INTUITIONISTIC FUZZY ALPHA-CONTINUITY AND INTUITIONISTIC FUZZY PRECONTINUITY

JOUNG KON JEON, YOUNG BAE JUN, AND JIN HAN PARK

Received 28 February 2005 and in revised form 20 June 2005

A characterization of intuitionistic fuzzy α -open set is given, and conditions for an IFS to be an intuitionistic fuzzy α -open set are provided. Characterizations of intuitionistic fuzzy precontinuous (resp., α -continuous) mappings are given.

1. Introduction

After the introduction of fuzzy sets by Zadeh, there have been a number of generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets introduced by Atanassov is one among them. Using the notion of intuitionistic fuzzy sets, Çoker [5] introduced the notion of intuitionistic fuzzy topological spaces. In this paper, we define the notion of intuitionistic fuzzy semiopen (resp., preopen and α -open) mappings and investigate relation among them. We give a characterization of intuitionistic fuzzy α -open set, and provide conditions for an IFS to be an intuitionistic fuzzy α -open set. We discuss characterizations of intuitionistic fuzzy precontinuous (resp., α -continuous) mappings. We give a condition for a mapping of IFTSs to be an intuitionistic fuzzy α -continuous mapping.

2. Preliminaries

Definition 2.1 (Atanassov [1]). An *intuitionistic fuzzy set* (IFS) *A* in *X* is an object having the form

$$A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle \mid x \in X \},$$
(2.1)

where the functions $\mu_A : X \to [0,1]$ and $\gamma_A : X \to [0,1]$ denote the degree of membership (namely, $\mu_A(x)$) and the degree of nonmembership (namely, $\gamma_A(x)$) of each element $x \in X$ to the set *A*, respectively, and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for each $x \in X$.

Definition 2.2 (Atanassov [1]). Let *A* and *B* be IFSs of the forms $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle | x \in X\}$ and $B = \{\langle x, \mu_B(x), \gamma_B(x) \rangle | x \in X\}$. Then

- (a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\gamma_A(x) \ge \gamma_B(x)$ for all $x \in X$,
- (b) A = B if and only if $A \subseteq B$ and $B \subseteq A$,

Copyright © 2005 Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences 2005:19 (2005) 3091–3101 DOI: 10.1155/IJMMS.2005.3091

3092 Intuitionistic fuzzy continuity

(c) $\overline{A} = \{ \langle x, \gamma_A(x), \mu_A(x) \rangle \mid x \in X \},$ (d) $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \gamma_A(x) \lor \gamma_B(x) \rangle \mid x \in X \},$ (e) $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \gamma_A(x) \land \gamma_B(x) \rangle \mid x \in X \}.$

For the sake of simplicity, we will use the notation $A = \langle x, \mu_A, \gamma_A \rangle$ instead of $A = \{\langle x, \mu_A(x), \gamma_A(x) \rangle \mid x \in X\}$. A constant fuzzy set taking value $\alpha \in [0, 1]$ will be denoted by $\underline{\alpha}$. The IFSs 0_{\sim} and 1_{\sim} are defined to be $0_{\sim} = \langle x, \underline{0}, \underline{1} \rangle$ and $1_{\sim} = \langle x, \underline{1}, \underline{0} \rangle$, respectively. Let $\alpha, \beta \in [0, 1]$ with $\alpha + \beta \leq 1$. An *intuitionistic fuzzy point* (IFP), written as $p_{(\alpha,\beta)}$, is defined to be an IFS of X given by

$$p_{(\alpha,\beta)}(x) := \begin{cases} (\alpha,\beta) & \text{if } x = p, \\ (0,1) & \text{otherwise.} \end{cases}$$
(2.2)

