EXTENSION OF ZHU'S SOLUTION TO LOTTO'S CONJECTURE ON THE WEIGHTED BERGMAN SPACES

ABEBAW TADESSE
Received 21 January 2002 and in revised form 18 July 2002

We reformulate Lotto's conjecture on the weighted Bergman space A_{α}^{2} setting and extend Zhu's solution (on the Hardy space H^{2}) to the space A_{α}^{2}.

2000 Mathematics Subject Classification: 47B10, 47B33, 47B38, 30H05.

1. Background and terminology. Let H denote the space of analytic maps on the unit disk D and let A_{α}^{2}, the weighted Bergman space, be defined (for $\alpha>-1$) as

$$
\begin{equation*}
A_{\alpha}^{2}=\left\{f \in H: \iint_{D}|f(z)|^{2}\left(1-|z|^{2}\right)^{\alpha} d x d y<\infty\right\} \tag{1.1}
\end{equation*}
$$

Given $\phi \in H$ with Range $(\phi) \subset D$, the composition operator C_{ϕ} on A_{α}^{2} is defined by

$$
\begin{equation*}
C_{\phi}(f)(z)=f(\phi(z)), \quad z \in D . \tag{1.2}
\end{equation*}
$$

The following facts are well known:
(i) A_{α}^{2} is a Hilbert space (with the norm $\|f\|=\left(\iint_{D}|f(z)|^{2}\left(1-|z|^{2}\right)^{\alpha} d x d y\right)^{1 / 2}$);
(ii) C_{ϕ} is a bounded linear operator on A_{α}^{2} and the compactness of C_{ϕ} is characterized in [3] as the following theorem illustrates.

Theorem 1.1. Suppose $0<p<\infty$ and $\alpha>-1$ are given, then C_{ϕ} is compact on A_{α}^{p} if and only if ϕ has no angular derivative at any point of ∂D.

The Schatten p-class $\mathscr{S}_{p}\left(A_{\alpha}^{2}\right)$ is defined as

$$
\begin{equation*}
\mathscr{S}_{p}\left(A_{\alpha}^{2}\right)=\left\{T \in \mathscr{L}\left(A_{\alpha}^{2}\right): \sum_{n=0}^{\infty} s_{n}(T)^{p}<\infty\right\}, \tag{1.3}
\end{equation*}
$$

where $s_{n}(T)$ are the singular numbers for T, given by

$$
\begin{equation*}
s_{n}(T)=\inf \{\|T-K\|: K \text { has rank } \leq n\} \tag{1.4}
\end{equation*}
$$

and $\mathscr{L}\left(A_{\alpha}^{2}\right)$ denotes the space of bounded linear operators on A_{α}^{2}. The classes $\mathscr{S}_{1}\left(A_{\alpha}^{2}\right)$ (the trace class) and $\mathscr{S}_{2}\left(A_{\alpha}^{2}\right)$ (the Hilbert-Schmidt class) are best known.

It is known that $\mathscr{S}_{2}\left(A_{\alpha}^{2}\right)$ is a two-sided ideal in $\mathscr{L}\left(A_{\alpha}^{2}\right)$ [2] and, as a consequence of this, some important comparison properties [4], which are used for the construction of compact but non-Schatten ideals on A_{α}^{2}, hold.

Lotto [1] began the investigation of the connection between the geometry of $\phi(D)$ and the membership of C_{ϕ} in $\mathscr{S}_{p}\left(H^{2}\right)$. He considered the Riemann map ϕ from D onto the semidisk

$$
\begin{equation*}
\left\{z: \operatorname{Im}(z)>0 \text { and }\left|z-\frac{1}{2}\right|<\frac{1}{2}\right\} \tag{1.5}
\end{equation*}
$$

which fixes 1 (see [4, Figure 1.1]), and computed an explicit formula for ϕ given by

$$
\begin{equation*}
\phi(z)=\frac{1}{1-i g(z)}, \quad g(z)=\sqrt{i \frac{1-z}{1+z}} . \tag{1.6}
\end{equation*}
$$

Lotto [1] proved that C_{ϕ} is a compact composition operator on H^{2} but not HilbertSchmidt (i.e., $C_{\phi} \notin \mathscr{S}_{p}\left(A_{\alpha}^{2}\right)$) and came up with the following conjectures.

CONJECTURE 1.2. The composition operator C_{ϕ} belongs to the Schatten-p ideal $\mathscr{S}_{p}\left(H^{2}\right)$ if $p>2$.

