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We study prime divisors of various sequences of positive integers A(n) + 1, n = 1, . . . ,N ,
such that the ratios a(n)= A(n)/A(n− 1) have some number-theoretic or combinatorial
meaning. In the case a(n)= n, we obviously have A(n)= n!, for which several new results
about prime divisors of n! + 1 have recently been obtained.

1. Introduction

We denote by P(m) the largest prime factor of a positive integer m.
Let N ≥ 1 be sufficiently large. Assume that a sequence of positive rational numbers

a(i) for i= 1, . . . ,N is such that

A(n)=
n∏
i=1

a(i) (1.1)

takes integer values for every n= 1, . . . ,N . For several such sequences, we get lower bounds
on the largest prime factor of the “shifted” products P(A(n) + 1).

More specifically, we consider
(i) products of consecutive values of an integer-valued polynomial g(X)∈Q[X]:

G(n)=
n∏
i=1

∣∣g(i)
∣∣; (1.2)

(ii) products of consecutive values of an arithmetic function

F(n)=
n∏
i=1

f (i), (1.3)

where f (i) is one of the following functions: ϕ(i) the Euler function, σ(i) the
sum of divisors function, τ(i) the number of divisors function, Ω(i) and ω(i)
the number of prime factors function (counted with and without multiplicities,
resp.);
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(iii) products of middle binomial coefficients

M(n)=
n∏
i=1

(
2i
i

)
; (1.4)

(iv) q-factorials

Fq(n)= n!q =
n∏
i=1

(
qi− 1

)
, (1.5)

where q ≥ 2 is a fixed integer;
or slight variations of those.

Our approach generally follows that of [3, 4, 6], where similar questions are considered
for n!. However, treatment of each of the above sequences also requires some specific
ingredients.

Throughout the paper, we use the Vinogradov symbols �, �, and �, as well as the
Landau symbols O and o with their regular meanings. We recall that U � V and U =
O(V) are both equivalent to the inequality |U| ≤ cV with some constant c > 0. Fur-
thermore, we say that two functions U and V are “equivalent” and write U ∼ V if U =
(1 + o(1))V .

For z > 0, we use logz to denote the natural logarithm of z. For a positive integer k ≥ 2,
we write logk z for the composition of log with itself k times evaluated at z. We use the
letter p to denote a prime number, and π(z) to denote the number of prime numbers
p ≤ z.

2. General framework

Here, we present our results in the most generic form even if this is somewhat technically
cluttered. Our bounds are based on assumed growth conditions and divisibility properties
of our sequences, which are readily available for many interesting concrete examples.

Throughout this paper, we assume that a(n) > 1 holds for all n= 1,2, . . . , and also that

log2A(n)≥ (1 + o(1)
)

logn as n−→∞. (2.1)

2.1. Notation and preparations. Let d ≥ 1 be fixed integer. Our goal is to prove that
there exist at least d positive integers n≤N such that P(A(n) + 1) is quite large.

For n≤N , we write

b(N)=
N∑
n=1

logA(n),

W(N)= log

( N∏
n=1

(
A(n) + 1

))
.

(2.2)



Eric Levieil et al. 3059

We remark that

W(N)=
N∑
n=1

log
(
A(n) + 1

)≥ N∑
n=1

n∑
i=1

loga(i)= b(N). (2.3)

We need two functions ϑ(p) and η(p) such that

A(n) + 1 
≡ 0 (mod p), for n < ϑ(p), n > η(p). (2.4)

Obviously, we can always take ϑ(p) = 1 and η(p) = N , but in what follows we always
assume that ϑ(p) is the smallest positive integer such that p |A(ϑ(p)) + 1.

