mann iteration (1.1) converges (to x∗ ∈ F(T)),
(ii) the Ishikawa iteration (1.2) converges (to the same x∗ ∈ F(T)).

Proof. If the Lipschitzian constant L∈ (0,1), then the conclusion holds on basis of

[9, Theorem 3]. If L≥ 1, then all the assumptions in Theorem 2.1 are satisfied because

a Lipschitzian map is uniformly continuous.

Corollary 3.1 does not completely generalize the main result, stated below, from [9],

because neither boundedness of B nor that of T(B) is required.

Theorem 3.2 [9]. Let B be a closed, convex subset of an arbitrary Banach space X
and let T be a Lipschitzian strongly pseudocontractive self-map of B. Consider the Mann

iteration and the Ishikawa iteration with the same initial point and {αn}, {βn} satisfying

(1.3). Then the following conditions are equivalent:

(i) the Mann iteration (1.1) converges to x∗ ∈ F(T),
(ii) the Ishikawa iteration (1.2) converges to x∗ ∈ F(T).
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4. Application. Let S be a ψ-uniformly accretive map. Suppose the equation Sx = f
has a solution for a given f ∈X. Remark 1.3 assures that

Tx = x+f −Sx, ∀x ∈X, (4.1)

is a ψ-uniformly pseudocontractive map. A fixed point for T is a solution of Sx = f ,

and conversely. For the same {αn} ⊂ (0,1), {βn} ⊂ [0,1) as in (1.3), the iterations (1.2)

and (1.1) become

xn+1 =
(
1−αn

)
xn+αn

(
f +(I−S)yn

)
,

yn =
(
1−βn

)
xn+βn

(
f +(I−S)xn

)
, n= 0,1,2, . . . ,

(4.2)

un+1 =
(
1−αn

)
un+αn

(
f +(I−S)un

)
, n= 0,1,2, . . . . (4.3)

We are now able to give the following result.

Corollary 4.1. Let X be a real Banach space and S :X →X a uniformly continuous

and ψ-uniformly accretive map with (I−S)(X) bounded. If {αn}, {βn} satisfy (1.3) and

u0 = x0 ∈ B, then the following are equivalent:

(i) the Mann iteration (4.3) converges to a solution of Sx = f ,

(ii) the Ishikawa iteration (4.2) converges to a solution of Sx = f .

Proof. Set Tx := f+(I−S)x. If S is uniformly continuous, then T is also uniformly

continuous. The boundedness of (I − S)(X) assures the boundedness of {‖yn + f −
Syn‖} and {‖xn+f −Sxn‖}. Hence Theorem 2.1 gives our conclusion.

From Corollary 3.1, we obtain, (see [6]) the following result.

Corollary 4.2 [6]. Let X be a real Banach space and S : X → X a Lipschitzian and

ψ-uniformly accretive map with (I−S)(X) bounded. If {αn}, {βn} satisfy (1.3), then the

following are equivalent:

(i) the Mann iteration (4.3) converges to a solution of Sx = f ,

(ii) the Ishikawa iteration (4.2) converges to a solution of Sx = f .

Proof. Set, in Corollary 3.1, Tx := (I−S)x and use Remark 1.3.

5. The equivalence between T -stabilities of Mann and Ishikawa iterations. All the

arguments for the equivalence between T -stabilities of Mann and Ishikawa iterations

are similar to those from [5]. The following nonnegative sequences are well defined for

all n∈N:

εn := ∥∥xn+1−
(
1−αn

)
xn−αnTyn

∥∥, (5.1)

δn := ∥∥un+1−
(
1−αn

)
un−αnTun

∥∥. (5.2)

Definition 5.1. If limn→∞ εn = 0 (resp., limn→∞δn = 0) implies that limn→∞xn = x∗
(resp., limn→∞un = x∗), then (1.2) (resp., (1.1)) is said to be T -stable.

Remark 5.2 [5]. Let X be a normed space, B a nonempty, convex, closed subset of

X, and T : B → B a continuous map. If the Mann (resp., Ishikawa) iteration converges,

then limn→∞δn = 0 (resp., limn→∞ εn = 0).
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Theorem 5.3. Let X be a real Banach space, B a nonempty, convex subset of X, and

T : B → B a uniformly continuous and ψ-uniformly pseudocontractive map with T(B)
bounded. If {αn}, {βn} satisfy (1.3) and u0 = x0 ∈ B, then the following are equivalent:

(i) the Mann iteration (1.1) is T -stable,

(ii) the Ishikawa iteration (1.2) is T -stable.

Proof. The equivalence (i)�(ii) means that limn→∞ εn = 0 � limn→∞δn = 0. The

implication limn→∞ εn = 0⇒ limn→∞δn = 0 is obvious by setting βn = 0, for all n∈N, in

(1.2) and using (5.2). Conversely, we suppose that (1.1) is T -stable. Using Definition 5.1,

we get

lim
n→∞δn = 0 �⇒ lim

n→∞un = x
∗. (5.3)

Theorem 2.1 assures that limn→∞un=x∗ leads us to limn→∞xn=x∗. Using Remark 5.2,

we have limn→∞ εn = 0. Thus, we get limn→∞δn = 0⇒ limn→∞ εn = 0.

Set Tx = f +(I−S)x in Theorem 5.3. Corollary 3.1 leads to the following result.

Corollary 5.4. Let X be a real Banach space and S :X →X a uniformly continuous

and ψ-uniformly accretive map with (I−S)(X) bounded. If {αn}, {βn} satisfy (1.3) and

u0 = x0 ∈ B, then the following are equivalent:

(i) the Mann iteration (4.3) is T -stable,

(ii) the Ishikawa iteration (4.2) is T -stable.

Analogously, we obtain the following corollary.

Corollary 5.5 [5]. Let X be a real Banach space and S : X → X a Lipschitzian and

ψ-uniformly accretive map with (I−S)(X) bounded. If {αn}, {βn} satisfy (1.3), then the

following are equivalent:

(i) the Mann iteration (4.3) is T -stable,

(ii) the Ishikawa iteration (4.2) is T -stable.

If the map T is multivalued, then the definition of a ψ-uniformly pseudocontractive

map has the following form.

Definition 5.6. Let X be a real Banach space. Let B be a nonempty subset. A map

T : B→ 2B is called ψ-uniformly pseudocontractive if there exist ψ∈ Ψ and j(x−y)∈
J(x−y) such that

〈
ξ−θ,j(x−y)〉≤ ‖x−y‖2−ψ(‖x−y‖), (5.4)

for all x,y ∈ B, ξ ∈ Tx, θ ∈ Ty .

Let S : X → 2X . The map S is called ψ-uniformly accretive if there exist ψ ∈ Ψ and

j(x−y)∈ J(x−y) such that

〈
ξ−θ,j(x−y)〉≥ψ(‖x−y‖), (5.5)

for all x,y ∈X, ξ ∈ Sx, θ ∈ Sy .
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We remark that all the results from this paper hold in the multivalued case, provided

that these multivalued maps admit an appropriate selection.
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