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Simplest results presented here are the stability criteria of collocation methods for the
second-order Volterra integrodifferential equation (VIDE) by polynomial spline func-
tions. The polynomial spline collocation method is stable if all eigenvalues of a matrix are
in the unit disk and all eigenvalues with |λ| = 1 belong to a 1× 1 Jordan block. Also many
other conditions are derived depending upon the choice of collocation parameters used
in the solution procedure.

1. Introduction

In order to discuss the numerical stability, we consider the linear second-order Volterra
integrodifferential equation of the form

y(2)(t)= q(t) +
1∑
i=0

pi(t)y(i)(t) +
1∑
i=0

∫ t

0
ki(t,s)y(i)(s)ds, t ∈ I := [0,T], (1.1)

with

y(0)= y0, y(1)(0)= y1, (1.2)

where q : I → R, pi : I → R, and ki : D→ R(i= 0,1) (with D := {(t,s) : 0≤ s≤ t ≤ T}) are
given functions and are assumed to be (at least) continuous in the respective domains. For
more details of these equations, many other interesting methods for the approximated
solution and stability procedure are available in earlier literature [1, 2, 3, 4, 5, 6, 9, 10,
12, 13]. The above equation is usually known as basis test equation and is suggested by
Brunner and Lambert in [4]. Since then, it has been widely used for analyzing the stability
properties of various methods.

Second-order VIDEs of the above form (1.1) will be solved numerically using poly-
nomial spline spaces. In order to describe these approximating polynomial spline spaces,
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let
∏

N : 0= t0 < t1 < ··· < tN = T be the mesh for the interval I , and set

σn := [tn, tn+1
]
, hn := tn+1− tn, n= 0,1, . . . ,N − 1,

h=max
{
hn : 0≤ n≤N − 1

}
, (mesh diameter),

ZN := {tn : n= 1,2, . . . ,N − 1
}

, ZN = ZN ∪{T}.
(1.3)

Let πm+d be the set of (real) polynomials of degree not exceeding m+ d, where m≥ 1
and d ≥−1 are given integers. The solution to initial-value problem (1.1) will be approx-
imated by an element u in the polynomial spline space,

S(d)
m+d

(
ZN
)

:=
{
u := u(t)|t∈σn := un(t)∈ πm+d, n= 0,1, . . . ,N − 1,

u
( j)
n−1

(
tn
)= u

( j)
n
(
tn
)

for j = 0,1, . . . ,d, tn ∈ ZN

}
;

(1.4)

that is, by a polynomial spline function of degree m + d which possesses the knots ZN

and is d times continuously differentiable on I . If d =−1, then the elements of S(−1)
m−1(ZN )

may have jump discontinuities at the knots ZN . There are many other papers which had

treated such problem using S(0)
m (ZN ) and S(1)

m (ZN ) [3, 4, 6] polynomial spline spaces.

According to Miculá et al. [11], an element u∈ S(d)
m+d(ZN ) has the following form (for

all n= 0,1, . . . ,N − 1 and t ∈ σn):

u(t)= un(t)=
d∑

r=0

u(r)
n−1

(
tn
)

r!

(
t− tn

)r
+

m∑
r=1

an,r
(
t− tn

)d+r
, (1.5)

where

ur−1(0) :=
[
dr

dtr
u(t)

]
t=0
= y(r)(0), r = 0,1, . . . ,d. (1.6)

From (1.5), we see that the element u ∈ S(d)
m+d(ZN ) is well defined provided that the

coefficients {an,r}r=1,...,m for all n= 0,1, . . . ,N − 1 are known. In order to determine these
coefficients, we consider a set of collocation parameters {cj} j=1,...,m, where 0 < c1 < ··· <
cm ≤ 1, and define the set of collocation points as

X(N) :=
N−1⋃
n=0

Xn, with Xn := {tn, j := tn + cjhn, j = 1,2, . . . ,m
}
. (1.7)

The approximate solution u∈ S(d)
m+d(ZN ) will be determined by imposing the condition

that u satisfies the initial-value problem (1.1) on X(N) and the initial conditions, that is,

u(2)(t)= q(t) +
1∑
i=0

pi(t)u(i)(t) +
1∑
i=0

∫ t

0
ki(t,s)u(i)(s)ds, ∀t ∈ X(N), (1.8)

with

u(0)= y0, u(1)(0)= y1 (1.9)

with a uniform mesh sequence {∏N}, hn = h, for all n= 0,1, . . . ,N − 1.
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2. Numerical stability

In [7], Danciu studied the numerical stability of the collocation method for first-order
integrodifferential equations. He studied the behavior of the method as applied to the
initial-value problem integrodifferential test equation

y′(t)= q(t) +α0y(t) + ν

∫ t

0
y(s)ds, ν �= 0. (2.1)

Equation (2.1) has been suggested by Brunner and Lambert in 1974 (see [4]), since then
it has been extensively used as a basis for investigating the stability properties of several
other methods.

