ON THE POWER-COMMUTATIVE KERNEL OF LOCALLY NILPOTENT GROUPS

COSTANTINO DELIZIA AND CHIARA NICOTERA

Received 5 July 2005

We define the power-commutative kernel of a group. In particular, we describe the powercommutative kernel of locally nilpotent groups, and of finite groups having a nontrivial center.

A group *G* is called *power commutative*, or a *PC-group*, if $[x^m, y^n] = 1$ implies [x, y] = 1 for all $x, y \in G$ such that $x^m \neq 1$, $y^n \neq 1$. So power-commutative groups are those groups in which commutativity of nontrivial powers of two elements implies commutativity of the two elements. Clearly, *G* is a *PC*-group if and only if $C_G(x) = C_G(x^n)$ for all $x \in G$ and all integers *n* such that $x^n \neq 1$. Obvious examples of *PC*-groups are groups in which commutativity is a transitive relation on the set of nontrivial elements (*CT-groups*) and groups of prime exponent.

Recall that a group *G* is called an *R*-group if $x^n = y^n$ implies x = y for all $x, y \in G$ and for all positive integers *n*. In other words, *R*-groups are groups in which the extraction of roots is unique. A result due to Mal'cev and Cernikov (see, e.g., [3]) states that every nilpotent torsion-free group is an *R*-group. There is a natural connection between *PC*-groups and *R*-groups. For, as pointed out in [3], a torsion-free group is a *PC*-group if and only if it is an *R*-group.

In [5], Wu gave the classification of locally finite PC-groups. In particular, she proved that a finite group is a PC-group if and only if the centralizer of each nontrivial element is abelian or of prime exponent. This result implies that a finite group having a nontrivial center is a PC-group if and only if it is abelian or it has prime exponent. Moreover, the class of PC-groups is contained in the class of groups in which the centralizer of each nontrivial element is nilpotent. This class of groups was investigated by many authors (see, e.g., [1, 4]).

In analogy to what is done in [2] to define the commutative-transitive kernel of a group, we introduce an ascending series

$$\{1\} = P_0(G) \le P_1(G) \le \dots \le P_t(G) \le \dots$$

$$(1)$$

of characteristic subgroups of G contained in the derived subgroup G'. We define $P_1(G)$ as

Copyright © 2005 Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences 2005:17 (2005) 2719–2722 DOI: 10.1155/IJMMS.2005.2719

the subgroup of *G*' generated by those commutators [x, y] such that there exist positive integers *n*, *m* with $x^n \neq 1$, $y^m \neq 1$, and $[x^n, y^m] = 1$. If t > 1 then $P_t(G)$ is defined by $P_t(G)/P_{t-1}(G) = P_1(G/P_{t-1}(G))$. Finally, the *PC-kernel* of *G* is the subgroup P(G) of *G*' defined by

$$P(G) = \bigcup_{t \in \mathbb{N}} P_t(G).$$
(2)

Obviously, for any group G, the PC-kernel P(G) is characteristic in G, G/P(G) is a PC-group, and G is a PC-group if and only if $P(G) = \{1\}$.

Let \mathscr{X} be a class of groups. Then one can ask whether there exists a nonnegative integer n such that $P_n(G) = P(G)$ for all $G \in \mathscr{X}$. Of course $P(G) = P_n(G)$ if and only if $G/P_n(G)$ is a PC-group.

In this paper, we give affirmative answers to the previous question when \mathscr{X} is the class of locally nilpotent groups, or the class of finite groups having a nontrivial center. In both cases, we prove that $P(G) = P_1(G)$ for all $G \in \mathscr{X}$.

Our first results are concerned with the power-commutative kernel of finite nilpotent groups.

PROPOSITION 1. Let p be a prime and G a finite p-group. Then $G/P_1(G)$ is a PC-group.

Proof. Notice that $P_1(G) \le M$ for every maximal subgroup M of G since $P_1(G) \le G' \le \Phi(G)$, where $\Phi(G)$ is the Frattini subgroup of G. This implies that $M/P_1(G)$ is a maximal subgroup of $G/P_1(G)$ if and only if M is a maximal subgroup of G.

Let *G* be a counterexample of least order. For any maximal subgroup *M* of *G* we obtain $M/P_1(G) \simeq (M/P_1(M))/(P_1(G)/P_1(M))$. Hence $M/P_1(G)$ is a *PC*-group since it is a quotient of a finite *PC*-group (see [5]). It follows that a maximal subgroup of $G/P_1(G)$ is abelian or it has exponent *p*.

Put $\overline{G} = G/P_1(G)$ and $\overline{H} = H/P_1(G)$ for all $P_1(G) \le H \le G$. If every maximal subgroup \overline{M} of \overline{G} has exponent p, then G is cyclic or of exponent p. In any case \overline{G} is a PC-group, that is a contradiction. So we may assume that \overline{G} has a maximal subgroup \overline{M} such that \overline{M} is abelian and $\overline{M}^p \ne 1$. Consider $g \in \overline{G} \setminus \overline{M}$, so $\overline{G} = \langle \overline{M}, g \rangle$. Moreover $|\overline{G} : \overline{M}| = p$.

