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Via the variational methods, we prove the existence of a nontrivial solution to a singular
semilinear elliptic equation with critical Sobolev-Hardy exponent under certain condi-
tions.

1. Introduction

In this paper, we consider the following elliptic problem:

−∆u−µ
u

|x|2 =
|u|2∗(s)−2

|x|s u+ a(x)|u|r−2u+ λu, x ∈RN , (1.1)

where N ≥ 3, 0 ≤ µ < µ̄
.= ((N − 2)/2)2, 0 ≤ s < 2, λ ≥ 0, and 2∗(s)

.= 2(N − s)/(N −
2) is the critical Sobolev-Hardy exponent; note that 2∗(0) = 2∗ .= 2N/(N − 2) is the
critical Sobolev exponent. The space H

.= H(RN ) is the completion of C∞0 (RN ) in the
norm

‖u‖ .=
(∫

RN

(∣∣∇u∣∣2−µ
u2

|x|2
)
dx

)1/2

. (1.2)

By the Hardy inequality [8, 9], this norm is equivalent to the usual norm (
∫
RN |∇u|2dx)1/2.

The scalar product in H is

(u,v)
.=
∫
RN

(
∇u∇v−µ

uv

|x|2
)
dx ∀u,v ∈H. (1.3)

We define Hr ⊂H with

Hr
.= {u∈H , u(x)= u

(|x|)}. (1.4)
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3214 A solution to a singular critical elliptic equation

The hypothesis for a(x) is as follows:
(A) a(x) is nonnegative and locally bounded in RN\{0}, a(x) = O(|x|−s) in the

bounded neighborhood G of the origin, a(x)=O(|x|−t) as |x| →∞, 0≤ s < t < 2, 2∗(t) <
r < 2∗(s), where 2∗(t)

.= 2(N − t)/(N − 2) for 0≤ t < 2.
The singular elliptic problems have received some attention in recent years. For exam-

ple, Janneli [10] and Ferrero and Gazzolo [7] studied the semilinear elliptic equation

−∆u−µ
u

|x|2 = |u|
2∗−2u+ λu, x ∈Ω,

u(x)= 0, x ∈ ∂Ω,
(1.5)

where Ω⊂RN (N ≥ 3) is a smooth bounded domain containing the origin 0. They proved
that (1.5) has a nontrivial solution under certain conditions for λ and µ. Moreover, Cao
in [4, 5] and Chen in [6] also studied the semilinear elliptic equation (1.5). They show
that (1.5) has nontrivial solutions and a sign-changing solution under some conditions
for µ, λ. Ghoussoub and Yuan in [9] considered the quasilinear problem

−∆pu= µ
|u|q−2u

|x|s + λ|u|r−2u, x ∈Ω,

u(x)= 0, x ∈ ∂Ω.
(1.6)

They get that (1.6) has a positive solution and a sign-changing solution under some con-
ditions for λ, µ, r, q.

In the case when Ω is an unbounded domain in RN , the corresponding problem be-
comes more complicated since the Sobolev embedding W1,p(Ω)↩ Lq(Ω)(p ≥ 2) is not
compact for all q ∈ [p, p∗]. However, by the Strauss lemma (see [13]), the embedding
Hr(RN )↩ Lq(RN ) is compact for all q ∈ [2,2∗). Therefore, we can discuss the nontriv-
ial solutions of (1.1) in Hr by variational methods. But there are also some difficulties for
(1.1), because the embedding Hr↩L2∗(s)(RN ,|x|−s) is still not compact. In [11], as λ= 0,
the existence of a nontrivial solution is given for (1.1) with s= 0, so it will be meaningful
to study the existence of nontrivial solutions for (1.1) as s∈ [0,2) and λ �= 0. In this paper,
we obtain the following existence results.

Theorem 1.1. Suppose (A) and 0≤ s < 2, 0≤ µ < µ̄, λ≥ 0. Assume that one of the following
conditions holds:

(i) λ= 0 and

max

{
N − s√

µ̄+
√
µ̄−µ

,
N − s− 2

√
µ̄−µ√

µ̄
,2∗(t)

}
< r < 2∗(s), (1.7)

(ii) 0 < λ < λ1(µ) and 0≤ µ≤ µ̄− 1, where λ1(µ)
.= infu∈H\{0}(‖u‖2/

∫
RN u2dx).

