IMPLICIT ITERATION PROCESS OF NONEXPANSIVE NON-SELF-MAPPINGS

SOMYOT PLUBTIENG AND RATTANAPORN PUNPAENG

Received 14 February 2005 and in revised form 14 June 2005

Suppose *C* is a nonempty closed convex subset of real Hilbert space *H*. Let $T : C \to H$ be a nonexpansive non-self-mapping and *P* is the nearest point projection of *H* onto *C*. In this paper, we study the convergence of the sequences $\{x_n\}, \{y_n\}, \{z_n\}$ satisfying $x_n = (1 - \alpha_n)u + \alpha_n T[(1 - \beta_n)x_n + \beta_n Tx_n], y_n = (1 - \alpha_n)u + \alpha_n PT[(1 - \beta_n)y_n + \beta_n PTy_n],$ and $z_n = P[(1 - \alpha_n)u + \alpha_n TP[(1 - \beta_n)z_n + \beta_n Tz_n]]$, where $\{\alpha_n\} \subseteq (0, 1), 0 \le \beta_n \le \beta < 1$ and $\alpha_n \to 1$ as $n \to \infty$. Our results extend and improve the recent ones announced by Xu and Yin, and many others.

1. Introduction

Let *C* be a nonempty closed convex subset of a Banach space *E*. Then a non-self-mapping *T* from *C* into *E* is called *nonexpansive* if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. Given $u \in C$ and $\{\alpha_n\}$ is a sequence such that $0 < \alpha_n < 1$, we can define a contraction $T_n : C \to E$ by

$$T_n x = (1 - \alpha_n) u + \alpha_n T x, \quad x \in C.$$
(1.1)

If *T* is a self-mapping (i.e., $T(C) \subset C$), then T_n maps *C* into itself, and hence, by Banach's contraction principle, T_n has a unique fixed point x_n in *C*, that is, we have

$$x_n = (1 - \alpha_n)u + \alpha_n T x_n, \quad \forall n \ge 1$$
(1.2)

(such a sequence $\{x_n\}$ is said to be an approximating fixed point of *T* since it possesses the property that if $\{x_n\}$ is bounded, then $\lim_{n\to\infty} ||Tx_n - x_n|| = 0$) whenever $\lim_{n\to\infty} \alpha_n = 1$. The strong convergence of $\{x_n\}$ as $\alpha_n \to 1$ for a self-mapping *T* of a bounded *C* was proved in a Hilbert space independently by Browder [1] and Halpern [3] and in a uniformly smooth Banach space by Reich [7]. Thereafter, Singh and Watson [8] extended the result of Browder and Halpern to nonexpansive non-self-mapping *T* satisfying Rothe's boundary condition $T(\partial C) \subset C$ (here ∂C denotes the boundary of *C*). Recently, Xu and Yin [11] proved that if *C* is a nonempty closed convex (not necessarily bounded) subset of Hilbert space *H*, if $T : C \to H$ is a nonexpansive non-self-mapping, and if $\{x_n\}$ is the sequence defined by (1.2) which is bounded, then $\{x_n\}$ converges strongly as $\alpha_n \to 1$ to a

Copyright © 2005 Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences 2005:19 (2005) 3103–3110 DOI: 10.1155/IJMMS.2005.3103

fixed point of *T*. Marino and Trombetta [5] defined contractions S_n and U_n from *C* into itself by

$$S_n x = (1 - \alpha_n) u + \alpha_n PT x, \quad \forall x \in C,$$
(1.3)

$$U_n x = P[(1 - \alpha_n)u + \alpha_n T x], \quad \forall x \in C,$$
(1.4)

where *P* is the nearest point projection of *H* onto *C*. Then by the Banach contraction principle, there exists a unique fixed point $y_n(\text{resp.}, z_n)$ of $S_n(\text{resp.}, U_n)$ in *C*, that is,

$$y_n = (1 - \alpha_n)u + \alpha_n PT y_n, \tag{1.5}$$

$$z_n = P[(1 - \alpha_n)u + \alpha_n T z_n].$$
(1.6)

Xu and Yin [11] also proved that if *C* is a nonempty closed convex subset of a Hilbert space *H*, if $T: C \to H$ is a nonexpansive non-self-mapping satisfying the weak inwardness condition, and $\{x_n\}$ is bounded, then $\{y_n\}$ (resp., $\{z_n\}$) defined by (1.5) (resp., (1.6)) converges strongly as $\alpha_n \to 1$ to a fixed point of *T*.