We note that if p |A(n) + 1 for some n≤N , then

ϑ(p)≤ n≤ η(p). (2.5)

We define

∆(p)= η(p)− ϑ(p). (2.6)

We now write a(i)=u(i)/v(i) with coprime positive integers u(i), v(i), set h(i)=max{u(i),
v(i)}, and put

h(n)= max
1≤i≤n

log
(
h(i)

)
. (2.7)

Note that h(i) is the naı̈ve height of a(i).
Let � be the set of all the prime factors of

∏N
n=1(A(n) + 1). Thus,

N∏
n=1

(
A(n) + 1

)= ∏
p∈�

pα(p). (2.8)

For a prime number p ∈�, we write

s(p)=max
{
s : ps | A(n) + 1 for some n= 1, . . . ,N

}
, (2.9)

and for 1≤ s≤ s(p), we write

t(p,s)= #
{
n : 1≤ n≤N , A(n)≡−1 (mod ps)

}
. (2.10)

We often use the following combinatorial fact that

∑
p∈�

α(p) log p =
∑
p∈�

s(p)∑
s=1

t(p,s) log p. (2.11)

Lemma 2.1. The following bound holds:

t(p,s)≤ 1 +
h(N)

s log p− log2
∆(p). (2.12)
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Proof. We can suppose that t(p,s) ≥ 2, otherwise there is nothing to prove. Using (2.5),
we obtain that there must exist two integers n and m with

ϑ(p)≤ n <m≤ η(p), m−n≤ ∆(p)
t(p,s)− 1

, (2.13)

such that ps divides both A(n) + 1 and A(m) + 1. Since

A(m) + 1= (A(n) + 1
) m∏
i=n+1

a(i)−
( m∏

i=n+1

a(i)− 1

)
, (2.14)

we get that

(
A(m) + 1

) m∏
i=n+1

v(i)= (A(n) + 1
) m∏
i=n+1

u(i)−
( m∏

i=n+1

u(i)−
m∏

i=n+1

v(i)

)
, (2.15)

an equation which when reduced modulo ps gives

ps
∣∣∣∣∣
( m∏

i=n+1

u(i)−
m∏

i=n+1

v(i)

)
. (2.16)

The number appearing on the right-hand side of the above divisibility formula is nonzero
(because a(i) > 1 for all i= n+ 1, . . . ,m), therefore

ps ≤
∣∣∣∣∣

m∏
i=n+1

u(i)−
m∏

i=n+1

v(i)

∣∣∣∣∣≤ 2
m∏

i=n+1

h(i), (2.17)

which gives

s log p ≤ log2 +
m∑
i=n

logh(i)≤ log2 + (m−n)h(N), (2.18)

and finishes the proof. �

We remark that we have a simple upper bound on t(p,s), that is ∆(p). We choose to
deal with a more general case, and we suppose that we have

t(p,s)≤D∆(p)1−ρ(p), (2.19)

where D is a constant and 0≤ ρ(p)≤ ρ < 1 for some constant ρ.
For many sequences, we have the bound (2.19) with some specific values of D and

ρ(p) (see Section 3 for some specific examples).
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We recall that

j∑
k=i

1
k
≤ 1

i
+
∫ j

i

dt

t
= log

(
j

i

)
+ 1. (2.20)

From now on, we assume that

log
(

h(N)
)≥D+ 2. (2.21)

We put

Ψ(p)= h(N)∆(p)
(

log2A(N)− ρ(p) log∆(p)
)
. (2.22)

Lemma 2.2. If the bound (2.19) holds, then

s(p)∑
s=1

t(p,s) log p ≤ log
(
A(N) + 1

)
+Ψ(p)

(
1− log2

h(N)

)−1

, (2.23)

provided that N is sufficiently large.

Proof. We put

s1(p)=
⌊

h(N)∆(p)ρ(p)

log p

⌋
. (2.24)

We first assume that s1(p) < s(p). We then put s2(p)= s1(p) + 1. Using the bound (2.19),
we obtain the inequality

s1(p)∑
s=1

t(p,s) log p ≤Dh(N)∆(p). (2.25)

Using Lemma 2.1 and the trivial bound s(p) log p ≤ log(A(N) + 1), we obtain

s(p)∑
s=s2(p)

t(p,s) log p ≤
s(p)∑

s=s2(p)