CONJECTURE 1.3. Given $p, 0<p<\infty$, there exists a simple example of a domain G_{p} with $G_{p} \subseteq D$, or there are easily verifiable geometric conditions on G_{p}, such that the Riemann map from D onto G_{p} induces a compact operator that is not in $\mathscr{S}_{p}\left(H^{2}\right)$.

Zhu [4] proved both Lotto's conjectures and constructed a Riemann map that induces a compact composition operator which is not in any of the Schatten ideals on H^{2}.

The goal of this paper is to extend Zhu's solution of Lotto's conjectures on the weighted Bergman space $\mathscr{S}_{p}\left(A_{\alpha}^{2}\right)$.

In the $\mathscr{S}_{p}\left(A_{\alpha}^{2}\right)$ setting, Lotto's question can be summarized as follows: consider the Riemann map ϕ described above.
(1) Find $p, 0<p<\infty$, such that $C_{\phi} \notin \mathscr{S}_{p}\left(A_{\alpha}^{2}\right)$.
(2) Given $p, 0<p<\infty$, look for analogous geometric conditions on $G_{p} \subseteq D$ such that the Riemann map $\phi_{p}: D \rightarrow G_{p}$ induces a compact composition operator that is not in $\mathscr{S}_{p}\left(A_{\alpha}^{2}\right)$, and use this fact to construct C_{ϕ} which is compact but not in any $\mathscr{S}_{p}\left(A_{\alpha}^{2}\right)$ for all $0<p<\infty$.
The compactness criterion (Theorem 1.1) assures us that C_{ϕ} is compact on A_{α}^{2}. And note here that the compactness of C_{ϕ} is independent of α.

In the next section, we address both of these questions. For $\alpha=0$, we extend Zhu's solution [4] to prove that $C_{\phi} \in \mathscr{S}_{p}\left(A_{0}^{2}\right) \leftrightarrow p>1$, showing that the trace class $\mathscr{S}_{1}\left(A_{0}^{2}\right)$ "draws" the "borderline" of membership of the C_{ϕ} 's in the Schatten ideals on $\mathscr{S}_{p}\left(A_{0}^{2}\right)$. Likewise, we extend Zhu's results on Conjecture 1.3 firstly in $\mathscr{S}_{p}\left(A_{0}^{2}\right)$ and then for the general $\mathscr{S}_{p}\left(A_{\alpha}^{2}\right), \alpha>-1$.
2. Extension of Zhu's solution to weighted Bergman spaces A_{α}^{2}. To answer the first question, we first need Luecking-Zhu theorem [2] to characterize membership in $\mathscr{S}_{p}\left(A_{\alpha}^{2}\right)$ which reads

$$
\begin{equation*}
C_{\phi} \in \mathscr{S}_{p}\left(A_{\alpha}^{2}\right) \Leftrightarrow N_{\phi, \alpha+2}(z)\left(\log \left(\frac{1}{|z|}\right)\right)^{-\alpha-2} \in \mathscr{L}^{p / 2}(d \lambda) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
N_{\phi, \beta}(z)=\sum_{\omega \in \phi^{-1}(z)} \log \left(\frac{1}{|\omega|}\right)^{\beta}, \tag{2.2}
\end{equation*}
$$

the generalized Nevanlinna counting function, and $d \lambda(z)=\left(1-|z|^{2}\right)^{-2} d x d y$, the Möbius invariant measure on D.

For ϕ a univalent self-map of D into itself,

$$
\begin{equation*}
N_{\phi, \beta}(z)=\left(\log \left(\frac{1}{\left|\phi^{-1}(z)\right|}\right)\right)^{\beta} \approx\left(1-\left|\phi^{-1}(z)\right|\right)^{\beta}, \quad \text { for }\left|\phi^{-1}(z)\right| \rightarrow 1 \tag{2.3}
\end{equation*}
$$

Thus, we have the following lemma.
Lemma 2.1. For ϕ univalent with $\phi(1)=1$,

$$
\begin{equation*}
C_{\phi} \in \mathscr{S}_{p}\left(A_{\alpha}^{2}\right) \Longleftrightarrow \chi_{\phi(D)} \cdot\left(\frac{1-\left|\phi^{-1}(z)\right|}{1-|z|}\right)^{\alpha+2} \in \mathscr{L}^{p / 2}(d \lambda) . \tag{2.4}
\end{equation*}
$$

We use Lemma 2.1 to update [4, Theorem 3.1] on $\mathscr{S}_{p}\left(A_{\alpha}^{2}\right)$ setting. To emphasize the case $\alpha=0$, we differentiate two cases.
(1) $\alpha=0$: for the case $\alpha=0$, the analogue of [4, Theorem 3.1] reads as follows.

