GER-TYPE AND HYERS-ULAM STABILITIES FOR THE FIRST-ORDER LINEAR DIFFERENTIAL OPERATORS OF ENTIRE FUNCTIONS

TAKESHI MIURA, GO HIRASAWA, and SIN-EI TAKAHASI

Received 22 April 2003

Dedicated to Professor Seiji Watanabe on his 60th birthday (Kanreki).

Let h be an entire function and T_h a differential operator defined by $T_h f = f' + hf$. We show that T_h has the Hyers-Ulam stability if and only if h is a nonzero constant. We also consider Ger-type stability problem for $|1-f'/hf| \le \varepsilon$.

2000 Mathematics Subject Classification: 34K20, 26D10.

1. Introduction. The first result, which we now call the Hyers-Ulam stability (HUS), is due to Hyers [4] who gave an answer to a question posed by Ulam (cf. [11, Chapter VI] and [12]) in 1940 concerning the stability of homomorphisms: for what metric groups G is it true that an ε -automorphism of G is necessarily near to a strict automorphism?

An answer to the above problem has been given as follows. Suppose E_1 and E_2 are two real Banach spaces and $f: E_1 \to E_2$ is a mapping such that f(tx) is continuous in $t \in \mathbb{R}$, the set of all real numbers, for each fixed $x \in E_1$. If there exist $\theta \ge 0$ and $p \in \mathbb{R} \setminus \{1\}$ such that

$$||f(x+y)-f(x)-f(y)|| \le \theta(||x||^p + ||y||^p)$$
 (1.1)

for all $x, y \in E_1$, then there is a unique linear mapping $T : E_1 \to E_2$ such that $||f(x) - T(x)|| \le 2\theta ||x||^p/|2 - 2^p|$ for every $x \in E_1$. Hyers [4] obtained the result for p = 0. Then Rassias [7] generalized the above result of Hyers to the case where $0 \le p < 1$, while the proof given in [7] also works for p < 0. Gajda [2] solved the problem for 1 < p and also gave an example that a similar result does not hold for p = 1 (cf. [8]).

In connection with the stability of exponential functions, Alsina and Ger [1] remarked that the differential equation y'=y has the HUS. More explicitly, suppose I is an open interval, $\varepsilon>0$, and $f:I\to\mathbb{R}$ is a differentiable function such that $|f'(t)-f(t)|\leq \varepsilon$ for all $t\in I$. Then, there is a differentiable function $g:I\to\mathbb{R}$ such that g'=g and $|f(t)-g(t)|\leq 3\varepsilon$ for all $t\in I$. The third and first authors of this paper along with Miyajima [10] considered the Banach-space-valued differential equation $y'=\lambda y$, where λ is a complex constant. Then they proved the HUS of $y'=\lambda y$ under the condition that $\mathrm{Re}\,\lambda\neq 0$. Though, they treated the result as the stability of the operator $D-I_d$, where D denotes the ordinary differential operator and I_d the identity. Some stability results of other differential equations (or operators) are also known (cf. [5, 6, 9]).

Taking the group structure of $\mathbb{C} \setminus \{0\}$ into account, Ger and Semrl [3] considered the inequality

$$\left| \frac{f(x+y)}{f(x)f(y)} - 1 \right| \le \theta \quad (x, y \in S)$$
 (1.2)

for a mapping $f: S \to \mathbb{C} \setminus \{0\}$, where (S,+) is a semigroup and \mathbb{C} is the set of all complex numbers. If $0 \le \theta < 1$ and if (S,+) is a cancellative abelian semigroup, then they proved that there is a unique function $g: S \to \mathbb{C} \setminus \{0\}$ such that g(x+y) = g(x)g(y) for all $x,y \in S$ and that

$$\max\left\{ \left| \frac{f(x)}{g(x)} - 1 \right|, \left| \frac{g(x)}{f(x)} - 1 \right| \right\} \le \sqrt{1 + \frac{1}{(1-\theta)^2} - 2\sqrt{\frac{1+\theta}{1-\theta}}} \tag{1.3}$$

for all $x \in S$. The stability phenomena of this kind is called Ger-type stability.