If there exists $a \in \overline{M}$ such that $(ga)^p \neq 1$, then $(ga)^p \in \overline{M} \setminus \{1\}$. So, for all $y \in \overline{M}$ we get $[y, (ga)^p] = 1$, hence [y, g] = [y, ga] = 1. It follows that \overline{G} is abelian, a contradiction. Thus $(ga)^p = 1$ for all $a \in \overline{M}$, and in particular $g^p = 1$. It follows that $a^{g^{p-1}+\dots+g+1} = (ga)^p = 1$ for all $a \in \overline{M}$. This implies $a^p = 1$ for all $a \in C_{\overline{M}}(g)$, so $(C_{\overline{M}}(g))^p = C_{\overline{M}^p}(g) = 1$. But $\overline{M}^p \cap Z(\overline{G}) \neq 1$ since $\overline{M}^p \neq 1$, that is a contradiction.

PROPOSITION 2. Let G be a finite nilpotent group of order $n = p_1^{\alpha_1} \cdots p_t^{\alpha_t}$ $(p_1, \dots, p_t$ distinct primes). If t > 1 then $G/P_1(G)$ is abelian.

Proof. Let G_{p_i} be the Sylow p_i -subgroup of G for all $i \in \{1,...,t\}$; we will prove that $(G_{p_i})' \leq P_1(G)$ for all $i \in \{1,...,t\}$. Let $x, y \in G_{p_i} \setminus \{1\}$, $a \in G_{p_1} \times \cdots \times G_{p_{i-1}} \times G_{p_{i+1}} \times \cdots \times G_{p_i}$. Put |a| = m and $|x| = p_i^r$. Now $|ax| = mp_i^r$ as $(m, p_i^r) = 1$. Since $(ax)^{p_i^r} = a^{p_i^r}$ has order m we get $[(ax)^{p_i^r}, y] = [a^{p_i^r}, y] = 1$. Thus $[ax, y] = [x, y] \in P_1(G)$.

COROLLARY 3. Let G be a finite nilpotent group; then $G/P_1(G)$ is abelian or it has exponent p. In both cases $G/P_1(G)$ is a PC-group.

Proof. The result is an immediate consequence of the previous propositions and [5, Theorem 4].

Now we prove that the equality $P(G) = P_1(G)$ holds for every nilpotent group *G*.

THEOREM 4. Let G be a nilpotent group. Then $G/P_1(G)$ is a PC-group.

Proof. If *G* is torsion-free then *G* is a *PC*-group (see [3]), so $P_1(G) = \{1\}$ and the result is true. So we may suppose that the torsion subgroup *T* of *G* is nontrivial.

First of all, notice that if for elements $x, y \in G \setminus \{1\}$ there exists a positive integer *n* such that $x^n \neq 1$ and $[x^n, y] = 1$, then $[x, y] \in T$. This is obvious if $x \in T$ or $y \in T$, so we may assume $x, y \notin T$. Then $\langle x, y \rangle T/T \leq G/T$. So $\langle xT, yT \rangle$ is torsion-free, and $[(xT)^n, yT] = T$ implies $[x, y] \in T$. This means that $P_1(G) \subseteq T$.

If for any $x, y \in G$ the commutator [x, y] is periodic, then it is easy to see that there exists a positive integer *m* such that $[x, y^m] = 1$. In fact, $\langle x, y \rangle$ is a *FC*-group since $\langle x, y \rangle / Z(\langle x, y \rangle)$ is finite, and therefore the set $\{x^{y^t} | t \in \mathbb{Z}\}$ is finite.

Now notice that if $x \in T$ then $[x,g] \in P_1(G)$ for all $g \in G \setminus T$. In fact, $[x,g] \in T$ implies that there exists a positive integer *m* such that $[x,g^m] = 1$. So we get $[x,g] \in P_1(G)$ because $g^m \neq 1$.

Finally, let $x, y \in G \setminus P_1(G)$ such that $x^n \notin P_1(G)$ and $[x^n, y] \in P_1(G)$. If $x, y \in T$ then $\langle x, y \rangle$ is a finite nilpotent group and Corollary 3 implies that $\langle x, y \rangle / P_1(\langle x, y \rangle)$ is a finite *PC*-group. Hence $\langle x, y \rangle / P_1(G) \cap \langle x, y \rangle$ is a *PC*-group and $[x, y] \in P_1(G)$. If $x \in T$ or $y \in T$ then $[x, y] \in P_1(G)$, as noticed before. So we may suppose $x, y \in G \setminus T$. Since $[x^n, y] \in P_1(G) \subseteq T$, we get $[x^n, y] \in T$ and so there exists a positive integer *m* such that $[x^n, y^m] = 1$. Therefore $[x, y] \in P_1(G)$, and the proof is complete.

THEOREM 5. Let G be a locally nilpotent group. Then $P(G) = P_1(G)$.

