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Starting from the power series expansions of (sin−1 x)q, for 1 ≤ q ≤ 4, formulae are ob-
tained for the sum of several infinite series. Some of these evaluations involve ζ(3).

1. Introduction

In [10], Choe deduced the formula

∞∑
n=1

1
n2
= π2

6
(1.1)

from the power series expansion of sin−1(x) (see also [1, 16]). By applying a general-
ization of the procedure used by Choe to the power series expansions of (sin−1 x)q for
1 ≤ q ≤ 4, we obtain explicit formulae for the sum of several infinite series, see (2.1),
(2.2), (2.3), (2.4), (2.5), and (2.6). For other applications based on the procedure used by
Choe, see [11, 12, 17].

2. Main results

Let m denote an integer. For m≥ 0, we have the following theorems.

Theorem 2.1.

∞∑
k=0

(
2k
k

)
(2k+ 1)(2k+ 2m+ 1)

(
2k+2m
k+m

) = 2−4m




m∑
r=1

r≡1( mod 2)

(
2m
m−r

)
r2

+

(
2m
m

)
π2

8


 . (2.1)

Theorem 2.2.

∞∑
k=1

(
2k+2m
k+m

)
k2
(

2k
k

) = m∑
r=1

2
(

2m
m−r

)
r2

+

(
2m
m

)
π2

6
. (2.2)
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Theorem 2.3.

∞∑
k=1

(
2k
k

)
(2k+ 1)(2k+ 2m+ 1)

(
2k+2m
k+m

) k∑
j=1

1
(2 j− 1)2

= 2−4m−1


−

m∑
r=1

r≡1( mod 2)

(
2m
m−r

)
2r4

+π2
m∑
r=1

(
2m
m−r

)
8r2

+

(
2m
m

)
π4

192


 .

(2.3)

Theorem 2.4.

∞∑
k=1

(
2k+2m+2
k+m+1

)
(k+ 1)(2k+ 1)

(
2k
k

) k∑
j=1

1
j2
=−4

m∑
r=1

(
2m
m−r

)
r4

+
2π2

3

m∑
r=1

(
2m
m−r

)
r2

+

(
2m
m

)
π4

60
. (2.4)

In addition, we have the following theorems.

Theorem 2.5.

∞∑
k=1

1
k(2k+ 1)

k∑
j=1

1
(2 j− 1)2

= π2

4
log2− 7

8
ζ(3),

∞∑
k=1

1
(k+ 1)(2k+ 1)

k∑
j=1

1
j2
= π2

3
log2− 3

2
ζ(3).

(2.5)

Theorem 2.6.

∞∑
k=1

k

(k+ 1)(2k+ 1)(2k− 1)

k∑
j=1

1
j2
=−π2

36
+

2
3

log2 +
π2

9
log2− 1

2
ζ(3). (2.6)

In (2.5) and (2.6), ζ represents the Riemann zeta function.
The following result in [14] (m≥ 0) should be compared with (2.1) :

∞∑
k=0

(
2k
k

)
(2k+ 2m+ 1)(2k+ 4m+ 1)

(
2k+4m
k+2m

) = π2

28m+3

(
2m
m

)2

. (2.7)

Also, the series appearing above in (2.3), (2.4), (2.5), and (2.6) bear some resemblance
to Euler sums (see, e.g., [3, 4, 5, 9]). A very broad generalization which generalizes both
Euler sums and polylogarithms is studied in [6]. For other interesting evaluations of series
involving binomial coefficients, see, for example, [7, 8, 15, 18].
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3. Proofs of Theorems 2.1, 2.2, 2.3, and 2.4

The power series expansions of (sin−1 x)q for 1 ≤ q ≤ 4 (valid for |x| ≤ 1) are given by
(see [10], [2, pages 262-263])

sin−1 x =
∞∑
k=0

(
2k
k

)
22k

x2k+1

2k+ 1
,

(
sin−1 x

)2 =
∞∑
k=1

22k−1(
2k
k

) x2k

k2
,

(
sin−1 x

)3 = 6
∞∑
k=1

(
2k
k

)
22k


 k∑

j=1

1
(2 j− 1)2


 x2k+1

2k+ 1
,

(
sin−1 x

)4 = 3
∞∑
k=1

22k(
2k
k

)

 k∑

j=1

1
j2


 x2k+2

(k+ 1)(2k+ 1)
.