Then problem (1.1) has at least a nontrivial solution in Hr .

Throughout this paper, we will use the letter C to denote the natural various constants
independent of u, and

∫ ·dx instead of
∫
RN ·dx.
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2. Proof of the main result

We first give some definitions and lemmas.

Definition 2.1. Let {um} be a sequence in Hr , if there exists a constant c ∈R1 such that

J
(
um
)−→ c, J ′

(
um
)−→ 0 in H−1

r (2.1)

as m→∞, then {um} is called a (PS)c sequence in Hr .

Lemma 2.2 (Hardy inequality [8, 9]). Assume that 1 < p < N and u∈W1,p(RN ). Then

∫ |u|p
|x|p dx ≤

(
p

N − p

)p ∫ ∣∣∇u∣∣pdx. (2.2)

Lemma 2.3 (Sobolev-Hardy inequality [9]). Assume that 1 < p < N and that p∗(s)
.=

((N − s)/(N − p))p, 0 ≤ s ≤ p. Then there exists a constant C > 0 such that for any u ∈
W1,p(RN ),

(∫ |u|p∗(s)

|x|s dx

)p/p∗(s)

≤ C
∫ ∣∣∇u∣∣pdx. (2.3)

Lemma 2.4 [11]. Assume that hypothesis (A) holds. Then the embedding H↩Lr(RN ,a(x))
is compact.

Consider the energy functional

J(u)= 1
2
‖u‖− 1

2∗(s)

∫ |u|2∗(s)

|x|s dx− 1
r

∫
a(x)|u|rdx− λ

2

∫
|u|2dx, (2.4)

by Lemma 2.4, J(u) is well defined and J ∈ C1(H ,R); the critical points of the functional J
correspond to weak solutions of problem (1.1).

For 0≤ µ < µ̄, define the best Sobolev-Hardy constant:

As
.= As(µ)= inf

u∈H{0}

∫ (|∇u|2−µu2/|x|2)dx(∫ |u|2∗(s)/|x|sdx)2/2∗(s) . (2.5)

In [12], the author found that As is attained by the functions

yε(x)=
(
2ε
(
µ̄−µ

)
(N − s)/

√
µ̄
)√µ̄/(2−s)

|x|
√

µ̄−√µ̄−µ(ε+ |x|(2−s)√µ̄−µ/√µ̄)(N−2)/(2−s) (2.6)

for all ε > 0. Moreover, the functions yε(x) solve the equation

−∆u−µ
u

|x|2 =
|u|2∗(s)−2

|x|s u in RN\{0}, (2.7)
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and satisfy

∫ (∣∣∇yε
∣∣2−µ

∣∣yε∣∣2

|x|2
)
dx =

∫ ∣∣yε∣∣2∗(s)

|x|s dx = A(N−s)/(2−s)
s . (2.8)

In the following, we first give some estimates for the extremal functions.
Let

Cε =
(

2ε(µ̄−µ)(N − s)√
µ̄

)√µ̄/(2−s)
, Uε(x)= yε(x)

Cε
, (2.9)

B2l = {x ∈RN , |x| < 2l} ⊂G with l > 0 and G is the domain in hypothesis (A), let 0≤ φ ≤
1 be a cutting-off function in C∞0 (RN )

⋂
Hr , such that φ(x)= 1 in Bl and φ(x)= 0 inRN \

B2l. Set uε(x)= φ(x)yε(x) and vε = uε(x)/(
∫ |uε|2∗(s)/|x|s)1/2∗(s), so that

∫
(|vε|2∗(s)/|x|s)=

1. In [12], the author proved that the following estimates are true:

∥∥vε∥∥2 = As +O
(
ε(N−2)/(2−s)), (2.10)

∫ ∣∣vε∣∣qdx =




O
(
ε
√

µ̄q/(2−s)
)

, 1≤ q <
N√

µ̄+
√
µ̄−µ

,

O
(
ε
√

µ̄q/(2−s)| lnε|
)

, q = N√
µ̄+

√
µ̄−µ

,

O
(
ε
√

µ̄(N−q√µ̄)/((2−s)√µ̄−µ)
)

,
N√

µ̄+
√
µ̄−µ

< q < 2∗.