(
log p+

h(N)∆(p)
s(1− log2/s log p)

)

≤ s(p) log p+ h(N)∆(p)
(

1− log2
s2(p) log p

)−1 s(p)∑
s=s2(p)

1
s

≤ log
(
A(N) + 1

)
+ h(N)∆(p)

(
1− log2

h(N)

)−1
(

log

(
s(p)
s2(p)

)
+ 1

)
,

(2.26)

and the proof in this case finishes by using

log
(

s(p)
s1(p) + 1

)
+ 1≤ log

(
log

(
A(N) + 1

)
h(N)∆(p)ρ(p)

)
+ 1≤ log

(
logA(N)
∆(p)ρ(p)

)
−D, (2.27)
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and the inequality (2.25). In the last chain of inequalities above we used, besides the in-
equality (2.21), also the inequality

log
(

log
(
A(N) + 1

))≤ 1 + log
(

logA(N)
)
, (2.28)

which is equivalent to the fact that A(N)e ≥ A(N) + 1, which in turn holds because
A(N)≥ 2.

Assume now that s1(p)≥ s(p). Since ∆(p)≤N , recalling (2.1), we see that

log2A(N)− ρ(p) log∆(p)≥ (1− ρ+ o(1)
)

logN. (2.29)

Hence,

Ψ(p)≥ h(N)∆(p)
(
1− ρ+ o(1)

)
logN , (2.30)

which together with the estimate (2.25) shows that the desired inequality holds if N is
large enough. �

2.2. General bounds. We have the following theorem.

Theorem 2.3. Let d be fixed and let Θ(n) be an increasing function such that the inequality
ϑ(Θ(n))≤ n holds for all n≥ 1. If N is sufficiently large and

(
b(N −d)−π

(
Θ(N)

)
log

(
A(N) + 1

))(
1− log2

h(N)

)
≥

∑
p≤Θ(N)

Ψ(p), (2.31)

then there are at least d positive integers n≤N with

P
(
A(n) + 1

)≥Θ(n). (2.32)

Proof. We suppose that there are only e < d positive integers n ≤ N with P(A(n) + 1) ≥
Θ(n). We have

W(N)=
∑
p∈�

s(p)∑
s=1

t(p,s) log p. (2.33)

Since a(n) > 1 holds for all positive integers n, we infer that if we eliminate from each
side of the above identity the terms that come from the e integers mentioned above, we
obtain

W(N − e)≤
∑

p≤Θ(N)

s(p)∑
s=1

t(p,s) log p. (2.34)

Using (2.3) and Lemma 2.2, we obtain that if N is sufficiently large, then

b(N − e)≤
∑

p≤Θ(N)

(
log

(
A(N) + 1

)
+Ψ(p)

(
1− log2

h(N)

)−1
)

(2.35)
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from which we deduce

(
b(N − e)−π

(
Θ(N)

)
log

(
A(N) + 1

))(
1− log2

h(N)

)
≤

∑
p≤Θ(N)

Ψ(p). (2.36)

By the assumption (2.31), we obtain b(N − e)≤ b(N −d), which gives e ≥ d, contradict-
ing our assumption on e. �

Corollary 2.4. Let T(x) be a strictly increasing continuous function of the positive real
variable x such that the three estimates

π
(
T(n)

)∼ 2b(n)
h(n)n

(
log2A(n)− ρ logn

) (2.37)

for n→∞, as well as

∑
p≤x

T−1(p)∼ xT−1(x)
2logx

, (2.38)

λT(x)
T(λx)

≥ (1 + o(1)
)

(2.39)

for x→∞, hold, where λ is an arbitrary parameter in (0,1). Here, T−1 is the inverse function
of T . Suppose further that

logA
(n

2

)
� logA(n). (2.40)

Then

limsup
n→∞

P
(
A(n) + 1

)
T(n)

≥ 1. (2.41)

Proof. It is clear that T(N) tends to infinity with N (see, e.g., (2.39)). We assume that
the inequality (2.41) does not hold, and conclude that for some λ∈ (0,1), the inequality
P(A(N) + 1) < λT(N) holds for all N >N0, where N0 is some fixed positive integer.