Let *C* be a nonempty convex subset of Banach space *E*. Then for $x \in C$, we define the inward set $I_c(x)$ as follows:

$$I_{c}(x) = \{ y \in E : y = x + a(z - x) \text{ for some } z \in C \ a \ge 0 \}.$$
(1.7)

A mapping $T : C \to E$ is said to be *inward* if $Tx \in I_c(x)$ for all $x \in C$. *T* is also said to be *weakly inward* if for each $x \in C$, *Tx* belongs to the closure of $I_c(x)$.

In this paper, we extend Xu and Yin's results [11] to study the contraction mappings T_n , S_n , and U_n define by

$$T_n x = (1 - \alpha_n) u + \alpha_n T[(1 - \beta_n) x + \beta_n T x], \qquad (1.8)$$

$$S_n x = (1 - \alpha_n) u + \alpha_n PT[(1 - \beta_n) x + \beta_n PTx], \qquad (1.9)$$

$$U_n x = P[(1 - \alpha_n)u + \alpha_n T P[(1 - \beta_n)x + \beta_n T x]], \qquad (1.10)$$

where $\{\alpha_n\} \subseteq (0,1), 0 \le \beta_n \le \beta < 1$, and *P* is the nearest point projection of *H* onto *C*. Moreover, we also prove the strong convergence of the sequences $\{x_n\}, \{y_n\}$, and $\{z_n\}$ satisfying

$$x_n = (1 - \alpha_n)u + \alpha_n T[(1 - \beta_n)x_n + \beta_n T x_n], \qquad (1.11)$$

$$y_n = (1 - \alpha_n)u + \alpha_n PT[(1 - \beta_n)y_n + \beta_n PTy_n], \qquad (1.12)$$

$$z_n = P[(1 - \alpha_n)u + \alpha_n TP[(1 - \beta_n)z_n + \beta_n Tz_n]], \qquad (1.13)$$

where $\alpha_n \to 1$ as $n \to \infty$. We note that if $\beta_n \equiv 0$, then (1.11), (1.12), (1.13) reduce to (1.2), (1.5), and (1.6), respectively. The results presented in this paper extend and improve the corresponding onces announced by Xu and Yin [11], and others.

2. Main results

In this section, we prove the strong convergence theorems for nonexpansive non-selfmappings. To prove our results, we use the following theorem. THEOREM 2.1. Let H be a real Hilbert space, let C be a nonempty closed convex subset of H, and let $T : C \to H$ be a nonexpansive non-self-mapping. Suppose that for some $u \in C$, $\{\alpha_n\} \subseteq (0,1)$, and $0 \le \beta_n \le \beta < 1$, the mapping T_n defined by (1.8) has a (unique) fixed point $x_n \in C$ for all $n \ge 1$. Then T has a fixed point if and only if $\{x_n\}$ remains bounded as $\alpha_n \to 1$. In this case, $\{x_n\}$ converges strongly as $\alpha_n \to 1$ to a fixed point of T.