Let f be a mapping from a set X to a set Y. If

$$B = \left\{ \left\langle y, \mu_B(y), \gamma_B(y) \right\rangle : y \in Y \right\}$$
(2.3)

is an IFS in *Y*, then the *preimage* of *B* under *f*, denoted by $f^{-1}(B)$, is the IFS in *X* defined by

$$f^{-1}(B) = \left\{ \langle x, f^{-1}(\mu_B)(x), f^{-1}(\gamma_B)(x) \rangle : x \in X \right\}$$
(2.4)

and the *image* of A under f, denoted by f(A), is an IFS of Y defined by

$$f(A) = \langle y, f(\mu_A), f(\gamma_A) \rangle, \qquad (2.5)$$

where

$$f(\mu_A)(y) := \begin{cases} \sup_{x \in f^{-1}(y)} \mu_A(x) & \text{if } f^{-1}(y) \neq \emptyset, \\ 0 & \text{otherwise,} \end{cases}$$
(2.6)

$$f(\gamma_A)(y) := \begin{cases} \inf_{x \in f^{-1}(y)} \gamma_A(x) & \text{if } f^{-1}(y) \neq \emptyset, \\ 1 & \text{otherwise,} \end{cases}$$
(2.7)

for each $y \in Y$. Çoker [5] generalized the concept of fuzzy topological space, first initiated by Chang [4], to the case of intuitionistic fuzzy sets as follows.

Definition 2.3 (Çoker [5, Definition 3.1]). An *intuitionistic fuzzy topology* (IFT) on X is a family τ of IFSs in X satisfying the following axioms:

- (T1) $0_{\sim}, 1_{\sim} \in \tau$,
- (T2) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$,
- (T3) $\bigcup G_i \in \tau$ for any family $\{G_i \mid i \in J\} \subseteq \tau$.

In this case, the pair (X, τ) is called an *intuitionistic fuzzy topological space* (IFTS) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS) in X. The complement \overline{A} of an IFOS A in IFTS (X, τ) is called an *intuitionistic fuzzy closed set* (IFCS) in X.

Definition 2.4 (Çoker [5, Definition 3.13]). Let (X, τ) be an IFTS and let $A = \langle x, \mu_A, \gamma_A \rangle$ be an IFS in *X*. Then the *intuitionistic fuzzy interior* and *intuitionistic fuzzy closure* of *A* are defined by

$$int(A) = \bigcup \{G \mid G \text{ is an IFOS in } X \text{ and } G \subseteq A\},$$
$$cl(A) = \bigcap \{K \mid K \text{ is an IFCS in } X \text{ and } A \subseteq K\}.$$
$$(2.8)$$

Note that for any IFS *A* in (X, τ) , we have

$$\operatorname{cl}(\overline{A}) = \overline{\operatorname{int}(A)}, \quad \operatorname{int}(\overline{A}) = \overline{\operatorname{cl}(A)}.$$
 (2.9)

3. Intuitionistic fuzzy openness

Definition 3.1 [7]. An IFS A in an IFTS (X, τ) is called (i) an *intuitionistic fuzzy semiopen set* (IFSOS) if

$$A \subseteq cl(int(A)), \tag{3.1}$$

(ii) an *intuitionistic fuzzy* α *-open set* (IF α OS) [3] if

$$A \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(A))), \tag{3.2}$$

(iii) an intuitionistic fuzzy preopen set (IFPOS) if

$$A \subseteq \operatorname{int}(\operatorname{cl}(A)), \tag{3.3}$$

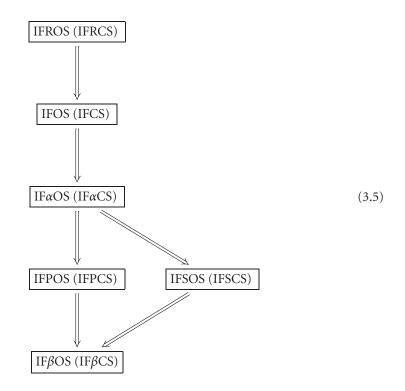
(iv) an intuitionistic fuzzy regular open set (IFROS) if

$$\operatorname{int}\left(\operatorname{cl}(A)\right) = A. \tag{3.4}$$

3094 Intuitionistic fuzzy continuity

An IFS *A* is called an *intuitionistic fuzzy semiclosed set*, *intuitionistic fuzzy* α *-closed set*, *intuitionistic fuzzy preclosed set*, and *intuitionistic fuzzy regular closed set*, respectively (IF-SCS, IF α CS, IFPCS, and IFRCS, resp.), if the complement of *A* is an IFSOS, IF α OS, IF-POS, and IFROS, respectively.