Throughout this paper, $H(\mathbb{C})$ stands for the set of all entire functions. Let $h \in H(\mathbb{C})$ and $T_h : H(\mathbb{C}) \to H(\mathbb{C})$ be a linear differential operator defined by

$$T_h f(z) = f'(z) + h(z) f(z) \quad (f \in H(\mathbb{C}), \ z \in \mathbb{C}). \tag{1.4}$$

DEFINITION 1.1. The operator T_h is said to have the HUS if and only if there exists a constant $K \geq 0$ with the following property: to each $\varepsilon \geq 0$ and $f,g \in H(\mathbb{C})$ satisfying $\sup_{z \in \mathbb{C}} |T_h f(z) - g(z)| \leq \varepsilon$, there exists an $f_0 \in H(\mathbb{C})$ such that $T_h f_0 = g$ and $\sup_{z \in \mathbb{C}} |f(z) - f_0(z)| \leq K\varepsilon$. Such K is called an HUS constant for T_h . If, in addition, the minimum of all such K's exists, then it is called *the* HUS constant for T_h .

In this paper, we first consider the HUS of the differential operator T_h . Then we show that T_h has the HUS if and only if $h \in H(\mathbb{C})$ is a nonzero constant function. Moreover, we give the HUS constant for T_h . Finally, we consider the Ger-type stability problem of the differential equation $y' = \lambda y$. To be more explicit, suppose $\varepsilon \ge 0$ and $f \in H(\mathbb{C})$ satisfies

$$\sup_{z \in \mathbb{C}} \left| \frac{f'(z)}{\lambda f(z)} - 1 \right| \le \varepsilon. \tag{1.5}$$

Does there exist $K \ge 0$ such that

$$\sup_{z \in \mathbb{C}} \left| \frac{f(z)}{ce^{\lambda t}} - 1 \right| \le K\varepsilon \quad \text{or} \quad \sup_{z \in \mathbb{C}} \left| \frac{ce^{\lambda t}}{f(z)} - 1 \right| \le K\varepsilon \tag{1.6}$$

holds for some $c \in \mathbb{C} \setminus \{0\}$? To this problem, we give a negative answer: the Ger-type stability does not hold in general. Moreover, we show that the solution $f \in H(\mathbb{C})$ to the differential equation $y' = \lambda y$ is only the function which satisfies both (1.5) and (1.6).

2. The HUS for T_h . For simplicity, we write $\int_0^z f(\zeta) d\zeta$ for $\int_0^1 f(zt) z dt$, where $z \in \mathbb{C}$ and $f \in H(\mathbb{C})$. We associate to each $h \in H(\mathbb{C})$ a function \tilde{h} defined by

$$\tilde{h}(z) = \exp \int_0^z h(\zeta) d\zeta \quad (z \in \mathbb{C}). \tag{2.1}$$

Let $h \in H(\mathbb{C})$. Throughout this section, $T_h : H(\mathbb{C}) \to H(\mathbb{C})$ denotes a linear differential operator defined by (1.4). Suppose $f, g \in H(\mathbb{C})$. Then note that $T_h f = g$ if and only if f is of the form

$$f(z) = \frac{1}{\tilde{h}(z)} \left\{ f(0) + \int_0^z g(\zeta) \tilde{h}(\zeta) d\zeta \right\} \quad (z \in \mathbb{C}). \tag{2.2}$$

LEMMA 2.1. Suppose $h \in H(\mathbb{C})$ is not a constant function, $f \in H(\mathbb{C})$, and

$$0 < \sup_{z \in C} |T_h f(z)| < \infty. \tag{2.3}$$

Then

$$\sup_{z \in \mathbb{C}} \left| f(z) - \frac{c}{\tilde{h}(z)} \right| = \infty \tag{2.4}$$

for every $c \in \mathbb{C}$.