(2.11)

Moreover, we also need the following results.

Lemma 2.5. Suppose that γ = √µ̄+
√
µ̄−µ, γ́ = √µ̄−√µ̄−µ, 0≤ µ < µ̄, and 0≤ s < 2, then,

vε(x) satisfies the following estimates:

∫ ∣∣vε∣∣q
|x|s dx ≥




c1ε
√

µ̄q/(2−s), 1≤ q <
N − s

γ
,

c2ε
√

µ̄q/(2−s)| lnε|, q = N − s

γ
,

c3ε
(
√

µ̄(N−s)−µ̄q)/(2−s)√µ̄−µ,
N − s

γ
< q < 2∗(s),

(2.12)

where ci (i= 1,2,3) are positive constants.
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Proof. Let ωN denote the surface area of the (N − 1) sphere SN−1 inRN . For 1≤ q < 2∗(s),
we have

∫ ∣∣vε∣∣q
|x|s dx =

∫ ∣∣uε(x)
∣∣q

|x|s dx ·
(∫ ∣∣uε∣∣2∗(s)

|x|s dx

)−q/2∗(s)

= B
∫ ∣∣φ(x)CεUε

∣∣q
|x|s dx

= BC
q
ε

(
O(1) +ωN

∫ l

0

(
ε+ r(2−s)√µ̄−µ/√µ̄

)−q(N−2)/(2−s)
rN−s−1−qγ́dr

)

= BC
q
ε

(
O(1) +ωNε

−q((N−2)/(2−s))+(
√

µ̄(N−s−γ́q)/(2−s)√µ̄−µ)

×
∫ lε

√
µ̄/((s−2)

√
µ̄−µ)

0

(
1 + r(2−s)√µ̄−µ/√µ̄

)
−q(N−2)/(2−s)rN−s−1−qγ́ dr

)
,

(2.13)
where B = (

∫ |uε|2∗(s)/|x|sdx)−q/2∗(s).
If −2q

√
µ̄−µ+N − s− γ́q = 0, that is, q = (N − s)/γ,

∫ ∣∣vε∣∣q
|x|s dx = BC

q
ε

(
O(1) +ωN

∫ lε
√

µ̄/((s−2)
√

µ̄−µ)

1

1
r
dr

)
≥ Bć1ε

√
µ̄q/(2−s)| lnε|, (2.14)

where ć1 > 0 is a constant.
If −2q

√
µ̄−µ+N − s− γ́q < 0, that is, q > (N − s)/γ,

∫ ∣∣vε∣∣q
|x|s dx = BC

q
ε

(
O(1) +O

(
ε−q((N−2)/(2−s))+(

√
µ̄(N−s−γ́q)/(2−s)√µ̄−µ)

))

≥ Bć2ε
(
√

µ̄(N−s)−µ̄q)/(2−s)√µ̄−µ,

(2.15)

where c′2 > 0 is a constant.
If −2q

√
µ̄−µ+N − s− γ́q > 0, that is, q < (N − s)/γ,

∫ ∣∣vε∣∣q
|x|s dx = BC

q
ε

(
O(1) +ωN

∫ l

0

(
ε+ r(2−s)√µ̄−µ/√µ̄

)−q(N−2)/(2−s)
rN−s−1−qγ́dx

)

= BC
q
ε ·O(1)≥ Bć3ε

√
µ̄q/(2−s),

(2.16)

where ć3 > 0 is a constant.
By

B =
(∫ ∣∣uε∣∣2∗(s)

|x|s dx

)−q/2∗(s)

=
(∫ ∣∣φ(x)yε

∣∣2∗(s)

|x|s dx

)−q/2∗(s)

≥
(∫ ∣∣yε∣∣2∗(s)

|x|s dx

)−q/2∗(s)