In the following diagram, we provide relations between various types of intuitionistic fuzzy openness (intuitionistic fuzzy closedness):



The reverse implications are not true in the above diagram (see [7]). The following is a characterization of an IF α OS.

THEOREM 3.2. An IFS A in an IFTS (X, τ) is an IF α OS if and only if it is both an IFSOS and an IFPOS.

Proof. Necessity follows from the diagram given above. Suppose that *A* is both an IFSOS and an IFPOS. Then $A \subseteq cl(int(A))$, and so

$$cl(A) \subseteq cl(cl(int(A))) = cl(int(A)).$$
(3.6)

It follows that $A \subseteq int(cl(A)) \subseteq int(cl(int(A)))$, so that A is an IF α OS.

We give condition(s) for an IFS to be an IF α OS.

THEOREM 3.3. Let A be an IFS in an IFTS (X, τ) . If B is an IFSOS such that $B \subseteq A \subseteq int(cl(B))$, then A is an IF α OS.

Proof. Since *B* is an IFSOS, we have $B \subseteq cl(int(B))$. Thus,

$$A \subset \operatorname{int}(\operatorname{cl}(B)) \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{cl}(\operatorname{int}(B)))) = \operatorname{int}(\operatorname{cl}(\operatorname{int}(B))) \subseteq \operatorname{int}(\operatorname{cl}(\operatorname{int}(A))), \quad (3.7)$$

and so *A* is an IF α OS.

LEMMA 3.4. Any union of IFaOSs (resp., IFPOSs) is an IFaOS (resp., IFPOS).

The proof is straightforward.

THEOREM 3.5. An IFS A in an IFTS X is intuitionistic fuzzy α -open (resp., intuitionistic fuzzy preopen) if and only if for every IFP $p_{(\alpha,\beta)} \in A$, there exists an IF α OS (resp., IFPOS) $B_{p_{(\alpha,\beta)}}$ such that $p_{(\alpha,\beta)} \in B_{p_{(\alpha,\beta)}} \subseteq A$.

Proof. If *A* is an IF α OS (resp., IFPOS), then we may take $B_{p(\alpha,\beta)} = A$ for every $p_{(\alpha,\beta)} \in A$. Conversely assume that for every IFP $p_{(\alpha,\beta)} \in A$, there exists an IF α OS (resp., IFPOS) $B_{p(\alpha,\beta)}$ such that $p_{(\alpha,\beta)} \in B_{p(\alpha,\beta)} \subseteq A$. Then,

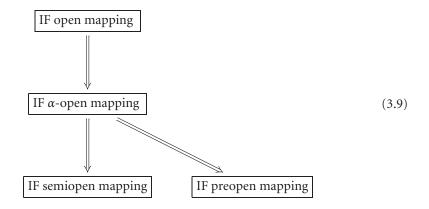
$$A = \bigcup \left\{ p_{(\alpha,\beta)} \mid p_{(\alpha,\beta)} \in A \right\} \subseteq \bigcup \left\{ B_{p_{(\alpha,\beta)}} \mid p_{(\alpha,\beta)} \in A \right\} \subseteq A,$$
(3.8)

and so $A = \bigcup \{B_{p(\alpha,\beta)} \mid p(\alpha,\beta) \in A\}$, which is an IF α OS (resp., IFPOS) by Lemma 3.4. \Box

Definition 3.6. Let f be a mapping from an IFTS (X, τ) to an IFTS (Y, κ) . Then, f is called

- (i) an *intuitionistic fuzzy open mapping* if f(A) is an IFOS in Y for every IFOS A in X,
- (ii) an *intuitionistic fuzzy* α*-open mapping* if f(A) is an IFαOS in Y for every IFOS A in X,
- (iii) an *intuitionistic fuzzy preopen mapping* if f(A) is an IFPOS in Y for every IFOS A in X,
- (iv) an *intuitionistic fuzzy semiopen mapping* if f(A) is an IFSOS in Y for every IFOS A in X.