Theorem 2.2. Let ϕ be a Riemann map from D onto the semidisk

$$
\begin{equation*}
G=\left\{z: \operatorname{Im}(z)>0 \text { and }\left|z-\frac{1}{2}\right|<\frac{1}{2}\right\} \tag{2.5}
\end{equation*}
$$

such that $\phi(1)=1$. Then the composition operator C_{ϕ} belongs to the Schatten ideals $\mathscr{S}_{p}\left(A_{0}^{2}\right)$ if and only if $p>1$.

Remark 2.3. It is interesting to compare Theorem 2.2 with the corresponding result in the H^{2} case (see [4, Theorem 3.1]) which holds for $p>2$ showing here that the trace class $\mathscr{S}_{1}\left(A_{0}^{2}\right)$ is the "borderline" case for membership of the C_{ϕ} 's in the Schatten- p ideals. For the proof, see the general case next.
(2) $-1<\alpha$ arbitrary: we start with Lemma 2.1. That is, check if (or when) the integral

$$
\begin{equation*}
\iint_{G}\left(\frac{1-\left|\phi^{-1}(z)\right|}{1-|z|}\right)^{((\alpha+2) / 2) p} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}}<\infty . \tag{2.6}
\end{equation*}
$$

Since $\partial G \cap \partial D=\{1\},(2.6)$ is equivalent to

$$
\begin{equation*}
\iint_{G \cap \Delta(\epsilon)}\left(\frac{1-\left|\phi^{-1}(z)\right|}{1-|z|}\right)^{((\alpha+2) / 2) p} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}}<\infty \tag{2.7}
\end{equation*}
$$

where $\Delta(\epsilon)=\{z ;|z-1|<\epsilon\}$ (for $\epsilon>0$ small) as in the proof of [4, Theorem 3.1], and ϕ is the Riemann map from $D \rightarrow G$. For $\alpha=0$, the left-hand side of (2.7) reduces to

$$
\begin{equation*}
\iint_{G \cap \Delta(\epsilon)}\left(\frac{1-\left|\phi^{-1}(z)\right|}{1-|z|}\right)^{p} \frac{d A(z)}{\left(1-|z|^{2}\right)^{2}} \tag{2.8}
\end{equation*}
$$

which converges if and only if $p>1$ (see equations (3.2), (3.7), and (3.8) in the proof of [4, Theorem 3.1] replacing the parameter p with $p / 2$), which proves Theorem 2.2.

Once more, replacing $p / 2$ by $((\alpha+2) / 2) p$ in equations (3.2) and (3.7) in the proof of [4, Theorem 3.1] reveals that (2.7) is finite if and only if

$$
\begin{equation*}
\iint_{G}\left(\frac{r^{2} \sin (2 \theta)}{r \cos \theta}\right)^{((\alpha+2) / 2) p} \frac{r d r d \theta}{(r \cos \theta)^{2}}<\infty, \tag{2.9}
\end{equation*}
$$

where r is such that $z=1-r e(i \theta) \in G$ as in the proof of [4, Theorem 3.1]. Again, replacing $p / 2$ by $((\alpha+2) / 2) p$ in [4, equations (3.7) and (3.8)],

$$
\begin{equation*}
\iint_{G}\left(\frac{r^{2} \sin (2 \theta)}{r \cos \theta}\right)^{((\alpha+2) / 2) p} \frac{r d r d \theta}{(r \cos \theta)^{2}} \approx \int_{0}^{\pi / 2} \frac{d \theta}{(\cos \theta)^{(2-((\alpha+2) / 2) p)}} \tag{2.10}
\end{equation*}
$$

But then the right-hand side converges if and only if $p>2 /(\alpha+2)$, which certainly agrees with case (1), when $\alpha=0$. Thus, we proved the following theorem.

Theorem 2.4. For $-1<\alpha$, under the assumptions of Theorem 1.1, $C_{\phi} \in \mathscr{S}_{p}\left(A_{\alpha}^{2}\right)$ if and only if $p>2 /(\alpha+2)$.