In order to discuss the numerical stability for second-order integrodifferential equa-
tions, we study the numerical stability of the collocation spline method when applied to
the initial-value problem integrodifferential test equation of the following form:

y′′(t)= q(t) +α0y(t) +α1y
′(t) + ν

∫ t

0
y(s)ds, ν �= 0, (2.2)

y(0)= y0, y′(0)= y1, (2.3)

where α1, α2, and ν are constants, and the given function g : I → R is sufficiently smooth.

For simplicity, we use a polynomial spline collocation method in the space S(d)
m+d(ZN ),

as an (m,d)-method (see [8]).

Definition 2.1. An (m,d)-method is said to be stable if all solutions {u(tn)} remain
bounded, as n→∞, h→ 0 while hn remains fixed.

From (1.5), we observe that the first d + 1 coefficients of the u ∈ S(d)
m+d(ZN ) are de-

termine by the smooth conditions, and then the collocation conditions can be used to
determine the last m coefficients. Thus, for convenience, we introduce the following no-
tations:

ηn := (ηn,r
)
r=0,...,d, with ηn,r := u(r)

n−1(tn)
r!

hr ;

βn := (βn,r
)
r=1,...,m, with βn,r := an,rh

d+r , n= 0,1, . . . ,N.
(2.4)

Using (2.4) in (1.5), for all t := tn + τh∈ σn, we have the following equation:

u(t)= un
(
tn + τh

)= d∑
r=0

ηn,rτ
r +

m∑
r=1

βn,rτ
d+r , ∀τ ∈ (0,1], n= 0,1, . . . ,N. (2.5)

By applying the collocation method to test (2.2) for the case d ≥ 2 and using (2.5) we
have the following collocation equation:

Vβn =Wηn +h2Rn, ∀n= 0,1, . . . ,N − 1, (2.6)
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where V is the m×m matrix, W is the m× (d+ 1) matrix, and Rn is the m-vector, whose
elements are given by

Vj,r :=
[

(d+ r)(d+ r− 1)−α0h
2c2

j −α1h(d+ r)cj − νh3

(d+ r + 1)
c3
j

]
cd+r−2
j ,

Wj,r :=




νh3cj if r = 0,

α0h2cj + ν
h3

2
c2
j if r = 1,

α0h2c2
j + 2α1hcj + ν

h3

3
c3
j if r = 2,[

α0h2c2
j +α1hrcj + ν

h3

r + 1
c3
j − r(r− 1)

]
cr−2
j if 3≤ r ≤ d,

Rn, j :=




q
(
t0, j
)− q

(
t0
)

if n= 0,

q
(
tn, j
)− q

(
tn−1,m

)
+u′′n−1

(
tn−1,m

)−u′′n−1

(
tn
)

+α0
[
un−1

(
tn
)−un−1

(
tn−1,m

)]
+α1

[
u′n−1

(
tn
)−u′n−1

(
tn−1,m

)]
+νh

∫ 1

cm
un−1

(
tn−1 + τh

)
dτ if n > 0.

(2.7)

By direct differentiation of (2.5) and using the smooth conditions of the approxima-

tion u ∈ S(d)
m+d(ZN ), we get a relationship between vector ηn+1 and vectors ηn and βn, as

follows:

ηn+1 = Aηn +Bβn, ∀n= 0,1, . . . ,N − 1, (2.8)

where A is the (d + 1)× (d + 1) upper triangular matrix and B is the (d + 1)×m matrix,
whose elements are given by

aj,r :=




0 if r < j,(
r

j

)
if r ≥ j,

bj,r :=
(
d+ r
j

)
. (2.9)

For h small enough, the matrix V is invertible since the determinant of V is a
Vandermonde-type determinant for h= 0. Hence from (2.6) and (2.8), we have

ηn+1 =Aηn +BV−1[Wηn +h2Rn
]

= (A+BV−1W
)
ηn +h2BV−1Rn.

(2.10)

Thus we have the following recurrence relation:

ηn+1 =Mηn +h2BV−1Rn, (2.11)

where

M := A+BV−1W. (2.12)
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Therefore, we have the following theorem which represents a stability criterion for the
present method. The proof of this theorem is quite similar to the proof given by Danciu
[7] for first-order VIDEs.

Theorem 2.2. An (m,d)-method is stable if and only if all eigenvalues of matrix M = A+
BV−1W are in the unit disk and all eigenvalues with |λ| = 1 belong to a 1× 1 Jordan block.

Remark 2.3. Note that the dimension of the matrix M is d+ 1. Moreover, if we denote by
M0 the matrix M with h= 0, and by λ(0) and λ the eigenvalues of M0 and M, respectively,

then it follows that the matrix M0 has λ(0)
1 = λ(0)

2 = λ(0)
3 = 1, for m≥ 1 and d ≥ 2.

3. Applications

In this section, we will investigate the following special cases.