Proof. We denote by F(T) the fixed point set of T. Suppose that F(T) is nonempty. Let $w \in F(T)$. Then for each $n \ge 1$, we have

$$\begin{aligned} ||w - x_n|| &= ||w - (1 - \alpha_n)u - \alpha_n T[(1 - \beta_n)x_n + \beta_n Tx_n]|| \\ &\leq (1 - \alpha_n)||w - u|| + \alpha_n||w - T[(1 - \beta_n)x_n + \beta_n Tx_n]|| \\ &\leq (1 - \alpha_n)||w - u|| + \alpha_n||w - (1 - \beta_n)x_n - \beta_n Tx_n|| \\ &\leq (1 - \alpha_n)||w - u|| + \alpha_n(1 - \beta_n)||w - x_n|| + \alpha_n\beta_n||w - x_n|| \\ &= (1 - \alpha_n)||w - u|| + \alpha_n||w - x_n||, \end{aligned}$$

$$(2.1)$$

and hence $(1 - \alpha_n) || w - x_n || \le (1 - \alpha_n) || w - u ||$, for all $n \ge 1$. This implies that $|| w - x_n || \le || w - u ||$ for all $n \ge 1$. Then $\{x_n\}$ is a bounded sequence. Conversely, suppose that $\{x_n\}$ is bounded, z is a weak cluster point of $\{x_n\}$, and $\alpha_n \to 1$ as $n \to \infty$. Then we show that $F(T) \ne \emptyset$ and $\{x_n\}$ converges strongly to a fixed point of T. We choose a subsequence $\{x_{n_i}\}$ of the sequence $\{x_n\}$ with $\alpha_{n_i} \to 1$ such that $x_{n_i} \to z$ weakly, we can define a real-valued function g on H given by

$$g(x) = \limsup_{i \to \infty} ||x_{n_i} - x||^2, \quad \text{for every } x \in H,$$
(2.2)

observing that $||x_{n_i} - x||^2 = ||x_{n_i} - z||^2 + 2\langle x_{n_i} - z, z - x \rangle + ||z - x||^2$. Since $x_{n_i} \rightarrow z$ weakly, we immediately get

$$g(x) = g(z) + ||x - z||^2, \quad \forall x \in H,$$
 (2.3)

in particular,

$$g(Tz) = g(z) + ||Tz - z||^2.$$
(2.4)

On the other hand, we have

$$\begin{aligned} ||x_{n_{i}} - Tx_{n_{i}}|| &\leq (1 - \alpha_{n_{i}})||u - Tx_{n_{i}}|| + \alpha_{n_{i}}||T[(1 - \beta_{n_{i}})x_{n_{i}} + \beta_{n_{i}}Tx_{n_{i}}] - Tx_{n_{i}}|| \\ &\leq (1 - \alpha_{n_{i}})||u - Tx_{n_{i}}|| + \alpha_{n_{i}}||(1 - \beta_{n_{i}})x_{n_{i}} + \beta_{n_{i}}Tx_{n_{i}} - x_{n_{i}}|| \\ &\leq (1 - \alpha_{n_{i}})||u - Tx_{n_{i}}|| + \beta_{n_{i}}||Tx_{n_{i}} - x_{n_{i}}||, \end{aligned}$$
(2.5)

for all $i \ge 1$. This implies that $(1 - \beta_{n_i}) ||x_{n_i} - Tx_{n_i}|| \le (1 - \alpha_{n_i}) ||u - Tx_{n_i}||$, and hence

$$||x_{n_i} - Tx_{n_i}|| = \frac{(1 - \alpha_{n_i})}{(1 - \beta_{n_i})} ||u - Tx_{n_i}||$$

$$\leq \frac{(1 - \alpha_{n_i})}{(1 - \beta)} ||u - Tx_{n_i}|| \longrightarrow 0 \quad \text{as } i \longrightarrow \infty.$$
(2.6)

3106 Implicit iteration process

Note that

$$||x_{n_{i}} - Tz||^{2} = ||x_{n_{i}} - Tx_{n_{i}} + Tx_{n_{i}} - Tz||^{2}$$

$$\leq (||x_{n_{i}} - Tx_{n_{i}}|| + ||Tx_{n_{i}} - Tz||)^{2}$$

$$= ||x_{n_{i}} - Tx_{n_{i}}||^{2} + 2||x_{n_{i}} - Tx_{n_{i}}|| ||Tx_{n_{i}} - Tz|| + ||Tx_{n_{i}} - Tz||^{2}$$
(2.7)

for all $n \in \mathbb{N}$. Hence,

$$g(Tz) = \limsup_{i \to \infty} ||x_{n_i} - Tz||^2$$

$$\leq \limsup_{i \to \infty} ||Tx_{n_i} - Tz||^2$$

$$\leq \limsup_{i \to \infty} ||x_{n_i} - z||^2 = g(z).$$
(2.8)