We now use Theorem 2.3 with d = N0 + 1 and Θ(n) = λT(n) to get a contradiction.
Recalling (2.1), we see that the hypothesis (2.37) implies that

π
(
Θ(N)

)� π
(
T(N)

)� b(N)
h(N)N

(
log2A(N)− ρ logN

)
� N

(1− ρ) logN
� N

logN
,

(2.42)

which in turn implies that Θ(N)�N . Thus,

π
(
Θ(N)

)
log

(
A(N) + 1

)� N logA(N)
logN

. (2.43)

Hypothesis (2.40) gives b(N)�N logA(N). So, the left-hand side of the inequality (2.31)
(with d =N0 + 1) is asymptotically equivalent to b(N).
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Note now that by the definition of ϑ(p) and our assumption, we have that T(ϑ(p)) > p
for all primes p which divide A(n) + 1 for some n= 1, . . . ,N . Hence,

∆(p)≤N −T−1(p). (2.44)

Using the estimate (2.38), we get

∑
p≤Θ(N)

∆(p)≤
∑

p≤Θ(N)

(
N −T−1(p)

)≤Nπ
(
Θ(N)

)− (1 + o(1)
)Θ(N)T−1

(
Θ(N)

)
2logΘ(N)

.

(2.45)

Note that T−1(Θ(N))≥ (1 + o(1))Θ(N). Indeed, by the monotonicity and continuity of
T , this is equivalent to

Θ(N)≥ (1 + o(1)
)
T(λN), (2.46)

which is guaranteed by the estimate (2.39) as N →∞. Hence,

∑
p≤Θ(N)

∆(p)≤Nπ(Θ(N))− (1 + o(1)
)
π
(
Θ(N)

)Θ(N)
2

≤Nπ
(
Θ(N)

)(
1− λ

2
+ o(1)

)
.

(2.47)

Now,

∑
2≤p≤Θ(N)

∆(p)≤N/ logN

Ψ(p)� h(N) log2A(N)π
(
Θ(N)

)( N

logN

)

=O
(

b(N)
logN

)
= o

(
b(N)

)
.

(2.48)

Furthermore,

∑
2≤p≤Θ(N)

∆(p)≥N/ logN

Ψ(p)≤ h(N)
(

log2A(N)− ρ log
( N

logN

)) N∑
p=2

∆(p)

≤
(
2− λ+ o(1)

)
h(N)

(
log2A(N)− ρ logN

)
Nπ

(
Θ(N)

)
2

∼ λ(2− λ)h(N)
(

log2A(N)− ρ logN
)
Nπ

(
T(N)

)
2

.

(2.49)
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Therefore,
∑

2≤p≤Θ(N)
∆(p)≥N/ logN

Ψ(p)∼ λ(2− λ)b(N). (2.50)

Hence, from the estimates (2.48) and (2.50), we get

∑
p≤Θ(N)

Ψ(p)≤ (1 + o(1)
)
λ(2− λ)b(N). (2.51)

Since λ(2− λ) < 1 for λ < 1, the inequality (2.31) is satisfied for sufficiently large N , which
is the desired contradiction. �

Corollary 2.5. Suppose that all the hypotheses of Corollary 2.4 are satisfied by the function
T(n) = µn. Suppose moreover that the inequality η(p) ≤ νp holds on a set of primes p of
relative asymptotic density at least ζ , where µ,ν > 0 and ζ ≥ 0 are three constants such that
µν≥ 1− ζ . Then the inequality

limsup
n→∞

P
(
A(n) + 1

)
n

≥ µ+
ζ

ν
(2.52)

holds.