(I) For the case d = 2, the approximation space is S(2)
m+2(ZN ). From Theorem 2.2 and

Remark 2.3, we have the following theorem.

Theorem 3.1. For every choice of the collocation parameters {cj} j=1,m, an (m,2)-method is
stable for all m≥ 1.

(II) For the case m= 1, this choice of m corresponds to a classical spline function, that

is, the approximate solution u∈ S(d)
1+d(ZN ). Using notations from Remark 2.3 (i.e., M0 is

the matrix M with h= 0, and λ(0) and λ are the respective eigenvalues of M0 and M), we
have

λ= λ(0) +O(h). (3.1)

If c1 ∈ (0,1] is the collocation parameter, then for all d ≥ 1, using the binomial expansion,
we find that for matrix M0 the trace is,

Tr
(
M0
)= d+ 2 +

1

cd−1
1

−
(

1 +
1
c1

)d−1

. (3.2)

As regard the stability of the spline collocation method, we have the following result.

Theorem 3.2. A (1,d)-method is stable if and only if one of the following conditions is true:
(i) d = 2 and c1 ∈ (0,1],

(ii) d = 3 and c1 = 1.

Proof. For the case d = 2, this theorem follows from Theorem 3.1. If d = 3, then the

fourth eigenvalue of M0 is λ(0)
4 = 1− (2/c1) ≤ −1 for c1 ∈ (0,1], and its absolute value

is 1, if and only if c1 = 1. If d ≥ 4, then setting p = d− 1 in (3.2), we have

Tr
(
M0
)= p+ 3 +

1

c
p
1

−
(

1 +
1
c1

)p

, (3.3)

so if d > 4 and c1 ∈ (0,1], then

∞ < Tr
(
M0
)
<−p =−(d− 1). (3.4)
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Since Tr(M0)= λ(0)
1 + λ(0)

2 + ···+ λ(0)
d+1 <−d+ 1, and λ(0)

1 = 1, it results that there exists an

eigenvalue λ(0) whose value is smaller than −1. If d = 4 then from (3.2), λ(0)
4 + λ(0)

5 ≤−4,

and therefore λ(0)
4 < −1 or λ(0)

5 < −1. Thus from Theorem 2.2 we have that, for d ≥ 4, a
(1,d)-method is unstable for any choice of the collocation parameter c1 ∈ (0,1]. �

(III) For m= 2, we can prove the following result but the proof is the same as in [7].

Theorem 3.3. Let 0 < c1 < c2 ≤ 1 be the collocation parameters, then
(i) a (2,2)-method is stable for every choice of the collocation parameters,

(ii) a (2,3)-method is stable if and only if c1 + c2 ≥ 3/2,
(iii) if c2 = 1, then a (2,d)-method is unstable for all d ≥ 4.

(IV) For the case d = 3, the approximation u ∈ S(3)
m+3(ZN ) and the dimension of the

matrix M0 is 4 and its first p + 1 eigenvalues are λ(0)
1 = λ(0)

2 = λ(0)
3 = 1. To compute the

fourth eigenvalue, we need the following results. But, first we introduce the following
notations:

Sk := Sk
(
c1, . . . ,cm

)= m∑
1≤i1<···<ik≤m

ci1ci2 ···cik , for 1≤ k ≤m,

S0 := S0(c1, . . . ,cm)= 1,

Sk, j := Sk
(
c1, . . . ,cj−1,cj+1, . . . ,cm

)
, for 1≤ k ≤m− 1, 1≤ j ≤m.

(3.5)

Lemma 3.4. Let 0 < c1 < c2 < ··· < cm ≤ 1 be the collocation parameters, then

∣∣∣∣∣∣∣∣∣∣∣∣

1 c1 c2
1 ··· ci−1

1 ci+1
1 ··· cm1

1 c2 c2
2 ··· ci−1

2 ci+1
2 ··· cm2

...
...

...
...

...
...

...
...

1 cm c2
m ··· ci−1

m ci+1
m ··· cmm

∣∣∣∣∣∣∣∣∣∣∣∣
= Sm−i

m∏
1≤k<j≤m

(
cj − ck

)
. (3.6)

Proof. We will prove the lemma by induction on the dimension of the matrix, starting
with 2× 2 matrices. For the 2× 2 matrices, the result is clearly true. For m×m matrices
(m> 2), we define

f (x) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 c1 c2
1 ··· ci−1

1 ci+1
1 ··· cm1

1 c2 c2
2 ··· ci−1

2 ci+1
2 ··· cm2

...
...

...
...

...
...

...
...

1 cm−1 c2
m−1 ··· ci−1

m−1 ci+1
m−1 ··· cmm−1

1 x x2 ··· xi−1 xi+1 ··· xm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.7)
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Note that ∣∣∣∣∣∣∣∣∣∣∣∣

1 c1 c2
1 ··· ci−1

1 ci+1
1 ··· cm1

1 c2 c2
2 ··· ci−1

2 ci+1
2 ··· cm2

...
...