PROOF. By hypothesis, $T_n f$ is a bounded entire function, and so $T_n f$ must be constant, say $c_0 \in \mathbb{C} \setminus \{0\}$ by Liouville's theorem. Hence, by (2.2), f is of the form

$$f(z) = \frac{1}{\tilde{h}(z)} \left\{ f(0) + c_0 \int_0^z \tilde{h}(\zeta) d\zeta \right\} \quad (z \in \mathbb{C}). \tag{2.5}$$

Suppose $\sup_{z\in\mathbb{C}}|f(z)-c_1/\tilde{h}(z)|<\infty$ for some $c_1\in\mathbb{C}$. Another application of Liouville's theorem yields the existence of a constant $c_2\in\mathbb{C}$ such that $c_2=f-c_1/\tilde{h}$, and therefore (2.5) gives

$$c_2 \tilde{h}(z) = f(0) - c_1 + c_0 \int_0^z \tilde{h}(\zeta) d\zeta \quad (z \in \mathbb{C}).$$
 (2.6)

By differentiating both sides of (2.6) with respect to z, we obtain

$$c_2 h \tilde{h} = c_0 \tilde{h}, \tag{2.7}$$

and hence

$$c_2 h = c_0. (2.8)$$

Since h is not constant, this implies that $c_2 = 0$. Thus, $f = c_1/\tilde{h}$, and hence $T_h f = 0$ (see (2.2)), which contradicts $0 < \sup_{z \in \mathbb{C}} |T_h f(z)|$.

THEOREM 2.2. If $h \in H(\mathbb{C})$, then each of the following statements implies the other:

- (a) h is a nonzero constant function,
- (b) T_h has the HUS.

PROOF. (a) \Rightarrow (b). Suppose h is a nonzero constant function, say $\lambda \in \mathbb{C} \setminus \{0\}$. Then, $\tilde{h}(z) = e^{\lambda z}$ for $z \in \mathbb{C}$. Suppose $\varepsilon \geq 0$ and $f,g \in H(\mathbb{C})$ satisfy $\sup_{z \in \mathbb{C}} |T_h f(z) - g(z)| \leq \varepsilon$. Then there exists a $c_0 \in \mathbb{C}$ such that $T_h f - g = c_0$ by Liouville's theorem. Put

$$u(z) = e^{-\lambda z} \left\{ \int_0^z g(\zeta) e^{\lambda \zeta} d\zeta \right\} \quad (z \in \mathbb{C}). \tag{2.9}$$

Then $T_h u = g$, and so $T_h(f - u) = c_0$, $|c_0| \le \varepsilon$. Hence, by (2.2), f is of the form

$$f(z) = u(z) + \frac{1}{\tilde{h}(z)} \left\{ f(0) - u(0) + c_0 \int_0^z \tilde{h}(\zeta) d\zeta \right\}$$

= $\frac{c_0}{\lambda} + u(z) + \left(f(0) - u(0) - \frac{c_0}{\lambda} \right) e^{-\lambda z}$ (2.10)

for all $z \in \mathbb{C}$. Put

$$f_0(z) = u(z) + \left(f(0) - u(0) - \frac{c_0}{\lambda}\right)e^{-\lambda z} \quad (z \in \mathbb{C}),$$
 (2.11)

then $T_h f_0 = g$ and

$$\left| f(z) - f_0(z) \right| = \left| \frac{c_0}{\lambda} \right| \le \frac{\varepsilon}{|\lambda|}$$
 (2.12)

for every $z \in \mathbb{C}$ so that T_h has the HUS with an HUS constant $1/|\lambda|$. (b) \Rightarrow (a). Put

$$f_1(z) = \frac{1}{\tilde{h}(z)} \int_0^z \tilde{h}(\zeta) d\zeta \quad (z \in \mathbb{C}). \tag{2.13}$$

Then we obtain $T_h f_1 = 1$. Let $K < \infty$ be an HUS constant for T_h . Since T_h has the HUS, there is an $f_2 \in H(\mathbb{C})$, such that $T_h f_2 = 0$ and

$$\sup_{z\in\mathbb{C}}|f_1(z)-f_2(z)|\leq K. \tag{2.14}$$

Note that f_2 is of the form $f_2(z) = f_2(0)/\tilde{h}(z)$ for all $z \in \mathbb{C}$, since $T_h f_2 = 0$. Lemma 2.1, applied to f_1 , yields that h is a constant function. If h were 0, then (2.13) would be written in the form $f_1(z) = z$ for $z \in \mathbb{C}$, and hence from (2.14), $\sup_{z \in \mathbb{C}} |z - f_2(0)| \le K < \infty$, which is a contradiction. Thus, we conclude that h is a nonzero constant function.