This, together with (2.4), implies that Tz = z and z is a fixed point of T. Now since F(T) is nonempty, closed, and convex, there exists a unique $v \in F(T)$ that is closest to u; namely, v is the nearest point projection of u onto F(T). For any $y \in F(T)$, we have

$$||(x_{n} - u) + \alpha_{n}(u - y)||^{2} = ||((1 - \alpha_{n})u + \alpha_{n}T[(1 - \beta_{n})x_{n} + \beta_{n}Tx_{n}] - u) + \alpha_{n}(u - y)||^{2}$$

$$= \alpha_{n}^{2}||T[(1 - \beta_{n})x_{n} + \beta_{n}Tx_{n}] - y||^{2}$$

$$\leq \alpha_{n}^{2}||(1 - \beta_{n})x_{n} + \beta_{n}Tx_{n} - y||^{2}$$

$$= \alpha_{n}^{2}||(1 - \beta_{n})(x_{n} - y) + \beta_{n}(Tx_{n} - y)||^{2}$$

$$\leq \alpha_{n}^{2}((1 - \beta_{n})||x_{n} - y|| + \beta_{n}||x_{n} - y||)^{2}$$

$$= \alpha_{n}^{2}||x_{n} - u + u - y||^{2},$$
(2.9)

and so

$$||x_{n} - u||^{2} + \alpha_{n}^{2}||u - y||^{2} + 2\alpha_{n}\langle x_{n} - u, u - y \rangle$$

$$\leq \alpha_{n}^{2} (||x_{n} - u||^{2} + ||u - y||^{2} + 2\langle x_{n} - u, u - y \rangle)$$

$$\leq \alpha_{n} ||x_{n} - u||^{2} + \alpha_{n} ||u - y||^{2} + 2\alpha_{n}\langle x_{n} - u, u - y \rangle$$
(2.10)

for all $n \ge 1$. It follows that

$$||x_n - u||^2 \le \alpha_n ||y - u||^2 \le ||y - u||^2, \quad \forall y \in F(T), \ \{\alpha_n\} \subseteq (0, 1) \ \forall n \in \mathbb{N}.$$
 (2.11)

Since the norm of H is weakly lower semicontinuous (w-l.s.c.), we get

$$||z - u|| \le \liminf_{i \to \infty} ||x_{n_i} - u|| \le ||y - u||, \quad \forall y \in F(T).$$
 (2.12)

 \square

 \square

Therefore, we must have z = v for v is the unique element in F(T) that is closest to u. This shows that v is the only weak cluster point of $\{x_n\}$ with $\alpha_n \to 1$. It remains to verify that the convergence is strong. In fact, it follows that

$$||x_n - \nu||^2 = ||x_n - u||^2 - ||u - \nu||^2 - 2\langle x_n - \nu, \nu - u \rangle$$

$$\leq -2\langle x_n - \nu, \nu - u \rangle \longrightarrow 0 \quad \text{as } n \longrightarrow \infty.$$
(2.13)

This completes the proof.

COROLLARY 2.2. Let H, C, T be as in Theorem 2.1. Suppose in addition that C is bounded and that the weak inwardness condition is satisfied. Then for each $u \in C$, the sequence $\{x_n\}$ satisfying (1.11) converges strongly as $\alpha_n \to 1$ to a fixed point of T.

THEOREM 2.3. Let H be a Hilbert space, let C be a nonempty closed convex subset of H, let $T: C \to H$ be a nonexpansive non-self-mapping satisfying the weak inwardness condition, and let $P: H \to C$ be the nearest point projection. Suppose that for some $u \in C$, each $\{\alpha_n\} \subseteq (0,1)$ and $0 \le \beta_n \le \beta < 1$. Then, a mapping S_n defined by (1.9) has a unique fixed point $y_n \in C$. Further, T has a fixed point if and only if $\{y_n\}$ remains bounded as $\alpha_n \to 1$. In this case, $\{y_n\}$ converges strongly as $\alpha_n \to 1$ to a fixed point of T.