...
...

...
...

...
...

1 cm c2
m ··· ci−1

m ci+1
m ··· cmm

∣∣∣∣∣∣∣∣∣∣∣∣
= f

(
cm
)
. (3.8)

Now, since f (c1)= f (c2)= ··· = f (cm−1)= 0, we have

f (x)= a(x− b)
m−1∏
i=1

(
x− ci

)
, (3.9)

where a, b are constants to be determined. By the induction hypothesis, we obtain

a= Sm−1−i
(
c1, . . . ,cm−1

)m−1∏
k<j

(
cj − ck

)
. (3.10)

Moreover, from (3.9),

f (0)= a(−1)mc1c2 ···cm−1b. (3.11)

On the other hand, from the definition of f and by the induction hypothesis, we have

f (0)= (−1)m+1

∣∣∣∣∣∣∣∣∣∣∣∣

c1 c2
1 ··· ci−1

1 ci+1
1 ··· cm1

c2 c2
2 ··· ci−1

2 ci+1
2 ··· cm2

...
...

...
...

...
...

...
...

cm−1 c2
m−1 ··· ci−1

m−1 ci+1
m−1 ··· cmm−1

∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)m+1c1c2 ···cm−1Sm−i

(
c1, . . . ,cm−1

)m−1∏
k<j

(
cj − ck

)
.

(3.12)

Thus, from (3.11) and (3.12), we have

−ab = Sm−i
(
c1, . . . ,cm−1

)m−1∏
k<j

(
cj − ck

)
, (3.13)

and so

f
(
cm
)= a

(
cm− b

)m−1∏
i=1

(
cm− ci

)

=
[
cmSm−1−i

(
c1, . . . ,cm−1

)m−1∏
k<j

(
cj − ck

)

+ Sm−i
(
c1, . . . ,cm−1

)m−1∏
k<j

(
cj − ck

)]m−1∏
i=1

(
cm− ci

)
.

(3.14)
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However, since

cmSm−1−i
(
c1, . . . ,cm−1

)
+ Sm−i

(
c1, . . . ,cm−1

)= Sm−i
(
c1, . . . ,cm

)= Sm−i,
m−1∏
k<j

(
cj − ck

)m−1∏
i=1

(
cm− ci

)= m∏
k<j

(
cj − ck

)
,

(3.15)

we have

f
(
cm
)= Sm−i

m∏
k<j

(
cj − ck

)
, (3.16)

which proves the lemma. �

Remark 3.5. Note that in Lemma 3.4, if i=m, then we have the Vandermonde determi-
nant.

Corollary 3.6. Let V0 be the matrix V with h= 0, d = 3, that is, V0 is the m×m matrix
whose elements are

(
V0
)
j,r := ((r + 3)(r + 2)

)
Cr+1

j . (3.17)

Then, V−1
0 is the matrix whose elements are

(
V−1

0

)
r, j =

1
det
(
V0
) (−1)r+ jS2

m−1, jSm−r, j

∏
l<k,(l,k �= j)

(
ck − cl

) m∏
k=1,(k �=r)

(k+ 2)(k+ 3), (3.18)

where

det
(
V0
)=

[ m∏
k=1

(k+ 2)(k+ 3)
∏
l<k

(
ck − cl

)]
S2
m. (3.19)

Proof. From Lemma 3.4, we have

det
(
V0
)=

[ m∏
k=1

(k+ 2)(k+ 3)
∏
l<k

(
ck − cl

)]
S2
m. (3.20)

Now

V−1
0 = Adj

(
V0
)

det
(
V0
) , (3.21)



Edris Rawashdeh et al. 1057

where Adj(V0) is the adjoint matrix of V0, however,

Adj
(
V0
)
r, j = (−1)r+ jS2

m−1, j

m∏
k=1,(k �=r)

(k+ 2)(k+ 3)

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 c1 c2
1 ··· cr−2

1 cr1 ··· cm−1
1

1 c2 c2
2 ··· cr−2

2 cr2 ··· cm−1
2

...
...

...
...

...
...

...
...

1 cj−1 c2
j−1 ··· cr−2

j−1 crj−1 ··· cm−1
j−1

1 cj+1 c2
j+1 ··· cr−2

j+1 crj+1 ··· cm−1
j+1

...
...

...
...

...
...

...
...

1 cm c2
m ··· cr−2

m crm ··· cm−1
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(3.22)

Again, by Lemma 3.4 and using relations

Sm−1−(r−1)
(
c1, . . . ,cj−1,cj+1, . . . ,cm

)= Sm−r
(
c1, . . . ,cj−1,cj+1, . . . ,cm

)= Sm−r, j , (3.23)

we have

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 c1 c2
1 ··· cr−2

1 cr1 ··· cm−1
1

1 c2 c2
2 ··· cr−2

2 cr2 ··· cm−1
2

...
...