(3.1)

Multiplying each of (3.1) by x2m, where m is an integer, putting x = sinθ and integrating
with respect to θ from θ = 0 to θ = π/2, and using the well-known results (valid for
nonnegative integers p)

∫ π/2

0
sin2p+1 θdθ = 22p

(2p+ 1)
(

2p
p

) ,

∫ π/2

0
sin2p θdθ =

(
2p
p

)
22p

π

2
,

(3.2)

we obtain

∫ π/2

0
θ sin2mθdθ = 22m

∞∑
k=0

(
2k
k

)
(2k+ 1)(2k+ 2m+ 1)

(
2k+2m
k+m

) , m≥ 0, (3.3)

∫ π/2

0
θ2 sin2mθdθ = π

22m+2

∞∑
k=1

(
2k+2m
k+m

)
k2
(

2k
k

) , m≥−1, (3.4)

∫ π/2

0
θ3 sin2mθdθ = 3

(
22m+1) ∞∑

k=1

(
2k
k

)
(2k+ 1)(2k+ 2m+ 1)

(
2k+2m
k+m

) k∑
j=1

1
(2 j− 1)2

, m≥−1,

(3.5)

∫ π/2

0
θ4 sin2mθdθ = 3π

22m+3

∞∑
k=1

(
2k+2m+2
k+m+1

)
(k+ 1)(2k+ 1)

(
2k
k

) k∑
j=1

1
j2

, m≥−2. (3.6)
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For m ≥ 0, we evaluate the integrals on the left of (3.3), (3.4), (3.5), and (3.6) using the
following formula valid for a nonnegative integer m (see [13, page 31]):

sin2mθ = 2−2m



m−1∑
j=0

(−1)m+ j2

(
2m
j

)
cos

(
2(m− j)θ

)
+

(
2m
m

)
 , (3.7)

and the following easily checked formulae (valid for positive integers l):

∫ π/2

0
θ cos(2lθ)dθ = (−1)l − 1

4l2
,

∫ π/2

0
θ2 cos(2lθ)dθ = (−1)lπ

4l2
,

∫ π/2

0
θ3 cos(2lθ)dθ = 3

(
(−1)lπ2

16l2
+

1− (−1)l

8l4

)
,

∫ π/2

0
θ4 cos(2lθ)dθ = (−1)lπ

(
π2

8l2
− 3

4l4

)
.

(3.8)

After some simplification, we obtain (2.1), (2.2), (2.3), and (2.4).

4. Special cases of Theorems 2.1, 2.2, 2.3, and 2.4

We record the special cases corresponding to 0≤m≤ 2.
Putting m= 0, 1, 2 in (2.1), we get

∞∑
k=0

1
(2k+ 1)2

= π2

8
,

∞∑
k=0

k+ 1
(2k+ 1)2(2k+ 3)

= 1
8

+
π2

32
,

∞∑
k=0

(
2k
k

)
(2k+ 1)(2k+ 5)

(
2k+4
k+2

) = 1
64

+
3π2

1024
.

(4.1)

Putting m= 0,1,2 in (2.2), we get

∞∑
k=1

1
k2
= π2

6
,

∞∑
k=1

(
2k+2
k+1

)
k2
(

2k
k

) = 2 +
π2

3
,

∞∑
k=1

(
2k+4
k+2

)
k2
(

2k
k

) = 17
2

+π2.

(4.2)

The first results of (4.1) and (4.2) are of course well-known classical results.
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Putting m= 0,1,2 in (2.3), we get

∞∑
k=1

1
(2k+ 1)2

k∑
j=1

1
(2 j− 1)2

= π4

384
,

∞∑
k=1

(
2k
k

)
(2k+ 1)(2k+ 3)

(
2k+2
k+1

) k∑
j=1

1
(2 j− 1)2

= −1
64

+
π2

256
+

π4

3072
,

∞∑
k=1

(
2k
k

)
(2k+ 1)(2k+ 5)

(
2k+4
k+2

) k∑
j=1

1
(2 j− 1)2

= −1
256

+
17π2

16384
+

π4

16384
.

(4.3)

Putting m= 0,1,2 in (2.4) gives

∞∑
k=1

1
(k+ 1)2

k∑
j=1

1
j2
= π4

120
,

∞∑
k=1

(
2k+4
k+2

)
(k+ 1)(2k+ 1)

(
2k
k

) k∑
j=1

1
j2
=−4 +

2π2

3
+
π4

30
,

∞∑
k=1

(
2k+6
k+3

)
(k+ 1)(2k+ 1)

(
2k
k

) k∑
j=1

1
j2
=−65

4
+

17π2

6
+
π4

10
.