=A
(2−N)q/2(2−s)
s ,

(2.17)

we have finished the proof of Lemma 2.5. �
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Lemma 2.6. Suppose (A) and 0≤ s < 2, 0≤ µ < µ̄, λ≥ 0. Assume that one of the following
conditions holds:

(i) λ= 0 and

max

{
N − s√

µ̄+
√
µ̄−µ

,
N − s− 2

√
µ̄−µ√

µ̄
,2∗(t)

}
< r < 2∗(s), (2.18)

(ii) 0 < λ < λ1(µ) and 0≤ µ≤ µ̄− 1.
Then, there exists u0 ∈Hr , u0 �= 0, such that the following inequality holds:

0 < sup
t≥0

J
(
tu0
)
<

2− s

2(N − s)
A(N−s)/(2−s)
s . (2.19)

Proof. For t ≥ 0, we consider the functions

g(t)
.= J
(
tvε
)= t2

2

∥∥vε∥∥2− t2∗(s)

2∗(s)
− tr

r

∫
a(x)

∣∣vε∣∣rdx− λt2

2

∫ ∣∣vε∣∣2
dx,

ḡ(t)= t2

2

∥∥vε∥∥2− t2∗(s)

2∗(s)
.

(2.20)

Note that limt→∞ g(t) = −∞, g(0) = 0, and g(t) > 0 as t → 0+, therefore, supt≥0 g(t) > 0
must be attained by some 0 < tε < +∞ and g′(tε)= 0. So we have

g′
(
tε
)= tε

∥∥vε∥∥2− t2∗(s)−1
ε − tr−1

ε

∫
a(x)

∣∣vε∣∣rdx− λtε

∫ ∣∣vε∣∣2
dx = 0. (2.21)

Then

∥∥vε∥∥2 = t2∗(s)−2
ε + tr−2

ε

∫
a(x)

∣∣vε∣∣rdx+ λ
∫ ∣∣vε∣∣2

dx ≥ t2∗(s)−2
ε , tε ≤

∥∥vε∥∥2/(2∗(s)−2)
.

(2.22)

Moreover, by hypothesis (A), we have

∥∥vε∥∥2 ≤ t2∗(s)−2
ε +C

∥∥vε∥∥2(r−2)/(2∗(s)−2)
∫
B2l

∣∣vε∣∣r
|x|s + λ

∫ ∣∣vε∣∣2
dx. (2.23)

From (2.23) and (2.10)–(2.12), as ε small enough, we get

t2∗(s)−2
ε ≥ As

2
. (2.24)

By the simple computation, we know that the function ḡ(t) attains its maximum at
t0 = ‖vε‖2/(2∗(s)−2) and is increasing in the interval [0, t0]. So, by (2.10), (2.22), and (2.24),
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we have

g
(
tε
)≤ ḡ

(
t0
)− 1

r

(
As

2

)r/(2∗(s)−2)∫ ∣∣vε∣∣r
|x|s dx− λ

2

(
As

2

)2/(2∗(s)−2)∫ ∣∣vε∣∣2
dx

≤ 2− s

2(N − s)

∥∥vε∥∥2(N−s)/(2−s)−C
∫ ∣∣vε∣∣r
|x|s −C

∫ ∣∣vε∣∣2
dx

= 2− s

2(N − s)
A(N−s)/(2−s)
s +O

(
ε(N−2)/(2−s)

)
−C

∫ ∣∣vε∣∣r
|x|s −C

∫ ∣∣vε∣∣2
dx.

(2.25)

In case (i), since

r > max
{
N − s

γ
,
N − s− 2

√
µ̄−µ√

µ̄
,2∗(t)

}
, (2.26)

by (2.12), we have

∫ ∣∣vε∣∣r
|x|s ≥ c3ε

√
µ̄(N−s−√µ̄r)/(2−s)√µ̄−µ,

√
µ̄
(
N − s−√µ̄r)

(2− s)
√
µ̄−µ

<
N − 2
2− s

.