...
...

...
...

...
...

1 cj−1 c2
j−1 ··· cr−2

j−1 crj−1 ··· cm−1
j−1

1 cj+1 c2
j+1 ··· cr−2

j+1 crj+1 ··· cm−1
j+1

...
...

...
...

...
...

...
...

1 cm c2
m ··· cr−2

m crm ··· cm−1
m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= Sm−r, j

m∏
l<k,(l,k �= j)

(
ck − cl

)
. (3.24)

Thus,

(
V−1

0

)
r, j =

1
det
(
V0
) (−1)r+ jS2

m−1, jSm−r, j

∏
l<k,(l,k �= j)

(
ck − cl

) m∏
k=1,(k �=r)

(k+ 2)(k+ 3), (3.25)

which completes the proof of the corollary. �

Now, we can derive a formula for computing the p+ 2-eigenvalue of the matrix M0.

Theorem 3.7. For the case d = 3 and m≥ 1, the p + 2-eigenvalue of M0 can be computed
by using the following relation:

λ(0)
4 = Sm− 2Sm−1 + 3Sm−2 + ···+ (−1)m−1mS1 + (−1)m(m+ 1)

Sm
. (3.26)
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Proof. Let V0 and W0 be the matrices V and W , respectively, with h= 0, then for d = 3,
W0 is an m× 4 matrix whose elements are given by

(
W0
)
j,r :=


0 if r = 0,1,2,

−6cj if r = 3.
(3.27)

Now, the fourth eigenvalue of M0 = A+BV−1
0 W0 is

λ(0)
4 = 1 +

m∑
r=1

(B)4,r
(
V−1

0 W0
)
r,4. (3.28)

From (2.8), the entries of the last row of matrix B are

(B)4,r =
(

3 + r
3

)
. (3.29)

Moreover, from (3.27) and Corollary 3.6, we have

(
V−1

0 W0
)
r,4 =

−6
det
(
V0
) m∑

j=1

[
(−1)(r+ j)S2

m−1, jSm−r, j c j

×
∏

l<k,(l,k �= j)

(
ck − cl

) m∏
k=1,(k �=r)

(k+ 2)(k+ 3)

]
.

(3.30)

Therefore,

λ(0)
4 = 1 +

6
det
(
V0
) m∑
r=1

m∑
j=1

[(
3 + r

3

)
(−1)(r+ j+1)S2

m−1, jSm−r, j c j

×
∏

l<k,(l,k �= j)

(
ck − cl

) m∏
k=1,(k �=r)

(k+ 2)(k+ 3)

]
.

(3.31)

By using relations

cjS
2
m−1, j = SmSm−1, j ,

6

(
3 + r

3

) m∏
k=1,(k �=r)

(k+ 2)(k+ 3)= (r + 1)
m∏
k=1

(k+ 2)(k+ 3),
(3.32)

and det(V0), the above expression can be simplified as follows:

λ(0)
4 = 1 +

∑m
r=1(−1)r(r + 1)

∑m
j=1(−1)( j+1)Sm−1, j Sm−r, j

∏
l<k,(l,k �= j)

(
ck − cl

)
Sm
∏

l<k

(
ck − cl

) . (3.33)
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However, from Lemma 3.4, we have

m∑
j=1

(−1)( j+1)Sm−1, jSm−r, j

∏
l<k,(l,k �= j)

(
ck − cl

)=

∣∣∣∣∣∣∣∣∣∣∣∣

1 c1 c2
1 ··· cr−1

1 cr+1
1 ··· cm1

1 c2 c2
2 ··· cr−1

2 cr+1
2 ··· cm2

...
...

...
...

...
...

...
...

1 cm c2
m ··· cr−1

m cr+1
m ··· cmm

∣∣∣∣∣∣∣∣∣∣∣∣
= Sm−r

m∏
l<k

(
ck − cl

)
.

(3.34)

Hence,

λ(0)
p+2 = 1 +

∑m
r=1(−1)r(r + 1)Sm−r

Sm

=
∑m

r=0(−1)r(r + 1)Sm−r
Sm

= Sm− 2Sm−1 + 3Sm−2 + ···+ (−1)m−1mS1 + (−1)m(m+ 1)
Sm

,

(3.35)

which concludes the proof of Theorem 3.7. �

Remark 3.8. Theorem 3.7 proves the conjecture asserted by Danciu [7] for first-order
integrodifferential equations (p = 1,d = 2).

As an application to Theorem 3.7, we can prove the following results. The proofs are
quite similar to [7] for the first-order Volterra integrodifferential equation.

Corollary 3.9. An (m,3)-method is stable if and only if

∣∣∣∣∣
[
d/dt

(
t ·Rm(t)

)]
t=1

Rm(0)

∣∣∣∣∣≤ 1, (3.36)

where Rm(t) is the polynomial of degree m whose zeroes are the collocation parameters
{cj} j=1,...,m.