Proof. It is straightforward that $S_n : C \to C$ is a contraction for every $n \ge 1$. Therefore by the Banach contraction principle, there exists a unique fixed point y_n of S_n in C satisfying (1.12). Let w be a fixed point of T. Then as in the proof of Theorem 2.1, $\{y_n\}$ is bounded. Conversely, suppose that $\{y_n\}$ is bounded. Applying Theorem 2.1, we obtain that $\{y_n\}$ converges strongly to a fixed point z of PT. Next, let us show that $z \in F(T)$. Since z = PTz and P is the nearest point projection of H onto C, it follows by [9] that

$$\langle Tz - z, J(z - v) \rangle \ge 0, \quad \forall v \in C.$$
 (2.14)

On the other hand, Tz belongs to the closure of $I_c(z)$ by the weak inwardness conditions. Hence for each integer $n \ge 1$, there exist $z_n \in C$ and $a_n \ge 0$ such that the sequence

$$r_n := z + a_n(z_n - z) \longrightarrow Tz.$$
(2.15)

Thus it follows that

$$0 \le a_n \langle Tz - z, z - z_n \rangle$$

= $\langle Tz - z, a_n(z - z_n) \rangle$
= $\langle Tz - z, z - r_n \rangle \longrightarrow \langle Tz - z, z - Tz \rangle$
= $- ||Tz - z||^2.$ (2.16)

Hence we have Tz = z.

COROLLARY 2.4 (see [11, Theorem 2]). Let H, C, T, P, u, and $\{\alpha_n\}$ be as in Theorem 2.3. Then, a mapping S_n given by (1.3) has a unique fixed point $y_n \in C$ such that $y_n = (1 - \alpha_n)u + \alpha_n PT y_n$. Further, T has a fixed point if and only if $\{y_n\}$ remains bounded as $\alpha_n \to 1$. In this case, $\{y_n\}$ converges strongly as $\alpha_n \to 1$ to a fixed point of T. THEOREM 2.5. Let H, C, T, P, u, $\{\alpha_n\}$, and $\{\beta_n\}$ be as in Theorem 2.3. Then a mapping U_n defined by (1.10) has a unique fixed point $z_n \in C$. Further, T has a fixed point if and only if $\{z_n\}$ remains bounded as $\alpha_n \to 1$ and $\beta_n \to 0$. In this case, $\{z_n\}$ converges strongly as $\alpha_n \to 1$ and $\beta_n \to 0$ to a fixed point of T.

Proof. It follows by the Banach contraction principle that there exists a unique fixed point z_n of U_n such that

$$z_n = P[(1 - \alpha_n)u + \alpha_n TP[(1 - \beta_n)z_n + \beta_n Tz_n]].$$

$$(2.17)$$

Let $w \in F(T)$. Then for each $n \ge 1$, we have

$$\begin{aligned} ||w - z_{n}|| &= ||Pw - P[(1 - \alpha_{n})u + \alpha_{n}TP((1 - \beta_{n})z_{n} + \beta_{n}Tz_{n})]|| \\ &\leq ||w - (1 - \alpha_{n})u - \alpha_{n}TP[(1 - \beta_{n})z_{n} + \beta_{n}Tz_{n}]|| \\ &\leq (1 - \alpha_{n})||w - u|| + \alpha_{n}||w - TP[(1 - \beta_{n})z_{n} + \beta_{n}Tz_{n}]|| \\ &\leq (1 - \alpha_{n})||w - u|| + \alpha_{n}(1 - \beta_{n})||w - z_{n}|| + \alpha_{n}\beta_{n}||w - Tz_{n}|| \\ &\leq (1 - \alpha_{n})||w - u|| + \alpha_{n}(1 - \beta_{n})||w - z_{n}|| + \alpha_{n}\beta_{n}||w - z_{n}|| \\ &= (1 - \alpha_{n})||w - u|| + \alpha_{n}||w - z_{n}||, \end{aligned}$$