(2.27)

Let u0 = vε, choosing ε small enough, from (2.25), we can deduce that

sup
t≥0

J
(
tu0
)= g

(
tε
)
<

2− s

2(N − s)
A(N−s)/(2−s)
s . (2.28)

In case (ii), 0 < λ < λ1(µ). By (2.11), as µ= µ̄− 1,∫ ∣∣vε∣∣2 =O
(
ε(N−2)/(2−s)| lnε|

)
, (2.29)

as 0≤ µ < µ̄− 1, ∫ ∣∣vε∣∣2 =O
(
ε(N−2)/((2−s)√µ̄−µ)

)
. (2.30)

Choosing ε small enough, we also get (2.28). The proof of Lemma 2.6 is completed. �

Lemma 2.7. Suppose that c ∈ (0,(2− s)/(2(N − s))A(N−s)/(2−s)
s ). Then J(u) satisfies (PS)c

condition.

Proof. Let {um} ∈Hr be a (PS)c sequence. Then we have

J
(
um
)= 1

2

∥∥um∥∥2− 1
2∗(s)

∫ ∣∣um∣∣2∗(s)

|x|s dx− 1
r

∫
a(x)

∣∣um∣∣rdx− λ

2

∫ ∣∣um∣∣2
dx = c+ o(1),

(2.31)

〈
J ′
(
um
)
,um

〉= ∥∥um∥∥2−
∫ ∣∣um∣∣2∗(s)

|x|s dx−
∫
a(x)

∣∣um∣∣rdx− λ
∫ ∣∣um∣∣2

dx = o(1)
∥∥um∥∥.

(2.32)
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Let (2.31) × 2 − (2.32), we have

2c+ o(1) + o(1)
∥∥um∥∥≥

(
1− 2

2∗(s)

)∫ ∣∣um∣∣2∗(s)

|x|s dx+
(

1− 2
r

)∫
a(x)

∣∣um∣∣rdx. (2.33)

From

∥∥um∥∥2 = 2J
(
um
)

+
2

2∗(s)

∫ ∣∣um∣∣2∗(s)

|x|s dx+
2
r

∫
a(x)

∣∣um∣∣rdx+ λ
∫ ∣∣um∣∣2

dx, (2.34)

we get

(
1− λ

λ1(µ)

)∥∥um∥∥2 ≤ 2J
(
um
)

+
2

2∗(s)

∫ ∣∣um∣∣2∗(s)

|x|s dx+
2
r

∫
a(x)

∣∣um∣∣rdx
≤ o(1) + o(1)

∥∥um∥∥+C.

(2.35)

So, we conclude that {um} is bounded in Hr . Passing to a subsequence (still denoted by
{um}), as m→∞, we get that

um⇀ u weakly in Hr ,

um −→ u strongly in Lq
(
RN

)
, q ∈ [2,2∗),

um −→ u a.e. in RN ,

um −→ u strongly in Lr
(
RN ,a(x)

)
.

(2.36)

It follows from the Sobolev-Hardy inequality (see [9]) that |um|2∗(s)−2um is bounded in
L2∗(s)/(2∗(s)−1)(RN ,|x|−s), thus we have that

∣∣um∣∣2∗(s)−2
um⇀ |u|2∗(s)−2u weakly in L2∗(s)/(2∗(s)−1)(RN ,|x|−s). (2.37)

Since J ′(um)→ 0, from (2.36) and (2.37), we obtain

〈
J ′(u),u

〉= ‖u‖2−
∫ |u|2∗(s)

|x|s dx−
∫
a(x)|u|rdx− λ

∫
|u|2dx = lim

m→∞
〈
J ′
(
um
)
,u
〉= 0.

(2.38)

Set vm ≡ um−u, by Brezis-Lieb lemma [2], we have

∥∥um∥∥2 = ∥∥vm∥∥2
+‖u‖2 + o(1), (2.39)

∫ ∣∣um∣∣2∗(s)

|x|s dx =
∫ |u|2∗(s)

|x|s dx+
∫ ∣∣vm∣∣2∗(s)

|x|s dx+ o(1). (2.40)
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It follows directly from (2.31)–(2.40) that

o(1)
∥∥um∥∥= 〈J ′(um),um〉= ∥∥um∥∥2−

∫ ∣∣um∣∣2∗(s)

|x|s dx−
∫
a(x)