Regarding the stability of local superconvergent solution u ∈ S(3)
m+4(Zn), we have the

following corollary.

Corollary 3.10. (i) If the collocation parameters {cj} j=1,...,m are uniformly distributed in
(0,1] (i.e., cj = j/m, for all j = 1,2, . . . ,m), then (m,3)-method is stable for m≥ 1.

(ii) If the collocation parameters {cj} j=1,...,m are the Radau II points in the interval (0,1],
then (m,3)-method is unstable for m≥ 2.

(iii) If the collocation parameters {cj} j=1,...,m are the Gauss points in the interval (0,1],
then (m,3)-method is unstable for m≥ 2.

(iv) If the first m− 1 collocation parameters {cj} j=1,...,m are the Gauss points in the in-
terval (0,1) and the last collocation parameter is cm = 1, then (m,3)-method is stable for
m≥ 2.
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4. Stability of S(0)
m (Zn)

In this section, we will investigate the stability when d = 0.

From (2.5), the restriction of u∈ S(0)
m (Zn) to the subinterval σn is given by

u(t)= un
(
tn + τh

)= un−1
(
tn
)

+
m∑
r=1

βn,rτ
r , for τ ∈ (0,1], n= 0,1, . . . ,N − 1. (4.1)

If we denote by un+1 and by u′′n+1 the vectors with m elements

un+1 := (un(tn + cjh
))T

j=1,...m, u′′n+1 := (u′′n (tn + cjh
))T

j=1,...m, (4.2)

then from (4.1), we obtain

un+1 = (1,1, . . . ,1)Tun−1
(
tn
)

+Eβn, for n= 0,1, . . . ,N − 1, (4.3)

u′′n+1 = h−2E′′βn, for n= 0,1, . . . ,N − 1. (4.4)

Here the matrices E and E′′ are m×m matrices defined by E := (crj) j,r=1,...,m and E′′ :=
(r(r− 1)cr−2

j ) j,r=1,...,m.
In this case, the collocation equation becomes

Vβn = h2W ′(un−1
(
tn
)
,u′n−1

(
tn
)
,u′′n−1

(
tn
))T

+h2Rn, (4.5)

for n= 0,1 . . . ,N − 1, where W ′ is the m× 3 matrix whose elements are

(W ′) j,r :=




νhcj if r = 1,

−α1 if r = 2,

1 if r = 3,

(4.6)

and the matrix V and the vector Rn are defined in (2.6) when d = 0.
Since V = E′′ +O(h), the elimination of βn between (4.4) and (4.5) yields

u′′n (tn, j)=
(
1 +O(h)

)
u′′n−1

(
tn
)

+
(
1 +O(h)

)
u′n−1

(
tn
)

+O(h)un−1
(
tn
)

+
(
1 +O(h)

)
Rn, j ,

for j = 1,2, . . . ,m (n= 0,1, . . . ,N − 1).

(4.7)

For τ ∈ [0,1], the second derivatives of the approximation u∈ S(0)
m (Zn) may be written

in the form

u′′n (t+ τh)=
m∑
j=1

Lj(τ)u′′n
(
tn, j
)
, for n= 0,1, . . . ,N − 1, (4.8)

where

Lj(τ) :=
m∏

j=1,i �= j

(
τ − ci

)
(
cj − ci

) , for j = 0,1, . . . ,m, (4.9)
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are the Lagrange fundamental polynomials associated with the collocation parameters
{cj} j=1,m. Now, replacing u′′(tn, j) in (4.8) with its values given by (4.7), for n = 0,1, . . . ,
N − 1, we obtain

u′′n
(
tn+1

)= (1 +O(h)
)(

u′′n−1

(
tn
)

+u′n−1

(
tn
)

+
m∑
j=1

Lj(1)Rn, j

)

+O(h)un−1
(
tn
)
, for j = 1,2, . . . ,m (n= 0,1, . . . ,N − 1).

(4.10)

By integrating relation (4.8), for τ ∈ [0,1], and using relation (4.7), we obtain

u′n
(
tn+1

)= h
(
1 +O(h)

)
u′′n−1

(
tn
)

+
(
1 +h

(
1 +O(h)

))
u′n−1

(
tn
)

+hO(h)un−1
(
tn
)

+h
(
1 +O(h)

)∫ 1

0

( m∑
j=1

Lj(τ)Rn, j

)
dτ,

for j = 1,2, . . . ,m (n= 0,1, . . . ,N − 1).

(4.11)

Integrating (4.8) one more time and using relation (4.7) yields

un
(
tn+1

)= h2(1 +O(h)
)(
u′′n−1

(
tn
)

+u′n−1

(
tn
))

+
(
1 +h2O(h)

)
un−1

(
tn
)

+h2(1 +O(h)
)∫ 1

0

∫ s

0

( m∑
j=1

Lj(τ)Rn, j

)
dτ ds,

for j = 1,2, . . . ,m (n= 0,1, . . . ,N − 1).