We have the following implications in which reverse implications are not valid, where "IF" means "intuitionistic fuzzy":



Let $A = \langle x, \mu_A, \gamma_A \rangle$, $B = \langle x, \mu_B, \gamma_B \rangle$, and $C = \langle x, \mu_C, \gamma_C \rangle$ be IFSs in I = [0, 1] defined by

$$\mu_{A}(x) = \begin{cases} 0, & 0 \le x \le \frac{1}{2}, \\ 2x - 1, & \frac{1}{2} \le x \le 1, \end{cases} \qquad \gamma_{A}(x) = \begin{cases} 1, & 0 \le x \le \frac{1}{2}, \\ 2(1 - x), & \frac{1}{2} \le x \le 1, \end{cases}$$
$$\mu_{B}(x) = \begin{cases} 1, & 0 \le x \le \frac{1}{4}, \\ 2 - 4x, & \frac{1}{4} \le x \le \frac{1}{2}, \\ 0, & \frac{1}{2} \le x \le 1, \end{cases} \qquad \gamma_{B}(x) = \begin{cases} 0, & 0 \le x \le \frac{1}{4}, \\ 4x - 1, & \frac{1}{4} \le x \le \frac{1}{2}, \\ 1, & \frac{1}{2} \le x \le 1, \end{cases} \qquad (3.10)$$
$$\mu_{C}(x) = \begin{cases} 0, & 0 \le x \le \frac{1}{4}, \\ \frac{1}{3}(4x - 1), & \frac{1}{4} \le x \le 1, \end{cases} \qquad \gamma_{C}(x) = \begin{cases} 1, & 0 \le x \le \frac{1}{4}, \\ \frac{4}{3}(1 - x), & \frac{1}{4} \le x \le 1. \end{cases}$$

Then $\tau_1 = \{0_{\sim}, 1_{\sim}, B, A \cup B\}, \tau_2 = \{0_{\sim}, 1_{\sim}, \overline{C}\}$, and $\tau_3 = \{0_{\sim}, 1_{\sim}, C\}$ are IFTSs on *I*. Define a mapping $f : I \to I$ by $f(x) = \min\{2x, 1\}$ for each $x \in I$. Then $f(0_{\sim}) = 0_{\sim}, f(1_{\sim}) = 1_{\sim}, f(A) = 0_{\sim}, \text{ and } f(B) = \overline{A} = f(A \cup B)$. It is easy to verify that \overline{A} is an IF α OS in (I, τ_2) . Since $\overline{A} \notin \tau_2$, we know that the mapping $f : (I, \tau_1) \to (I, \tau_2)$ is intuitionistic fuzzy α -open which is not intuitionistic fuzzy open. We also note that \overline{A} is an IFSOS but not an IFPOS in (I, τ_1) . Hence, $f : (I, \tau_1) \to (I, \tau_1)$ is an intuitionistic fuzzy semiopen mapping which is not intuitionistic fuzzy preopen, and so, also not intuitionistic fuzzy α -open. Further, \overline{A} is an IFPOS which is not an IFSOS in (I, τ_3) . Therefore, $f : (I, \tau_1) \to (I, \tau_3)$ is an intuitionistic fuzzy preopen mapping which is not intuitionistic fuzzy semiopen, and thus, also not intuitionistic fuzzy α -open.

THEOREM 3.7. Let $f : (X, \tau) \to (Y, \kappa)$ and $g : (Y, \kappa) \to (Z, \delta)$ be mappings of IFTSs. If f is intuitionistic fuzzy open and g is intuitionistic fuzzy α -open (resp., intuitionistic fuzzy preopen), then $g \circ f$ is intuitionistic fuzzy α -open (resp., intuitionistic fuzzy preopen).

The proof is straightforward.

THEOREM 3.8. A mapping $f : (X, \tau) \to (Y, \kappa)$ is intuitionistic fuzzy α -open if and only if it is intuitionistic fuzzy preopen and intuitionistic fuzzy semiopen.