Proof. Let $x, y \in G \setminus P_1(G)$ such that $x^n \notin P_1(G)$ and $[x^n, y] \in P_1(G)$. Then

$$[x^{n}, y] = \prod_{i=1}^{r} [a_{i}, b_{i}], \qquad (3)$$

where $a_i, b_i \in G$ for all i = 1, 2, ..., r, and $[a_i^{\alpha_i}, b_i^{\beta_i}] = 1$ for some positive integers α_i and β_i such that $a_i^{\alpha_i} \neq 1$ and $b_i^{\beta_i} \neq 1$.

Let $H = \langle x, y, a_1, \dots, a_r, b_1, \dots, b_r \rangle$. Then H is nilpotent, so $H/P_1(H)$ is a PC-group by Theorem 4. Since $[a_i, b_i] \in P_1(\langle a_i, b_i \rangle) \le P_1(H)$ for all $i = 1, 2, \dots, r$, we get $[x^n, y] \in P_1(H)$. Thus $[x, y] \in P_1(H)$, and therefore $[x, y] \in P_1(G)$.

Now it is possible to prove that $P(G) = P_1(G)$ for any finite group *G* such that $Z(G) \neq \{1\}$.

PROPOSITION 6. Let G be a finite group such that $Z(G) \neq \{1\}$. Then $[a,b] \in P_1(G)$ for all $a,b \in G \setminus \{1\}$ such that (|a|,|b|) = 1.

Proof. Put |a| = n and |b| = m. Then there exists $z \in Z(G) \setminus \{1\}$ such that |z| does not divide *n* or *m*. Suppose |z| does not divide *n*. Then $[(az)^n, b] = [a^n z^n, b] = [z^n, b] = 1$. Moreover $(az)^n = z^n \neq 1$ and this yields $[az, b] = [a, b] \in P_1(G)$.

2722 On the power-commutative kernel of locally nilpotent groups

PROPOSITION 7. Let G be a finite group such that $Z(G) \neq \{1\}$. Then $G/P_1(G)$ is nilpotent.

Proof. We may assume that the order of $G/P_1(G)$ is not a prime power. Let p be any prime divisor of $|G/P_1(G)|$. Then p divides |G| and $PP_1(G)/P_1(G)$ is a Sylow p-subgroup of $G/P_1(G)$ whenever P is a Sylow p-subgroup of G. We are going to show that $PP_1(G)/P_1(G)$ is normal in $G/P_1(G)$. Let $q \neq p$ be any prime dividing $|G/P_1(G)|$, and let Q be a Sylow q-subgroup of G. Then $QP_1(G)/P_1(G)$ centralizes $PP_1(G)/P_1(G)$, by Proposition 6. Thus the normalizer in $G/P_1(G)$ of $PP_1(G)/P_1(G)$ contains a Sylow q-subgroup of $G/P_1(G)$ for all prime divisors of its order. Therefore this normalizer is actually $G/P_1(G)$, and the result follows.

THEOREM 8. Let G be a finite group such that $Z(G) \neq \{1\}$. Then $G/P_1(G)$ is abelian or it has exponent p.

Proof. Since $G/P_1(G)$ is nilpotent by Proposition 7, by [5] it suffices to show that $G/P_1(G)$ is a *PC*-group. Suppose not, and let *G* be a counterexample of least order. We may assume *G* is not nilpotent, hence $P_1(G) \notin \Phi(G)$. Thus there exists a maximal subgroup *M* of *G* such that $P_1(G) \notin M$. In particular $G' \notin M$. If $Z(G) \notin M$, then there exists $z \in Z(G) \setminus M$. Since *M* is maximal, it follows that $\langle z \rangle M = G$. Hence *M* is normal in *G*, and *G/M* is cyclic. This in turn implies that $G' \subseteq M$, a contradiction. Thus $Z(G) \subseteq M$, and so $Z(M) \neq \{1\}$. Then $M/P_1(M)$ is a *PC*-group and therefore $G/P_1(G) \simeq (M/P_1(M))/((M \cap P_1(G))/P_1(M))$ is a *PC*-group, the final contradiction.

References

- [1] W. Feit, M. Hall Jr., and J. G. Thompson, *Finite groups in which the centralizer of any non-identity element is nilpotent*, Math. Z. **74** (1960), 1–17.
- [2] B. Fine, A. M. Gaglione, G. Rosenberger, and D. Spellman, *The commutative transitive kernel*, Algebra Colloq. 4 (1997), no. 2, 141–152.
- [3] A. G. Kurosh, *The Theory of Groups*, Chelsea, New York, 1960.
- [4] M. Suzuki, *Finite groups with nilpotent centralizers*, Trans. Amer. Math. Soc. 99 (1961), 425–470.
- [5] Y.-F. Wu, On locally finite power-commutative groups, J. Group Theory 3 (2000), no. 1, 57–65.

Costantino Delizia: Dipartimento di Matematica e Informatica, Università di Salerno, via Ponte don Melillo, 84084 Fisciano (SA), Italy

E-mail address: cdelizia@unisa.it

Chiara Nicotera: Dipartimento di Matematica e Informatica, Università di Salerno, via Ponte don Melillo, 84084 Fisciano (SA), Italy

E-mail address: cnicotera@unisa.it

Advances in **Operations Research**

The Scientific World Journal

Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