(4.12)

Equations (4.7), (4.11), and (4.12) together form a system which may be written in the
form



un
(
tn+1

)
u′n
(
tn+1

)
u′′n
(
tn+1

)

=M′



un−1

(
tn
)

u′n−1

(
tn
)

u′′n−1

(
tn
)

+

(
1 +O(h)

)
R′n for n= 0,1, . . . ,N − 1, (4.13)

where

M′ :=


(
1 +h2O(h)

)
h2
(
1 +O(h)

)
h2
(
1 +O(h)

)
hO(h)

(
1 +h

(
1 +O(h)

))
h
(
1 +O(h)

)
O(h)

(
1 +O(h)

) (
1 +O(h)

)

 ,

R′n :=




h2
∫ 1

0

∫ s

0

( m∑
j=1

Lj(τ)Rn, j

)
dτ ds

h
∫ 1

0

( m∑
j=1

Lj(τ)Rn, j

)
dτ

m∑
j=1

Lj(1)Rn, j



.

(4.14)

Equation (4.13) has the same form as (2.11). Since h = 0 implies that the matrix M′

has eigenvalues λ′1 = λ′2 = λ′3 = 1, we can prove the following theorem.
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Theorem 4.1. For every choice of the collocation parameters {cj} j=1,...,m, an (m,0)-method
is stable for all m≥ 1.

5. Stability of S(1)
m+1(Zn)

In this section, we will investigate the stability when d = 1.

From (2.5), the restriction of u∈ S(1)
m+1(Zn) to the subinterval σn is given by

u(t)= un(t+ τh)=un−1
(
tn
)

+u′n−1

(
tn
)
τ +

m∑
r=1

βn,rτ
r+1,

for τ ∈ (0,1], n= 0,1, . . . ,N − 1.

(5.1)

In this case, the collocation equation becomes

Vβn = h2W ′′(un−1
(
tn
)
,u′n−1

(
tn
)
,u′′n−1

(
tn
))T

+h2Rn, (5.2)

for n= 0,1 . . . ,N − 1, where W ′′ is the m× 3 matrix whose elements are

(W ′′) j,r :=




νhcj if r = 1,

cjh
(
α0 +

νhcj
2

)
if r = 2,

1 if r = 3,

(5.3)

and the matrix V and the vector Rn are defined in (2.6) when d = 1.
Using the same procedure as in Section 4, we can derive the system



un
(
tn+1

)
u′n
(
tn+1

)
u′′n
(
tn+1

)

=M′′



un−1

(
tn
)

u′n−1

(
tn
)

u′′n−1

(
tn
)

+

(
1 +O(h)

)
R′′n, for n= 0,1, . . . ,N − 1, (5.4)

where

M′′ :=



1 +h2O(h) h2O(h) h2
(
1 +O(h)

)
hO(h) 1 +hO(h) h

(
1 +O(h)

)
O(h) O(h) 1 +O(h)


 ,

R′′n :=




h2
∫ 1

0

∫ s

0

( m∑
j=1

Lj(τ)Rn, j

)
dτ ds

h
∫ 1

0

( m∑
j=1

Lj(τ)Rn, j

)
dτ

m∑
j=1

Lj(1)Rn, j



.

(5.5)

Equation (5.4) has the same form as (2.11). Since h = 0 implies that the matrix M′′

has eigenvalues λ′1 = λ′2 = λ′3 = 1, we can prove the following theorem.
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Theorem 5.1. For every choice of the collocation parameters {cj} j=1,...,m, an (m,1)-method
is stable for all m≥ 1.

6. Numerical examples

The (3,d)-method is tested using the following three examples in the interval [0,1] with
step size h= 0.05. The following notations will be used in the presentation.

e1 := ∣∣y(t1)−u
(
t1
)∣∣, eN/2 := ∣∣y(0.5)−u(0.5)

∣∣, eN := ∣∣y(1)−u(1)
∣∣, (6.1)

where u∈ Sd3+d(Zn) is the approximate solution.

Example 6.1. Consider the following integrodifferential equation of second order:

y′′(t)= 1 +
1
2
y(t) +

1
2

∫ t

0
y(s)ds, y(0)= 2, y′(0)= 2, (6.2)

where y(t)= 2et is the exact solution.

Example 6.2. Consider the following integrodifferential equation of second order:

y′′(t)= q(t)− t2

16
y′(t) +

∫ t

0
t2sy′(s)ds, y(0)= 1, y′(0)= 4, (6.3)

where q(t) is chosen so that y(t)= sin4t is the exact solution.

Example 6.3. Consider the following integrodifferential equation of second order:

y′′(t)= q(t) + p1(t)y(t) + p2(t)y′(t) +
∫ t

0
y(s)ds

+
∫ t

0
ts2y′(s)ds, y(0)= 2, y′(0)= 0,

(6.4)

with

p1(t)=−t3 + 2t− 1, p2(t)= 1− 2t2, (6.5)

where q(t) is chosen so that y(t)= 1 + cos t is the exact solution.