Proof. Necessity follows from the above second diagram (3.9). Assume that f is intuitionistic fuzzy preopen and intuitionistic fuzzy semiopen and let A be an IFOS in X. Then, f(A) is an IFPOS as well as an IFSOS in Y. It follows from Theorem 3.2 that f(A) is an IF α OS so that f is an intuitionistic fuzzy α -open mapping.

4. Intuitionistic fuzzy continuity

Definition 4.1 [7]. Let f be a mapping from an IFTS (X, τ) to an IFTS (Y, κ) . Then f is called an *intuitionistic fuzzy precontinuous mapping* if $f^{-1}(B)$ is an IFPOS in X for every IFOS B in Y.

THEOREM 4.2. For a mapping f from an IFTS (X, τ) to an IFTS (Y, κ) , the following are equivalent.

- (i) *f* is intuitionistic fuzzy precontinuous.
- (ii) $f^{-1}(B)$ is an IFPCS in X for every IFCS B in Y.

(iii) $\operatorname{cl}(\operatorname{int}(f^{-1}(A))) \subseteq f^{-1}(\operatorname{cl}(A))$ for every IFS A in Y.

Proof. (i) \Rightarrow (ii). The proof is straightforward.

(ii) \Rightarrow (iii). Let *A* be an IFS in *Y*. Then cl(*A*) is intuitionistic fuzzy closed. It follows from (ii) that $f^{-1}(cl(A))$ is an IFPCS in *X* so that

$$\operatorname{cl}\left(\operatorname{int}\left(f^{-1}(A)\right)\right) \subseteq \operatorname{cl}\left(\operatorname{int}\left(f^{-1}(\operatorname{cl}(A))\right)\right) \subseteq f^{-1}(\operatorname{cl}(A)).$$

$$(4.1)$$

 $(iii) \Rightarrow (i)$. Let A be an IFOS in Y. Then \overline{A} is an IFCS in Y, and so

$$\operatorname{cl}\left(\operatorname{int}\left(f^{-1}(\overline{A})\right)\right) \subseteq f^{-1}\left(\operatorname{cl}(\overline{A})\right) = f^{-1}(\overline{A}).$$

$$(4.2)$$

This implies that

$$\overline{\operatorname{int}\left(\operatorname{cl}\left(f^{-1}(A)\right)\right)} = \operatorname{cl}\left(\overline{\operatorname{cl}\left(f^{-1}(A)\right)}\right) = \operatorname{cl}\left(\operatorname{int}\left(\overline{f^{-1}(A)}\right)\right)$$
$$= \operatorname{cl}\left(\operatorname{int}\left(f^{-1}(\overline{A})\right)\right) \subseteq f^{-1}(\overline{A}) = \overline{f^{-1}(A)},$$
(4.3)

and thus $f^{-1}(A) \subseteq int(cl(f^{-1}(A)))$. Hence $f^{-1}(A)$ is an IFPOS in *X*, and *f* is intuitionistic fuzzy precontinuous.

Definition 4.3 [9]. Let $p_{(\alpha,\beta)}$ be an IFP of an IFTS (X,τ) . An IFS *A* of *X* is called an *intuitionistic fuzzy neighborhood* (IFN) of $p_{(\alpha,\beta)}$ if there exists an IFOS *B* in *X* such that $p_{(\alpha,\beta)} \in B \subseteq A$.

THEOREM 4.4. Let f be a mapping from an IFTS (X, τ) to an IFTS (Y, κ) . Then the following assertions are equivalent.

- (i) *f* is intuitionistic fuzzy precontinuous.
- (ii) For each IFP $p_{(\alpha,\beta)} \in X$ and every IFN A of $f(p_{(\alpha,\beta)})$, there exists an IFPOS B in X such that $p_{(\alpha,\beta)} \in B \subseteq f^{-1}(A)$.
- (iii) For each IFP $p_{(\alpha,\beta)} \in X$ and every IFN A of $f(p_{(\alpha,\beta)})$, there exists an IFPOS B in X such that $p_{(\alpha,\beta)} \in B$ and $f(B) \subseteq A$.