In the following, we address the second question.
For $0<\beta<1$, let G_{β} be the crescent-shaped region bounded by

$$
\begin{equation*}
G=\left\{z: \operatorname{Im}(z)>0 \text { and }\left|z-\frac{1}{2}\right|=\frac{1}{2}\right\} \tag{2.11}
\end{equation*}
$$

and a circular arc in the upper half of D joining 0 to 1 , with the two arcs forming an angle of $\beta \pi$ at 0 and 1 (see [4, Figure 1.2]). Let ϕ_{β} be the Riemann map of D onto G_{β} with $\phi_{\beta}(1)=1$. To see if (when) $C_{\phi_{\beta}} \in \mathscr{S}_{p}\left(A_{\alpha}^{2}\right)$, we only need to look at equation (4.9) and the last line(s) (in all the three cases) of the proof of [4, Theorem 4.1] (and note here that we replace α by β and $p / 2$ by $2 /(\alpha+2)$), which means

$$
\begin{equation*}
C_{\phi_{\beta}} \in \mathscr{S}_{1}\left(A_{\alpha}^{2}\right) \Longleftrightarrow 2-\left(\frac{1}{\beta}-1\right)\left(\frac{\alpha+2}{2} p\right)<1 \tag{2.12}
\end{equation*}
$$

which converges if and only if $p>2 \beta /(1-\beta)(\alpha+2)$ and this conforms to Theorems 2.2 and 2.4 when $\beta=1 / 2$. Thus, we proved the following theorem.

THEOREM 2.5. (1) $C_{\phi_{\beta}} \notin \mathscr{S}_{2 \beta /(1-\beta)(\alpha+2)}\left(A_{\alpha}^{2}\right)$;
(2) $C_{\phi_{\beta}} \in \mathscr{S}_{p}\left(A_{\alpha}^{2}\right)$ for all $p>2 \beta /(1-\beta)(\alpha+2)$.

Remark 2.6. (1) Note that here β characterizes the geometry of $\phi_{\beta}(D)$.
(2) The same argument as in Zhu's construction of a compact composition operator that is not in any of the Schatten-p ideals (see [4, Section 5]) can be transferred to the Bergman space case with a slight modification. (Here, of course, we use the corresponding facts on A_{α}^{2} mentioned in Section 1.)

The modification is as follows.
Rewriting the basic steps of the construction, let $\theta_{n}=\pi /(n+1), z_{n}=e^{i \theta_{n}}, r_{n}=$ $(1 / 2) \sin \theta_{n}$, and $c_{n}=\left(1-r_{n}\right) z_{n}$, where $n=1,2, \ldots$

Define Ω_{n} to be the region bounded by the semicircle

$$
\begin{equation*}
\left\{z: \operatorname{Im}(z) \geq 0 \text { and }\left|z-\left|c_{n}\right|\right|=r_{n}\right\} \tag{2.13}
\end{equation*}
$$

and a circular arc that is inside D joining $1-2 r_{n}$ to 1 forming an angle of $((n+1) /$ $(n+2)) \pi$ (for the $\alpha=0$ case) and $(n+1)(\alpha+2) /(2+(n+1)(\alpha+2))$ (for the $\alpha>-1$ case). (This modification is made so as to apply Theorem 2.5.)

Let

$$
\begin{align*}
\Omega_{n}^{\prime} & =\left\{z e^{i \theta_{n}}: z \in \Omega_{n}\right\}, \tag{2.14}\\
\Omega & =\bigcup_{n=1^{\cdot}}^{\infty} \Omega_{n}^{\prime} . \tag{2.15}
\end{align*}
$$

The same argument (in the A_{α}^{2} setting) as in the proof of [4, Theorem 5] yields the following theorem.

Theorem 2.7. Suppose Ω is defined as in (2.15), then
(1) Ω is a simply connected domain contained in the upper half of D;
(2) any Riemann map ϕ that maps D onto Ω induces a compact composition operator C_{ϕ} that does not belong to any of the Schatten-p ideals $\mathscr{S}_{p}\left(A_{\alpha}^{2}\right), p>0$.

Acknowledgments. I would like to express my deep gratitude to my advisor Professor T. A. Metzger for introducing me to the subject and suggesting that the result of [4] extend to the (A_{α}^{2}) case. I also owe a lot to his insight, enthusiasm, and understanding. I also thank J. C. Sasmor for his helpful tips in document preparation.

References

[1] B. A. Lotto, A compact composition operator that is not Hilbert-Schmidt, Studies on Composition Operators (Laramie, Wyo, 1996), Contemp. Math., vol. 213, American Mathematical Society, Rhode Island, 1998, pp. 93-97.
[2] D. H. Luecking and K. H. Zhu, Composition operators belonging to the Schatten ideals, Amer. J. Math. 114 (1992), no. 5, 1127-1145.
[3] B. D. MacCluer and J. H. Shapiro, Angular derivatives and compact composition operators on the Hardy and Bergman spaces, Canad. J. Math. 38 (1986), no. 4, 878-906.
[4] Y. Zhu, Geometric properties of composition operators belonging to Schatten classes, Int. J. Math. Math. Sci. 26 (2001), no. 4, 239-248.

Abebaw Tadesse: Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA

E-mail address: abt4@pitt.edu

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