(a) If the collocation parameters are uniformly distributed, that is, c1 = 1/3, c2 = 2/3,
and c3 = 1, then we have Tables 6.1, 6.2, and 6.3 corresponding to Examples 6.1,
6.2, and 6.3, respectively.

(b) If the collocation parameters are the Radau II points, that is, c1 = (4−√6)/10,
c2 = (4 +

√
6)/10, and c3 = 1, then we have Tables 6.4, 6.5, and 6.6 corresponding

to Examples 6.1, 6.2, and 6.3, respectively.
(c) If the collocation parameters are the Gauss points, that is, c1 = (5−√15)/10, c2 =

1/2, and c3 = (5 +
√

15)/10, then we have Tables 6.7, 6.8, and 6.9 corresponding
to Examples 6.1, 6.2, and 6.3, respectively.

(d) If the first two collocation parameters are the Gauss points, that is, c1 = (3−√
3)/6, c2 = (3 +

√
3)/6, and c3 = 1, then we have Tables 6.10, 6.11, and 6.12 cor-

responding to Examples 6.1, 6.2, and 6.3, respectively.
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Table 6.1. Approximate error for Example 6.1.

d e1 eN/2 eN
2 0 0 1.00× 10−7

3 0 1.00× 10−9 3.00× 10−9

4 0 2.40× 1010 1.46× 1038

Table 6.2. Approximate error for Example 6.2.

d e1 eN/2 eN
2 1.3× 10−9 3.32× 10−4 2.10× 10−3

3 3.00× 10−10 3.32× 10−4 2.11× 10−3

4 3.00× 10−10 4.20× 1013 2.56× 1041

Table 6.3. Approximate error for Example 6.3.

d e1 eN/2 eN
2 0 8.36× 10−6 1.04× 10−3

3 1.00× 10−10 8.35× 10−6 1.04× 10−3

4 0 2.02× 1012 1.24× 1040

Table 6.4. Approximate error for Example 6.1.

d e1 eN/2 eN
2 0 0 7.00× 10−9

3 0 7.35× 10−4 6.23× 108

4 0 8.02× 1023 7.81× 1065

Table 6.5. Approximate error for Example 6.2.

d e1 eN/2 eN
2 1.40× 10−9 3.32× 10−4 2.1× 10−3

3 2.00× 10−10 4.52× 10−2 3.87× 1010

4 8.00× 10−10 5.61× 1027 5.48× 1069

Table 6.6. Approximate error for Example 6.3.

d e1 eN/2 eN
2 0 8.36× 10−6 1.04× 10−3

3 1.00× 10−11 8.55× 10−3 7.34× 109

4 3.00× 10−10 2.34× 1027 2.28× 1069

From these numerical examples, we observe that a (3,d)-method is stable for d = 2 and
it is unstable for d = 4. In the case d = 3, this method is stable if the collocation parame-
ters are uniformly distributed (i.e., cj := j/3, for j = 1,2,3) as in case a, or c1 = (3−√3)/6,
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Table 6.7. Approximate error for Example 6.1.

d e1 eN/2 eN
2 1.55× 10−6 2.55× 10−3 2.46× 10−2

3 9.30× 10−6 7.84× 1020 1.80× 1056

4 1.01× 10−4 5.42× 1052 5.03× 10116

Table 6.8. Approximate error for Example 6.2.

d e1 eN/2 eN
2 1.6× 10−9 3.59× 10−4 1.00× 10−4

3 1.10× 10−9 4.19× 1017 3.78× 1053

4 9.40× 10−9 4.80× 1048 4.47× 10112

Table 6.9. Approximate error for Example 6.3.

d e1 eN/2 eN
2 0 4.83× 10−3 3.65× 10−2

3 0 3.40× 1023 1.44× 1059

4 2.00× 10−4 9.96× 1052 9.40× 10116

Table 6.10. Approximate error for Example 6.1.

d e1 eN/2 eN
2 1.00× 10−9 4.00× 10−9 1.20× 10−8

3 0 0 7.00× 10−9

4 0 4.45× 1013 5.12× 1043

Table 6.11. Approximate error for Example 6.2.

d e1 eN/2 eN
2 1.10× 10−9 3.32× 10−4 2.11× 10−3

3 6.00× 10−10 3.32× 10−4 2.11× 10−3

4 3.00× 10−10 5.43× 1016 6.26× 1046

Table 6.12. Approximate error for Example 6.3.

d e1 eN/2 eN
2 0 8.36× 10−6 1.04× 10−3

3 1.00× 10−10 8.36× 10−6 1.04× 10−3

4 1.00× 10−10 3.06× 1015 3.54× 1045

c2 = (3 +
√

3)/6, and c3 = 1 as in case (d). These examples illustrate the conclusions of
Theorem 5.1.
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