Proof. We put

µ0 = µ+
ζ

ν
, T0(n)= µ0n. (2.53)

We note that the estimates (2.37), (2.38), and (2.39) are satisfied when the function T(x)
is replaced by the function T0(x). The estimate (2.37) gives

b(N)∼ µN2

2 logN
h(N)

(
log2A(N)− ρ logN

)
. (2.54)

We assume that the estimate

limsup
n→∞

P
(
A(n) + 1

)
T0(n)

≥ 1 (2.55)

does not hold, and conclude that there exist λ ∈ (0,1) such that P(A(N) + 1) < λT0(N)
holds for N >N0, where N0 is some fixed positive integer.

Now, as in the proof of Corollary 2.4, we apply Theorem 2.3 with d =N0 + 1 and suf-
ficiently large positive integer N .

The argument from the beginning of the proof of Corollary 2.4 shows that if we put
Θ(N) = λT0(N), then the left-hand side of the inequality (2.31) is equivalent to b(N).
Furthermore, the estimates (2.48) and (2.50) show that

∑
p≤Θ(N)

Ψ(p)∼ h(N)
(

log2A(N)− ρ logN
) ∑
p≤Θ(N)

∆(p). (2.56)
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Thus, the inequality (2.31) takes the simpler form

(
1 + o(1)

) µN2

2 logN
≥

∑
p≤Θ(N)

∆(p). (2.57)

It remains to find an upper bound for

∑
p≤Θ(N)

∆(p)=
∑

p≤Θ(N)

η(p)−
∑

p≤Θ(N)

ϑ(p). (2.58)

It is clear that the inequality η(p)≤N holds for all prime p and by hypothesis, the in-
equality η(p)≤ νp holds on a set of primes p of relative asymptotic density ζ . Note that
when N/ν≤ p ≤ λµ0N , only the inequality η(p)≤N is relevant. Thus,

∑
p≤Θ(N)

η(p)≤
∑

N/ν≤p≤λµ0N

N +
N/ν∑
p=2

η(p)

≤N
(
π
(
λµ0N

)−π
(
N

ν

))
+
(
1− ζ + o(1)

)
Nπ

(
N

ν

)
+
(
ζ + o(1)

) N/ν∑
p=2

νp

∼ N2

logN

(
λµ0− 1

ν

)
+

N2

logN

(
1− ζ

ν
+

ζ

2ν

)
∼ N2

logN

(
λµ0− ζ

2ν

)
(2.59)

say, where η(p)≤ νp holds on a set of relative asymptotic density ζ of primes p ≤N/ν as
N →∞, and η(p)≤N otherwise.

As in the proof of Corollary 2.4, we have ϑ(p) > T−1
0 (p)= p/µ0, therefore

∑
p≤Θ(N)

ϑ(p)≥
λµ0N∑
p=2

p

µ0
= (1 + o(1)

)λ2µ0N2

2 logN
. (2.60)

Hence, from the above estimates, we derive

∑
p≤Θ(N)

∆(p)≤ (1 + o(1)
) N2

2 logN

(
2λµ0− ζ

ν
− λ2µ0

)

= (1 + o(1)
) N2

2 logN

(
λ(2− λ)µ0− ζ

ν

)
.

(2.61)

Since

λ(2− λ)µ0− ζ

ν
< µ0− ζ

ν
= µ (2.62)

holds for all λ∈ (0,1), we see that the inequality (2.57) also holds, and now Theorem 2.3
yields the desired contradiction. �

When no arithmetic properties of the sequence of numbers (a(n))Nn≥1 are known, we
simply have to take η(p)=N and ρ= 0 for all primes p.
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We recall that for any increasing function f ,

t∑
n=1

f (n)=
∫ t

1
f (s)ds+O

(
f (t)

)
. (2.63)

For example, suppose that a(n) is an integer for n= 1, . . . ,N . In this case, a(n)= h(n)
for all n= 1, . . . ,N . Assume that

loga(n)= Knα(logn)β
(
1 + o(1)

)
(2.64)

holds for n= 1, . . . ,N , where α,β ≥ 0 and K > 0 are constants. Then

logA(n)=
n∑
i=1

loga(i)= K

α+ 1
nα+1(logn)β

(
1 + o(1)

)
, (2.65)

so

b(n)=
n∑
i=1

logA(i)= Knα+2(logn)β

(α+ 1)(α+ 2)

(
1 + o(1)

)
,

T(n)∼ 2b(n) logn
h(n)n log2A(n)

∼ 2n
(α+ 1)2(α+ 2)

.