THEOREM 2.3. Suppose $\lambda \in \mathbb{C} \setminus \{0\}$, $f,g \in H(\mathbb{C})$, and $\sup_{z \in \mathbb{C}} |T_{\lambda}f(z) - g(z)| < \infty$. Then there exists a unique $f_0 \in H(\mathbb{C})$ such that $T_{\lambda}f_0 = g$ and

$$\sup_{z \in \mathbb{C}} |f(z) - f_0(z)| < \infty. \tag{2.15}$$

Furthermore, $1/|\lambda|$ is the HUS constant for T_{λ} .

PROOF. The existence of such a function $f_0 \in H(\mathbb{C})$ is proved by Theorem 2.2, and so we need to show only the uniqueness. Suppose $f_1 \in H(\mathbb{C})$ and $f_2 \in H(\mathbb{C})$ satisfy $T_{\lambda}f_j = g$ and

$$\sup_{z \in \Gamma} |f(z) - f_j(z)| < \infty \tag{2.16}$$

for j = 1, 2. Since $T_{\lambda} f_j = g$,

$$f_{j}(z) = e^{-\lambda z} \left\{ f_{j}(0) + \int_{0}^{z} g(\zeta) e^{\lambda \zeta} d\zeta \right\} \quad (z \in \mathbb{C})$$
 (2.17)

for j = 1, 2, and hence

$$f_1(z) - f_2(z) = (f_1(0) - f_2(0))e^{-\lambda z} \quad \forall z \in \mathbb{C}.$$
 (2.18)

It follows from (2.16) that $f_1 - f_2$ is constant by Liouville's theorem. Therefore, $f_1(0) = f_2(0)$ by (2.18), which implies that $f_1 = f_2$, proving the uniqueness.

We show that $1/|\lambda|$ is the HUS constant for T_{λ} . Indeed, $1/|\lambda|$ is an HUS constant by (2.12). Conversely, let K be an arbitrary HUS constant for T_{λ} , and put

$$f_2(z) = \frac{1}{\lambda} - \frac{1}{\lambda} e^{-\lambda z} \quad (z \in \mathbb{C}). \tag{2.19}$$

A simple calculation shows that $f_2'(z) + \lambda f_2(z) = 1$ for all $z \in \mathbb{C}$, and hence $\sup_{z \in \mathbb{C}} |T_\lambda f_2(z)| = 1$. Then, there exists an $f_3 \in H(\mathbb{C})$ such that $T_\lambda f_3 = 0$ and $\sup_{z \in \mathbb{C}} |f_2(z) - f_3(z)| \le K$. Since $|f_2(z) + \lambda^{-1}e^{-\lambda z}| = 1/|\lambda|$ for $z \in \mathbb{C}$, the uniqueness implies that $f_3(z) = -\lambda^{-1}e^{-\lambda z}$, which proves $1/|\lambda| \le K$. Thus, $1/|\lambda|$ is the HUS constant for T_λ . \square

3. Stability for the Ger-type differential inequality. In this section, we consider the Ger-type stability problem. First, we show that the Ger-type stability does not hold in general. Indeed, the following proposition is true.

PROPOSITION 3.1. For $\lambda \in \mathbb{C} \setminus \{0\}$ and $\varepsilon > 0$, there exists an $f \in H(\mathbb{C})$ with the following properties:

$$\sup_{z \in \mathbb{C}} \left| \frac{f'(z)}{\lambda f(z)} - 1 \right| \le \varepsilon,$$

$$\sup_{z \in \mathbb{C}} \left| \frac{f(z)}{ce^{\lambda z}} - 1 \right| = \sup_{z \in \mathbb{C}} \left| \frac{ce^{\lambda z}}{f(z)} - 1 \right| = \infty \quad \forall c \in \mathbb{C} \setminus \{0\}.$$
(3.1)

PROOF. We associate to each $\lambda \in \mathbb{C} \setminus \{0\}$ and $\varepsilon > 0$ a function f defined by

$$f(z) = e^{(\lambda + |\lambda|\varepsilon)z} \quad (z \in \mathbb{C}). \tag{3.2}$$

As above, we obtain

$$f'(z) = (\lambda + |\lambda|\varepsilon)f(z) \quad (z \in \mathbb{C}), \tag{3.3}$$

so that

$$\left| \frac{f'(z)}{\lambda f(z)} - 1 \right| = \varepsilon \quad \forall z \in \mathbb{C}. \tag{3.4}$$