Proof. (i) \Rightarrow (ii). Let $p_{(\alpha,\beta)}$ be an IFP in *X* and let *A* be an IFN of $f(p_{(\alpha,\beta)})$. Then there exists an IFOS *B* in *Y* such that $f(p_{(\alpha,\beta)}) \in B \subseteq A$. Since *f* is intuitionistic fuzzy precontinuous,

we know that $f^{-1}(B)$ is an IFPOS in X and

$$p_{(\alpha,\beta)} \in f^{-1}(f(p_{(\alpha,\beta)})) \subseteq f^{-1}(B) \subseteq f^{-1}(A).$$

$$(4.4)$$

Thus (ii) is valid.

(ii) \Rightarrow (iii). Let $p_{(\alpha,\beta)}$ be an IFP in *X* and let *A* be an IFN of $f(p_{(\alpha,\beta)})$. The condition (ii) implies that there exists an IFPOS *B* in *X* such that $p_{(\alpha,\beta)} \in B \subseteq f^{-1}(A)$ so that $p_{(\alpha,\beta)} \in B$ and $f(B) \subseteq f(f^{-1}(A)) \subseteq A$. Hence (iii) is true.

(iii) \Rightarrow (i). Let *B* be an IFOS in *Y* and let $p_{(\alpha,\beta)} \in f^{-1}(B)$. Then $f(p_{(\alpha,\beta)}) \in B$, and so *B* is an IFN of $f(p_{(\alpha,\beta)})$ since *B* is an IFOS. It follows from (iii) that there exists an IFPOS *A* in *X* such that $p_{(\alpha,\beta)} \in A$ and $f(A) \subseteq B$ so that

$$p_{(\alpha,\beta)} \in A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(B).$$

$$(4.5)$$

Applying Theorem 3.5 induces that $f^{-1}(B)$ is an IFPOS in *X*. Therefore, *f* is intuitionistic fuzzy precontinuous.

Definition 4.5 [7]. Let f be a mapping from an IFTS (X, τ) to an IFTS (Y, κ) . Then f is called an *intuitionistic fuzzy* α *-continuous mapping* if $f^{-1}(B)$ is an IF α OS in X for every IFOS B in Y.

THEOREM 4.6. Let f be a mapping from an IFTS (X, τ) to an IFTS (Y, κ) that satisfies

$$\operatorname{cl}\left(\operatorname{int}\left(\operatorname{cl}\left(f^{-1}(B)\right)\right)\right) \subseteq f^{-1}(\operatorname{cl}(B)) \tag{4.6}$$

for every IFS B in Y. Then f is intuitionistic fuzzy α -continuous.

Proof. Let *B* be an IFOS in *Y*. Then \overline{B} is an IFCS in *Y*, which implies from hypothesis that

$$\operatorname{cl}\left(\operatorname{int}\left(\operatorname{cl}\left(f^{-1}(\overline{B})\right)\right)\right) \subseteq f^{-1}\left(\operatorname{cl}(\overline{B})\right) = f^{-1}(\overline{B}).$$

$$(4.7)$$

It follows that

$$\overline{\operatorname{int}\left(\operatorname{cl}\left(\operatorname{int}\left(f^{-1}(B)\right)\right)\right)} = \operatorname{cl}\left(\overline{\operatorname{cl}\left(\operatorname{int}\left(f^{-1}(B)\right)\right)}\right)$$
$$= \operatorname{cl}\left(\operatorname{int}\left(\overline{\operatorname{int}\left(f^{-1}(B)\right)}\right)\right)$$
$$= \operatorname{cl}\left(\operatorname{int}\left(\operatorname{cl}\left(\overline{f^{-1}(B)}\right)\right)\right)$$
$$= \operatorname{cl}\left(\operatorname{int}\left(\operatorname{cl}\left(f^{-1}(\overline{B})\right)\right)\right) \subseteq f^{-1}(\overline{B})$$
$$= \overline{f^{-1}(B)}$$

so that $f^{-1}(B) \subseteq int(cl(int(f^{-1}(B))))$. This shows that $f^{-1}(B)$ is an IF α OS in X. Hence, f is intuitionistic fuzzy α -continuous.