(4.4)

We note that the first series evaluated in (4.4) is an Euler sum and the result is classical
and was known to Euler (see, e.g., [5]).

5. Proof of Theorem 2.5

We consider the case m=−1 of (3.5), (3.6) (the case m=−1 of (3.4) gives a trivial result).
We need the following result valid for a positive integer n and |x| < 2π (see [2, page 260]):

∫ x

0

un

2
cot

(
u

2

)
du= cos

(
nπ

2

)
n!ζ(n+ 1)−

n∑
j=0

(−1) j( j+1)/2 Γ(n+ 1)
Γ(n+ 1− j)

xn− j Cl j+1(x),

(5.1)

where

Cl2n(x)=
∞∑
k=1

sin(kx)
k2n

,

Cl2n+1(x)=
∞∑
k=1

cos(kx)
k2n+1

,

(5.2)
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and Γ and ζ represent the Gamma function and the Riemann zeta function respectively.
We note that

Cl2n(π)= 0,

Cl2n+1(π)=
(

1
22n

− 1
)
ζ(2n+ 1), n≥ 1,

Cl1(π)=− log2.

(5.3)

Putting x = π in (5.1), we obtain

2n
∫ π/2

0
θn cotθdθ = n!cos

(
nπ

2

)
ζ(n+ 1)−

n∑
j=0

(−1) j( j+1)/2 Γ(n+ 1)
Γ(n+ 1− j)

πn− j Cl j+1(π).

(5.4)

Using

∫ π/2

0
θn cotθdθ = 1

n+ 1

∫ π/2

0
θn+1 csc2 θdθ, n≥ 1, (5.5)

in (5.4), we get

2n

n+ 1

∫ π/2

0
θn+1 csc2 θdθ

= n!cos
(
nπ

2

)
ζ(n+ 1)−

n∑
j=0

(−1) j( j+1)/2 Γ(n+ 1)
Γ(n+ 1− j)

πn− j Cl j+1(π).
(5.6)

From (5.6) and (5.3) we obtain

∫ π/2

0
θ2 csc2 θdθ = π log2, (5.7)

∫ π/2

0
θ3 csc2 θdθ = 3

4
π2 log2− 21

8
ζ(3), (5.8)

∫ π/2

0
θ4 csc2 θdθ = π3

2
log2− 9

4
πζ(3). (5.9)

Putting m=−1 in (3.5) and (3.6) and using (5.8) and (5.9) give (2.5).

6. Proof of Theorem 2.6

We consider the case m=−2 of (3.6). We need to evaluate
∫ π/2

0 θ4 csc4 θdθ. We have

∫ π/2

0
θ4 csc4 θdθ = θ4 csc2 θ(−cotθ)

]π/2
0 +

∫ π/2

0
cotθ

d

dθ

(
θ4 csc2 θ

)
dθ

= 4
∫ π/2

0
θ3 cotθ csc2 θdθ− 2

∫ π/2

0
θ4 csc2 θ cot2 θdθ.

(6.1)
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Using cot2 θ = csc2 θ− 1 in the second integral on the right gives

∫ π/2

0
θ4 csc4 θdθ = 4

3

∫ π/2

0
θ3 cotθ csc2 θdθ +

2
3

∫ π/2

0
θ4 csc2 θdθ. (6.2)

Also,

∫ π/2

0
θ3 cotθ csc2 θdθ = θ3 cscθ(−cscθ)

]π/2
0 +

∫ π/2

0
cscθ

d

dθ

(
θ3 cscθ

)
dθ

=−π3

8
+ 3

∫ π/2

0
θ2 csc2 θdθ−

∫ π/2

0
θ3 cotθ csc2 θdθ,

(6.3)

so that

∫ π/2

0
θ3 cotθ csc2 θdθ =−π3

16
+

3
2

∫ π/2

0
θ2 csc2 θdθ. (6.4)

From (6.2), (6.4), (5.7), and (5.9), we obtain

∫ π/2

0
θ4 csc4 θdθ =−π3

12
+ 2π log2 +

π3

3
log2− 3

2
πζ(3). (6.5)

Putting m=−2 in (3.6) and using (6.5), we obtain (2.6).

7. Final remarks

In a future paper, we plan to investigate what happens when we multiply (3.1) by x2m+1

and carry out the same steps as we did here.
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