If $c \in \mathbb{C} \setminus \{0\}$, then we have

$$\left| \frac{f(z)}{ce^{\lambda z}} - 1 \right| \ge \frac{1}{|c|} \left| e^{|\lambda|\epsilon z} \right| - 1 \longrightarrow \infty \quad (\text{Re } z \longrightarrow \infty),
\left| \frac{ce^{\lambda z}}{f(z)} - 1 \right| \ge |c| \left| e^{-|\lambda|\epsilon z} \right| - 1 \longrightarrow \infty \quad (\text{Re } z \longrightarrow -\infty),$$
(3.5)

and so

$$\sup_{z \in \mathbb{C}} \left| \frac{f(z)}{ce^{\lambda z}} - 1 \right| = \sup_{z \in \mathbb{C}} \left| \frac{ce^{\lambda z}}{f(z)} - 1 \right| = \infty \quad \forall c \in \mathbb{C} \setminus \{0\}.$$
 (3.6)

One might ask when the Ger-type stability is true. We give an answer to this question. If the Ger-type stability holds, then the function $f \in H(\mathbb{C})$ must be of the form $f(z) = f(0)e^{\lambda z}$. That is, the only solution to the differential equation $y' = \lambda y$ has the Ger-type stability.

THEOREM 3.2. Suppose $\lambda \in \mathbb{C} \setminus \{0\}$, $\varepsilon > 0$, and $f \in H(\mathbb{C})$ satisfies $f(z) \neq 0$ for all $z \in \mathbb{C}$ and (1.5) holds. Suppose

$$\sup_{z \in \mathbb{C}} \left| \frac{f(z)}{ce^{\lambda z}} - 1 \right| \quad or \quad \sup_{z \in \mathbb{C}} \left| \frac{ce^{\lambda z}}{f(z)} - 1 \right| \tag{3.7}$$

is finite for some $c \in \mathbb{C} \setminus \{0\}$; then f is of the form $f(z) = f(0)e^{\lambda z}$ for all $z \in \mathbb{C}$.

PROOF. It follows from (1.5) that $1 - f'/\lambda f$ is constant, say $c_0 \in \mathbb{C}$, by Liouville's theorem. Thus, $f' = (1 - c_0)\lambda f$, and hence

$$f(z) = f(0)e^{(1-c_0)\lambda z} \quad (z \in \mathbb{C}). \tag{3.8}$$

Suppose that there is a $c_1 \in \mathbb{C} \setminus \{0\}$ such that

$$\sup_{z \in \mathbb{C}} \left| \frac{f(z)}{c_1 e^{\lambda z}} - 1 \right| < \infty. \tag{3.9}$$

From (3.8), it follows that

$$\sup_{z \in \mathbb{C}} \left| \frac{f(0)}{c_1} e^{-c_0 \lambda z} - 1 \right| < \infty, \tag{3.10}$$

and hence c_0 must be 0, proving $f(z) = f(0)e^{\lambda z}$ for all $z \in \mathbb{C}$.

Similarly, we can treat the case where

$$\sup_{z \in \mathbb{C}} \left| \frac{c_2 e^{\lambda z}}{f(z)} - 1 \right| < \infty \tag{3.11}$$

for some $c_2 \in \mathbb{C} \setminus \{0\}$, and so the proof is omitted.

Thus far, we have treated entire functions. Finally, we consider the Ger-type stability problem in the category of holomorphic functions on a bounded region.

THEOREM 3.3. Let $0 \in \Omega$ be a bounded convex region of \mathbb{C} and put $M = \sup_{z \in \Omega} |z|$. Suppose $\lambda \in \mathbb{C} \setminus \{0\}$, $0 \le \varepsilon \le 1$, and $f : \Omega \to \mathbb{C}$ is holomorphic such that $f(z) \ne 0$ for all $z \in \Omega$ and

$$\sup_{z \in \Omega} \left| \frac{f'(z)}{\lambda f(z)} - 1 \right| \le \varepsilon. \tag{3.12}$$

Then there are $K_{\lambda} > 0$ and $c \in \mathbb{C} \setminus \{0\}$ such that

$$\max \left\{ \sup_{z \in \Omega} \left| \frac{f(z)}{ce^{\lambda z}} - 1 \right|, \sup_{z \in \Omega} \left| \frac{ce^{\lambda z}}{f(z)} - 1 \right| \right\} \le K_{\lambda} \varepsilon. \tag{3.13}$$