∣∣um∣∣rdx− λ
∫ ∣∣um∣∣2

dx

= 〈J ′(u),u
〉

+
∥∥vm∥∥2−

∫ ∣∣vm∣∣2∗(s)

|x|s dx+ o(1)= ∥∥vm∥∥2−
∫ ∣∣vm∣∣2∗(s)

|x|s dx+ o(1),

J(u)= J
(
um
)− 1

2

∥∥vm∥∥2
+

1
2∗(s)

∫ ∣∣vm∣∣2∗(s)

|x|s dx+ o(1)

= c− 1
2

∥∥vm∥∥2
+

1
2∗(s)

∫ ∣∣vm∣∣2∗(s)

|x|s dx+ o(1).

(2.41)

Since {‖vm‖} is bounded, without loss of generality, we may assume that

lim
m→∞

∥∥vm∥∥2 = k. (2.42)

Then we get that

lim
m→∞

∫ ∣∣vm∣∣2∗(s)

|x|s dx = k. (2.43)

By the Sobolev-Hardy inequality,

∫ ∣∣vm∣∣2∗(s)

|x|s dx ≤A−2∗(s)/2
s

∥∥vm∥∥2∗(s)
(2.44)

for all m∈N . Then by taking m→ +∞, we obtain

k ≤ A−2∗(s)/2
s k2∗(s)/2. (2.45)

If k > 0, we have that k ≥ A2∗(s)/(2∗(s)−2)
s . By (2.41) we deduce that

J(u)= c−
(

1
2
− 1

2∗(s)

)
k ≤ c− 2∗(s)− 2

22∗(s)
A2∗(s)/(2∗(s)−2)
s = c− 2− s

2(N − s)
A(N−s)(2−s)
s < 0,

(2.46)

but from (2.38), we get

J(u)= J(u)− 1
2

〈
J ′(u),u

〉= (1
2
− 1

2∗(s)

)∫ |u|2∗(s)

|x|s dx+
(

1
2
− 1

r

)∫
a(x)|u|rdx ≥ 0,

(2.47)

this contradiction implies k = 0. By the definition of vm, we conclude that J(u) satisfies
(PS)c condition. We have completed the proof of Lemma 2.7. �
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Proof of Theorem 1.1. By the Sobolev-Hardy inequality and Lemma 2.4, for any u∈Hr\{0},
we have

J(u)= 1
2
‖u‖2− 1

2∗(s)

∫ |u|2∗(s)

|x|s dx− 1
r

∫
a(x)|u|rdx− λ

2

∫
|u|2dx

≥
(

1
2
− λ

2λ1(µ)

)
‖u‖2− C

2∗(s)
‖u‖2∗(s)− C

r
‖u‖r

≥ ‖u‖2
(
λ1(µ)− λ

2λ1(µ)
−C

(‖u‖2∗(s)−2 +‖u‖r−2)).
(2.48)

Clearly, for ρ > 0 small enough, there exists β > 0 such that J(u)≥ β for all u∈ ∂Bρ = {u∈
Hr , ‖u‖ = ρ}. For u0 ∈Hr\{0}, t ≥ 0, we have

J
(
tu0
)= t2

2

∥∥u0
∥∥2− t2∗(s)

2∗(s)

∫ ∣∣u0
∣∣2∗(s)

|x|s dx− tr

r

∫
a(x)

∣∣u0
∣∣rdx− λt2

2

∫ ∣∣u0
∣∣2
dx. (2.49)

Obviously, limt→+∞ J(tu0) = −∞, so we may choose t0 large enough, such that ‖t0u0‖ >
‖u0‖ = ρ for some u0 ∈ ∂Bρ, and J(t0u0) < 0. By Lemmas 2.6 and 2.7 and the mountain
pass theorem given in [1] (or [3]), we get a sequence {um} ⊂ Hr , um → u strongly for
some u∈Hr , and J(u)= c, J ′(u)= 0. Thus u is a nontrivial solution of problem (1.1). we
have finished the proof of Theorem 1.1. �

Remark 2.8. If λ = 0, using similar ways, we can prove that problem (1.1) has at least a
nontrivial solution in H when r, µ satisfy the condition (i) of Theorem 1.1.
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