$$(2.18)$$

and hence $(1 - \alpha_n) ||w - z_n|| \le (1 - \alpha_n) ||w - u||$, for all n > 1. This implies that $||w - z_n|| \le ||w - u||$, for all n > 1. Then $\{z_n\}$ is bounded. Conversely, suppose that $\{z_n\}$ is bounded, $\alpha_n \to 1$, and $\beta_n \to 0$. We show that $F(T) \neq \emptyset$. For any subsequence $\{z_{n_i}\}$ of the sequence $\{z_n\}$ converging weakly to \bar{z} such that $\alpha_{n_i} \to 1$, we can define a real-valued function g on H given by

$$g(z) = \limsup_{i \to \infty} ||z_{n_i} - z||^2, \quad \text{for every } z \in H,$$
(2.19)

observing that $||z_{n_i} - z||^2 = ||z_{n_i} - \bar{z}||^2 + 2\langle z_{n_i} - \bar{z}, \bar{z} - z \rangle + ||\bar{z} - z||^2$. Since $z_{n_i} \to \bar{z}$ weakly, we get

$$g(z) = g(\bar{z}) + \|\bar{z} - z\|^2, \quad \forall z \in H,$$
 (2.20)

in particular,

$$g(PT\bar{z}) = g(\bar{z}) + \|PT\bar{z} - \bar{z}\|^2.$$
(2.21)

For instance, the straightforward verification gives

$$||z_{n_{i}} - PTz_{n_{i}}|| = ||P[(1 - \alpha_{n_{i}})u + \alpha_{n_{i}}TP((1 - \beta_{n_{i}})z_{n_{i}} + \beta_{n_{i}}Tz_{n_{i}})] - PTz_{n_{i}}|| \leq (1 - \alpha_{n_{i}})||u - Tz_{n_{i}}|| + \alpha_{n_{i}}\beta_{n_{i}}||Tz_{n_{i}} - z_{n_{i}}||, \quad \forall i \ge 1,$$
(2.22)

and this implies that $||z_{n_i} - PTz_{n_i}|| \le (1 - \alpha_{n_i})||u - Tz_{n_i}|| + \alpha_{n_i}\beta_{n_i}||Tz_{n_i} - z_{n_i}|| \to 0$ as $i \to \infty$. Moreover, we note that

$$\begin{aligned} ||z_{n_{i}} - PT\bar{z}||^{2} &= ||z_{n_{i}} - PTz_{n_{i}} + PTz_{n_{i}} - PT\bar{z}||^{2} \\ &\leq (||z_{n_{i}} - PTz_{n_{i}}|| + ||PTz_{n_{i}} - PT\bar{z}||)^{2} \\ &= ||z_{n_{i}} - PTz_{n_{i}}||^{2} + 2||z_{n_{i}} - PTz_{n_{i}}|| ||PTz_{n_{i}} - PT\bar{z}|| + ||PTz_{n_{i}} - PT\bar{z}||^{2} \\ \end{aligned}$$
(2.23)

for all $i \in \mathbb{N}$. It follows that

$$g(PT\bar{z}) = \limsup_{i \to \infty} ||z_{n_i} - PT\bar{z}||^2$$

$$\leq \limsup_{i \to \infty} ||PTz_{n_i} - PT\bar{z}||^2$$

$$\leq \limsup_{i \to \infty} ||z_{n_i} - \bar{z}||^2 = g(z)$$
(2.24)

which in turn, together with (2.21), implies that $PT(\bar{z}) = \bar{z}$. Since *T* satisfies the weak inwardness condition, by the same argument as in the proof of Theorem 2.3, we see that \bar{z} is a fixed point of *T*. For any $w \in F(T)$, we have

$$\alpha_n \Big[TP((1-\beta_n)w + \beta_n w) - u \Big] + u = \alpha_n (w-u) + u$$