PROOF. Put $g(z) = -1 + f'(z)/\lambda f(z)$ for $z \in \Omega$, and so

$$f'(z) = \lambda (1 + g(z)) f(z) \quad (z \in \Omega).$$
 (3.14)

From (3.14), it follows that

$$f(z) = f(0)e^{\lambda z} \exp \int_0^z \lambda g(\zeta) d\zeta$$
 (3.15)

for every $z \in \Omega$, and hence

$$\left| \frac{f(z)}{f(0)e^{\lambda z}} - 1 \right| = \left| \exp \int_0^z \lambda g(\zeta) d\zeta - 1 \right| \le \sum_{n=1}^\infty \frac{1}{n!} \left| \int_0^z \lambda g(\zeta) d\zeta \right|^n$$

$$\le \sum_{n=1}^\infty \frac{|\lambda \varepsilon z|^n}{n!} \le (e^{|\lambda|M} - 1)\varepsilon$$
(3.16)

for all $z \in \Omega$. Similarly, we can show that

$$\sup_{z \in \Omega} \left| \frac{f(0)e^{\lambda z}}{f(z)} - 1 \right| \le \left(e^{|\lambda|M} - 1 \right) \varepsilon, \tag{3.17}$$

and so the proof is complete.

ACKNOWLEDGMENT. The first and third authors are partially supported by the Grant-in-Aid for Scientific Research, Japan Society for the Promotion of Science.

REFERENCES

- [1] C. Alsina and R. Ger, *On some inequalities and stability results related to the exponential function*, J. Inequal. Appl. 2 (1998), no. 4, 373–380.
- [2] Z. Gajda, *On stability of additive mappings*, Int. J. Math. Math. Sci. **14** (1991), no. 3, 431–434.
- [3] R. Ger and P. Šemrl, *The stability of the exponential equation*, Proc. Amer. Math. Soc. **124** (1996), no. 3, 779–787.
- [4] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222–224.
- [5] T. Miura, S. Miyajima, and S.-E. Takahasi, *A characterization of Hyers-Ulam stability of first order linear differential operators*, J. Math. Anal. Appl. **286** (2003), no. 1, 136–146.
- [6] _____, Hyers-Ulam stability of linear differential operator with constant coefficients, Math. Nachr. **258** (2003), 90-96.
- [7] T. M. Rassias, *On the stability of the linear mapping in Banach spaces*, Proc. Amer. Math. Soc. **72** (1978), no. 2, 297–300.
- [8] T. M. Rassias and P. Šemrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114 (1992), no. 4, 989-993.
- [9] H. Takagi, T. Miura, and S.-E. Takahasi, *Essential norms and stability constants of weighted composition operators on C(X)*, Bull. Korean Math. Soc. **40** (2003), no. 4, 583–591.

- [10] S.-E. Takahasi, T. Miura, and S. Miyajima, *On the Hyers-Ulam stability of the Banach space- valued differential equation* $y' = \lambda y$, Bull. Korean Math. Soc. **39** (2002), no. 2, 309-315
- [11] S. M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York, 1960.
- [12] ______, Sets, Numbers, and Universes: Selected Works, The MIT Press, Massachusetts, 1974.

Takeshi Miura: Department of Basic Technology, Applied Mathematics and Physics, Yamagata University, Yonezawa 992-8510, Japan

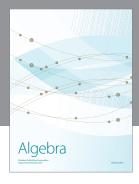
E-mail address: miura@yz.yamagata-u.ac.jp

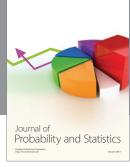
Go Hirasawa: Department of Mathematics, Nippon Institute of Technology, Miyashiro, Saitama 345-8501, Japan

E-mail address: hirasawal@muh.biglobe.ne.jp

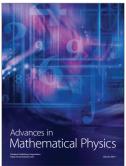
Sin-Ei Takahasi: Department of Basic Technology, Applied Mathematics and Physics, Yamagata University, Yonezawa 992-8510, Japan

E-mail address: sin-ei@emperor.yz.yamagata-u.ac.jp





Submit your manuscripts at http://www.hindawi.com



Journal of Discrete Mathematics