THEOREM 4.7. Let f be a mapping from an IFTS (X, τ) to an IFTS (Y, κ) . Then the following assertions are equivalent.

- (i) f is intuitionistic fuzzy α -continuous.
- (ii) For each IFP $p_{(\alpha,\beta)} \in X$ and every IFN A of $f(p_{(\alpha,\beta)})$, there exists an IF α OS B such that $p_{(\alpha,\beta)} \in B \subseteq f^{-1}(A)$.
- (iii) For each IFP $p_{(\alpha,\beta)} \in X$ and every IFN A of $f(p_{(\alpha,\beta)})$, there exists an IF α OS B such that $p_{(\alpha,\beta)} \in B$ and $f(B) \subseteq A$.

Proof. (i) \Rightarrow (ii). Let $p_{(\alpha,\beta)}$ be an IFP in *X* and let *A* be an IFN of $f(p_{(\alpha,\beta)})$. Then there exists an IFOS *C* in *Y* such that $f(p_{(\alpha,\beta)}) \in C \subseteq A$. Since *f* is intuitionistic fuzzy α -continuous, $B := f^{-1}(C)$ is an IF α OS and

$$p_{(\alpha,\beta)} \in f^{-1}(f(p_{(\alpha,\beta)})) \subseteq f^{-1}(C) = B \subseteq f^{-1}(A).$$
 (4.9)

Thus (ii) is valid.

(ii) \Rightarrow (iii). Let $p_{(\alpha,\beta)}$ be an IFP in *X* and let *A* be an IFN of $f(p_{(\alpha,\beta)})$. Then there exists an IF α OS *B* such that $p_{(\alpha,\beta)} \in B \subseteq f^{-1}(A)$ by (ii). Thus, we have $p_{(\alpha,\beta)} \in B$ and $f(B) \subseteq f(f^{-1}(A)) \subseteq A$. Hence (iii) is valid.

(iii) \Rightarrow (i). Let *B* be an IFOS in *Y* and take $p_{(\alpha,\beta)} \in f^{-1}(B)$. Then $f(p_{(\alpha,\beta)}) \in f(f^{-1}(B)) \subseteq B$. Since *B* is an IFOS, it follows that *B* is an IFN of $f(p_{(\alpha,\beta)})$ so from (iii), there exists an IF α OS *A* such that $p_{(\alpha,\beta)} \in A$ and $f(A) \subseteq B$. This shows that

$$p_{(\alpha,\beta)} \in A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(B).$$

$$(4.10)$$

Using Theorem 3.5, we know that $f^{-1}(B)$ is an IF α OS in *X*, and hence *f* is intuitionistic fuzzy α -continuous.

Combining Theorems 4.6, 4.7, and [8, Theorems 3.12 and 3.13], we have the following characterization of an intuitionistic fuzzy α -continuous mapping.

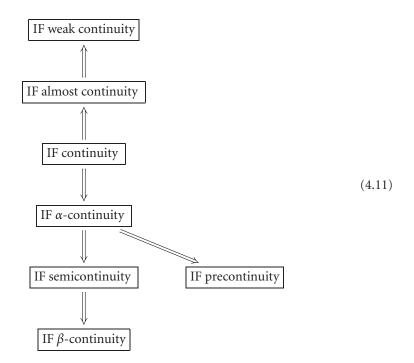
THEOREM 4.8. Let f be a mapping from an IFTS (X, τ) to an IFTS (Y, κ) . Then the following assertions are equivalent.

- (i) f is intuitionistic fuzzy α -continuous.
- (ii) If C is an IFCS in Y, then $f^{-1}(C)$ is an IF α CS in X.
- (iii) $\operatorname{cl}(\operatorname{int}(\operatorname{cl}(f^{-1}(B)))) \subseteq f^{-1}(\operatorname{cl}(B))$ for every IFS B in Y.
- (iv) For each IFP $p_{(\alpha,\beta)} \in X$ and every IFN A of $f(p_{(\alpha,\beta)})$, there exists an IF α OS B such that $p_{(\alpha,\beta)} \in B \subseteq f^{-1}(A)$.
- (v) For each IFP $p_{(\alpha,\beta)} \in X$ and every IFN A of $f(p_{(\alpha,\beta)})$, there exists an IF α OS B such that $p_{(\alpha,\beta)} \in B$ and $f(B) \subseteq A$.