= $\alpha_n w + (1-\alpha_n)u$ (2.25)
= $P(\alpha_n w + (1-\alpha_n)u)$

for all $n \in \mathbb{N}$. By following as in the proof of Theorem 2.1, we have

$$||z_n - u||^2 \le \alpha_n ||w - u||^2 \le ||w - u||^2, \quad \forall w \in F(T), \ \{\alpha_n\} \subseteq (0, 1) \ \forall n \in \mathbb{N}.$$
(2.26)

From (2.26) and the w-l.s.c. of the norm of *H*, it follows that

$$\|\bar{z} - u\| \le \liminf_{n \to \infty} \|z_n - u\| \le \|w - u\|$$
(2.27)

for all $w \in F(T)$. Hence \overline{z} is the nearest point projection z in F(T) of u onto F(T) which exists uniquely since F(T) is nonempty, closed, and convex. Moreover,

$$||z_n - z||^2 = ||z_n - u||^2 - ||u - z||^2 - 2\langle z_n - z, z - u \rangle$$

$$\leq -2\langle z_n - z, z - u \rangle \longrightarrow 0 \quad \text{as } n \longrightarrow \infty.$$
(2.28)

This completes the proof.

COROLLARY 2.6 (see [11, Theorem 2]). Let H, C, T, P, u, and $\{\alpha_n\}$ be as in Theorem 2.3. Then a mapping U_n defined by (1.4) has a unique fixed point $z_n \in C$. Further, T has a fixed point if and only if $\{z_n\}$ remains bounded as $\alpha_n \to 1$. In this case, $\{z_n\}$ converges strongly as $\alpha_n \to 1$ to a fixed point of T.

3110 Implicit iteration process

Acknowledgment

The authors would like to thank the Thailand Research Fund for financial support.

References

- [1] F. E. Browder, *Convergence of approximants to fixed points of nonexpansive non-linear mappings in Banach spaces*, Arch. Rational Mech. Anal. **24** (1967), 82–90.
- [2] K. Deimling, *Fixed points of condensing maps*, Volterra Equations (Proc. Helsinki Sympos. Integral Equations, Otaniemi, 1978), Lecture Notes in Math., vol. 737, Springer, Berlin, 1979, pp. 67–82.
- [3] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957–961.
- [4] J. S. Jung and S. S. Kim, Strong convergence theorems for nonexpansive nonself-mappings in Banach spaces, Nonlinear Anal. 33 (1998), no. 3, 321–329.
- [5] G. Marino and G. Trombetta, On approximating fixed points for nonexpansive maps, Indian J. Math. 34 (1992), no. 1, 91–98.
- [6] S. Reich, Fixed points of condensing functions, J. Math. Anal. Appl. 41 (1973), 460–467.
- [7] _____, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. **75** (1980), no. 1, 287–292.
- [8] S. P. Singh and B. Watson, On approximating fixed points, Nonlinear Functional Analysis and Its Applications, Part 2 (Berkeley, Calif, 1983), Proc. Sympos. Pure Math., vol. 45, American Mathematical Society, Rhode Island, 1986, pp. 393–395.
- [9] W. Takahashi, *Nonlinear Functional Analysis. Fixed Point Theory and Its Applications*, Yokohama Publishers, Yokohama, 2000.
- [10] W. Takahashi and G.-E. Kim, Strong convergence of approximants to fixed points of nonexpansive nonself-mappings in Banach spaces, Nonlinear Anal. 32 (1998), no. 3, 447–454.
- [11] H. K. Xu and X. M. Yin, Strong convergence theorems for nonexpansive non-self-mappings, Nonlinear Anal. 24 (1995), no. 2, 223–228.

Somyot Plubtieng: Department of Mathematics, Faculty of Science, Naresuan University, Phitsan-ulok 65000, Thailand

E-mail address: somyotp@nu.ac.th

Rattanaporn Punpaeng: Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

E-mail address: g46060088@nu.ac.th

Advances in **Operations Research**

The Scientific World Journal

Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