(2.66)

3. Applications

In this section, we give applications of our results to various sequences which arise in
combinatorics and number theory. Typically, but not always, the growth conditions are
readily available, while for several of them lower bounds on ρ have been given in [1].

3.1. Number-theoretic functions. Interesting results are obtained when the sequence
a(n) has integer values and both loga(n) and logA(n) have mean values which are con-
siderably smaller (by an order of magnitude) than their maximal values for n= 1, . . . ,N .
In this section, we look at the instance in which a(n) is one of the classical arithmetic
functions of n.

Lemma 3.1. The following estimates hold:

∑
n≤N

logω(n)= (1 + o(1)
)
N log3N ;

∑
n≤N

logΩ(n)= (1 + o(1)
)
N log3N ;

∑
n≤N

logτ(n)= ( log2 + o(1)
)
N log2N.

(3.1)
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Proof. Let

�1 =
{
n≤N :

∣∣ω(n)− log2N
∣∣≤ ( log2N

)2/3
}

;

�2 =
{
n≤N :

∣∣ω(n)− log2N
∣∣ > ( log2N

)2/3
, ω(n)≤ ( log2N

)3/2
}

;

�3 =
{
n≤N : ω(n)≥ ( log2N

)3/2
}
.

(3.2)

By the Turán-Kubilius estimate (see, e.g., [7]),

∑
n≤N

(
ω(n)− log2N

)2 =O
(
N log2N

)
, (3.3)

we get that #�2�N/(log2N)1/3 and #�3�N/(log2N)2. Since we also have that logω(n)�
log3N for n∈�2 and logω(n)� log2N for n∈�3, we get that

∑
n∈�2∪�3

logω(n)� N log3N

(logN)1/3
. (3.4)

Since for n∈�1, we have

logω(n)= log3N + log

(
ω(n)

log2N

)
= log3N +O

(
1

(logN)1/3

)
, (3.5)

we get the desired result for ω(n). The bound for Ω(n) follows from entirely similar ar-
guments.

We now denote by pα‖n the exact divisibility by pα (meaning that the p-adic order of
n is α). Then

∑
n≤N

logτ(n)=
∑
n≤N

∑
pα‖n

log(α+ 1)=
∑
pα≤N

log(α+ 1)
∑
n≤N
pα‖n

1

=
∑
pα≤N

log(α+ 1)

(
N

pα
− N

pα+1
+O(1)

)

=
∑
pα≤N

log(α+ 1)

(
N(p− 1)
pα+1

+O(1)

)
.

(3.6)

Since α≤ logN/ log2≤ 2logN and there are O(N/ logN) prime powers pα ≤N , we derive

∑
n≤N

logτ(n)=N
∑
pα≤N

(p− 1)log(α+ 1)
pα+1

+O(N)

=N log2
∑
p≤N

(p− 1)
p2

+N
∑
α≥2
pα≤N

(p− 1)log(α+ 1)
pα+1

+O(N).
(3.7)
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By the Mertens formula,

∑
p≤N

(p− 1)
p2

=
∑
p≤N

1
p

+O(1)= log2N +O(1). (3.8)

We also have

∑
α≥2
pα≤N

(p− 1)log(α+ 1)
pα+1

�N
∑

α≤2logN

log(α+ 1)
∞∑

m=2

1
mα

≤
∑

α≤2logN

log(α+ 1)
(

2−α +
∫∞

2
z−α dz

)

�N
∑

α≤2logN

log(α+ 1)
2α

�N ,

(3.9)

which finishes the proof. �

We are now ready to prove the following result.