Some aspects of intuitionistic fuzzy continuity, intuitionistic fuzzy almost continuity, intuitionistic fuzzy weak continuity, intuitionistic fuzzy α -continuity, intuitionistic fuzzy precontinuity, intuitionistic fuzzy semicontinuity, and intuitionistic fuzzy β -continuity

3100 Intuitionistic fuzzy continuity

are studied in [7] as well as in several papers. The relation among these types of intuitionistic fuzzy continuity is given in [7] as follows, where "IF" means "intuitionistic fuzzy":



The reverse implications are not true in the above diagram in general (see [7]).

THEOREM 4.9. Let f be a mapping from an IFTS (X, τ) to an IFTS (Y, κ) . If f is both intuitionistic fuzzy precontinuous and intuitionistic fuzzy semicontinuous, then it is intuitionistic fuzzy α -continuous.

Proof. Let *B* be an IFOS in *Y*. Since *f* is both intuitionistic fuzzy precontinuous and intuitionistic fuzzy semicontinuous, $f^{-1}(B)$ is both an IFPOS and an IFSOS in *X*. It follows from Theorem 3.2 that $f^{-1}(B)$ is an IF α OS in *X* so that *f* is intuitionistic fuzzy α -continuous.

Acknowledgments

The second author, Y. B. Jun, was supported by Korea Research Foundation Grant (KRF-2003-005-C00013). The authors are highly grateful to referees for valuable comments and suggestions for improving the paper.

References

- [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), no. 1, 87–96.
- K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), no. 1, 14–32.

- [3] A. S. Bin Shahna, On fuzzy strong semicontinuity and fuzzy precontinuity, Fuzzy Sets and Systems 44 (1991), no. 2, 303–308.
- [4] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), no. 1, 182–190.
- [5] D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), no. 1, 81–89.
- [6] P. Diamond and P. Kloeden, *Metric Spaces of Fuzzy Sets. Theory and Applications*, World Scientific, New Jersey, 1994.
- H. Gürçay, D. Çoker, and A. H. Eş, On fuzzy continuity in intuitionistic fuzzy topological spaces, J. Fuzzy Math. 5 (1997), no. 2, 365–378.
- [8] K. Hur and Y. B. Jun, On intuitionistic fuzzy alpha-continuous mappings, Honam Math. J. 25 (2003), no. 1, 131–139.
- [9] S. J. Lee and E. P. Lee, *The category of intuitionistic fuzzy topological spaces*, Bull. Korean Math. Soc. 37 (2000), no. 1, 63–76.
- [10] N. Palaniappan, Fuzzy Topology, CRC Press, Florida; Narosa, New Delhi, 2002.
- [11] S. S. Thakur and S. Singh, On fuzzy semi-preopen sets and fuzzy semi-precontinuity, Fuzzy Sets and Systems 98 (1998), no. 3, 383–391.

Joung Kon Jeon: Department of Mathematics Education, College of Education, Gyeongsang National University, Jinju 660-701, Korea

E-mail address: jjk5776@hanmail.net

Young Bae Jun: Department of Mathematics Education, College of Education, Gyeongsang National University, Jinju 660-701, Korea

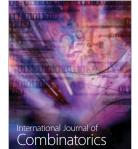
E-mail address: ybjun@gsnu.ac.kr

Jin Han Park: Division of Mathematical Sciences, College of Natural Sciences, Pukyong National University, Pusan 608-737, Korea

E-mail address: jihpark@pknu.ac.kr

Advances in **Operations Research**

The Scientific World Journal



Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

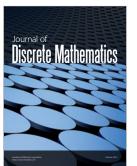
Complex Analysis

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

International Journal of Mathematics and Mathematical Sciences



Journal of **Function Spaces**

International Journal of Stochastic Analysis