Theorem 3.2. The following estimates hold:

limsup
n→∞

P
(∏n

i=1ϕ(i) + 1
)

n
≥ 1;

limsup
n→∞

P
(∏n

i=1 σ(i) + 1
)

n
≥ 1;

limsup
n→∞

P
(∏n

i=1ω(i) + 1
)

log2n

n log3n
≥ 1;

limsup
n→∞

P
(∏n

i=1Ω(i) + 1
)

log2n

n log3n
≥ 1;

limsup
n→∞

P
(∏n

i=1 τ(i) + 1
)

logn

n
(

log2n
)2 ≥ 1.

(3.10)

Proof. Since n/ log2n� ϕ(n) ≤ n and n ≤ σ(n)� n log2n, it follows that if a(n) = ϕ(n)
or σ(n), then the estimate (2.64) holds with α= 0. The estimates for the products of ϕ(i)
and σ(i) now follow from Corollary 2.4.

When a(i) = ω(mi), where mi = i+O(i/ log i) is the ith composite number (we need
to skip prime numbers because of the condition a(i) > 1 used in Section 2), we apply
Lemma 3.1 to get that

logA(t)=
∑
i≤t

logω
(
mi
)∼ t log3 t, (3.11)
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therefore

b(n)=
n∑
i=1

logA(i)=
∫ n

1
logA(t)dt ∼ 1

2
n2 log3n. (3.12)

We take η(p)=N , ρ= 0, and use the fact that

logω
(
mi
)≤ (1 + o(1)

)
log2N , 1≤ i≤N , (3.13)

to get that

T(n)∼ n log3(n)

log2n
, (3.14)

which gives the inequality for the products of ω(i).
The inequality for the products of Ω(i) is entirely similar, and the last inequality fol-

lows again by Lemma 3.1 together with the inequality

logτ(n)≤ ( log2 + o(1)
) logN

log2N
, 1≤ n≤N , (3.15)

which finishes the proof. �

We remark that we could have taken, say, η(p) = p2 when a(n) = ϕ(n) (because p |
ϕ(p2)), η(p)= 2p−1 when a(n)=Ω(n), and

η(p)=
∏
q≤p

q prime

q (3.16)

when a(n) = ω(n) or a(n) = τ(n), but such choices do not seem to lead to any substan-
tial improvements. The widely believed conjecture asserting that the first prime number
q ≡ 1 (mod p) satisfies q� p1+ε would give that η(p) = O(p1+ε) for a(n) = ϕ(n) (be-
cause p | ϕ(q)), but otherwise would not lead to any improvements of the inequality of
Theorem 3.2 for the Euler function either. Similar remarks apply to the sum of divisors
function.

3.2. Polynomials. Let a(n) = |g(n)|, where g(X) ∈Q[X] is a nonconstant polynomial
with |g(n)| ≥ 1 for n≥ 1.

In this case, the estimate (2.64) holds with α= 0, β = 1, and K = degg. Thus,

b(n)= d

2
n2 logn

(
1 + o(1)

)
. (3.17)

We can take ρ(p)= 1/3 (see [1]), so T(n)∼ 3n/2.
Moreover, the set of prime numbers p such that the polynomial g(X) has a zero mod-

ulo p has a relative density δ > 0 (in the set of all prime numbers), by the Chebotarev
density theorem. For such primes, we can take n(p) to be the minimum between N and
the smallest zero modulo p of a(n), which is at most p.
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So, using Corollary 2.5 with µ= 3/2, ν= 1, ζ = δ, we obtain the following.

Theorem 3.3. Let g(X) ∈ Q[X] be a nonconstant integer-valued polynomial of n with
|g(n)| ≥ 1 for n≥ 1. Let δ be the density of the subset of primes p such that the congruence
g(n)≡ 0 (mod p) has an integer solution n. Then the inequality

limsup
n→∞

P
(∏n

i=1

∣∣g(i)
∣∣+ 1

)
n

≥ 3
2

+ δ (3.18)

holds.

Note that, by the Chebotarev density theorem, we know in fact that δ ≥ 1/(degg)!,
and that it can be explicitly computed. When g(X) = X , we have δ = 1, and we recover
the main result of [3].

3.3. Motzkin, Schröder, and Bell numbers. Using Corollary 2.4, the above result allows
us to write down nontrivial lower bounds for various numbers arising from enumera-
tive combinatorics. Recall that Motzkin numbers mn count, for a positive integer n, the
number of lattice paths starting at (0,0), ending at (0,n), which use line steps parallel to
(1,0) (level step), (1,1) (up step), or (1,−1) (down step), and which never pass below the
x-axis. The Schröder numbers sn are defined similarly except that the ending point of the
paths is (2n,0), and the level step is (2,0). Finally, the Bell numbers Bn count the number
of ways of partitioning a set with n elements into disjoint nonempty subsets. Since a(n)
satisfies (2.64) with α= 1 and some β ≥ 0 whenever a(n) is one of mn, sn, or Bn, we have
obtained the following result.

Theorem 3.4. The inequality

limsup
n→∞

P
(
A(n) + 1

)
n

≥ 1
6

(3.19)

holds whenever (a(n))n=1 is the sequence of the Motzkin numbers, or Schröder numbers, or
Bell numbers.

Lower bounds of the form P(A(N))� logN log2N have been obtained in [2] when
a(i) = mi for i = 1, . . . ,N (and the method there works for a(i) = si for i = 1, . . . ,N , as
well), and of the form P(A(N))� logN when a(i)= Bi for i= 1, . . . ,N , in [5].

3.4. Middle binomial coefficients and Catalan numbers. Here, we take

b(n)=
(

2n
n

)
or c(n)= 1

n+ 1

(
2n
n

)
, (3.20)

n = 1, . . . ,N , that is, b(n) is the nth middle binomial coefficient and c(n) the nth Catalan
number, respectively. In this case, using the Stirling formula, it is easily seen that both
sequences a(n)= b(n) and a(n)= c(n) satisfy formula (2.64) with α= 1, β = 0, and K =
2log2. We can take ρ(p)= 1/5 (see [1]), so T(n)∼ 5n/4.
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Obviously,

p

∣∣∣∣∣
(

p+ 1
p+ 1/2

)
, (3.21)

so we can take η(p)= (p− 1)/2.
We now take µ= 5/4, ν= 1/2, ζ = 1 in Corollary 2.5, to get the following.

Theorem 3.5. The inequality

limsup
n→∞

P
(∏n

i=1 a(i) + 1
)

n
≥ 13

4
(3.22)

holds where either a(i) = b(i) is the ith middle binomial coefficient or a(i) = c(i) is the ith
Catalan numbers.

The methods of this section apply to more general sequences such as hypergeometric,
that is, of the form a(n)=∏n

i=1 f (i), where f ∈Q[X] is a nonzero integer-valued poly-
nomial.

3.5. q-factorials. We let q > 1 be an integer and set a(n) = qn − 1 for n = 1, . . . ,N . The
estimate (2.64) holds with α = 1, β = 0, and K = logq. We have also η(p) ≤ p− 1, by
the Fermat’s little theorem, for all but finitely many primes p (i.e., except for the prime
factors of q). Moreover, ρ(p) ≥ 1/3 for all primes p (see [1]). Therefore, we can take
µ= 1/4, ν= 1, ζ = 1. Using Corollary 2.5, we obtain the following.

Theorem 3.6.

limsup
n→∞

P
(∏n

i=1

(
qi− 1

)
+ 1
)

n
≥ 5

4
. (3.23)

The results of this section remain also valid if the sequence (qn− 1)Nn=1 is replaced by
the first N terms of some other Lucas sequence, like the Fibonacci sequence, for example.
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Morelia, Michoacán, Mexico

E-mail address: fluca@matmor.unam.mx

Igor E. Shparlinski: Department of Computing, Division of Information and Communication
Sciences, Macquarie University, Sydney, NSW 2109, Australia

E-mail address: igor@ics.mq.edu.au

mailto:eric.levieil@ens.fr
mailto:fluca@matmor.unam.mx
mailto:igor@ics.mq.edu.au


Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


