A DEGREE CONDITION FOR THE EXISTENCE OF k-FACTORS WITH PRESCRIBED PROPERTIES

CHANGPING WANG

Received 27 July 2004 and in revised form 26 December 2004

Let k be an integer such that $k \geq 3$, and let G be a 2 -connected graph of order n with $n \geq 4 k+1, k n$ even, and minimum degree at least $k+1$. We prove that if the maximum degree of each pair of nonadjacent vertices is at least $n / 2$, then G has a k-factor excluding any given edge. The result of Nishimura (1992) is improved.

1. Introduction and result

We consider only finite undirected graphs without loops or multiple edges. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For a vertex $x \in V(G)$, we write $N_{G}(v)$ for the set of vertices of $V(G)$ adjacent to $v, N_{G}[v]$ for $N_{G}(v) \bigcup\{v\}$, and $d_{G}(v)=\left|N_{G}(v)\right|$ for the degree of v in G. If S and T are disjoint subsets of $V(G)$, then $e_{G}(S, T)$ denotes the number of edges that join S and T, and $G-S$ denotes the subgraph of G obtained from G by deleting the vertices in S together with the edges incident with them. A k-factor of G is a spanning subgraph F of G such that $d_{F}(x)=k$ for every $x \in V(F)$. If G and H are disjoint graphs, then the join and the union are denoted by $G+H$ and $G \cup H$, respectively. Other terminology and notation not defined here can be found in [1].

The following theorems of k-factors in terms of degree conditions are known.
Theorem 1.1 (Nishimura [4]). Let k be an integer such that $k \geq 3$, and let G be a connected graph of order n with $n \geq 4 k-3, k n$ even, and minimum degree at least k. Suppose that $\max \left(d_{G}(u), d_{G}(v)\right) \geq n / 2$ for each pair of nonadjacent vertices u, v of $V(G)$. Then G has a k-factor.

Theorem 1.2 (Iida and Nishimura [3]). Let k be a positive integer, and let G be a graph of order n with $n \geq 4 k-5, k n$ even, and minimum degree at least k. If the degree sum of each pair of nonadjacent vertices is at least n, then G has a k-factor.

Theorem 1.3 (Egawa and Enomoto [2]). Let k be a positive integer, and let G be a graph of order n with $n \geq 4 k-5$, $k n$ even, and minimum degree at least $n / 2$. Then G has a k-factor.

The main result of this paper is the following theorem.
Theorem 1.4. Let k be an integer such that $k \geq 3$, and let G be a 2-connected graph of order n with $n \geq 4 k+1, k n$ even, and minimum degree at least $k+1$. Suppose that

[^0]$\max \left(d_{G}(u), d_{G}(v)\right) \geq n / 2$ for each pair of nonadjacent vertices u, v of $V(G)$. Then for any $e \in E(G), G-e$ has a k-factor.

The assumptions in Theorem 1.4 cannot be weakened any further. We discuss them in the last section.

2. Proof of Theorem 1.4

In order to prove Theorem 1.4, the following definitions are needed.
Let G be a graph, and $S, T \subseteq V(G)$ with $S \bigcap T=\varnothing$. For an integer $k \geq 1$, a component C of $G-(S \cup T)$ is called a k-odd component or k-even component according to whether $k|V(C)|+e_{G}(V(C), T)$ is odd or even. Assume that e is a cut edge of $G-(S \cup T)$ and $C(e)$ is the component of $G-(S \cup T)$ which contains e. We say that e is a k-odd cut edge or k-even cut edge according to parity, that is, whether both components of $C(e)-e$ are k-odd components or k-even components of $(G-e)-(S \cup T)$. (Note that $C(e)$ must be a k-even component of $G-(S \cup T)$ in both cases.) We write

$$
\begin{equation*}
\delta_{G}(S, T)=k|S|+\sum_{x \in T} d_{G-S}(x)-k|T|-h_{G}(S, T), \tag{2.1}
\end{equation*}
$$

where $h_{G}(S, T)$ is the number of k-odd components of $G-(S \cup T)$.
Lemma 2.1 (Tutte [5]). Let G be a graph and k a positive integer. For all disjoint subsets S and T of $V(G)$, G has a k-factor if and only if
(i) $\delta_{G}(S, T) \geq 0$,
(ii) $\delta_{G}(S, T) \equiv k n(\bmod 2)$.

Lemma 2.2. A graph G has a k-factor excluding any given edge if and only if $\delta_{G}(S, T) \geq$ $\varepsilon(S, T)$ for all disjoint subsets S and T of $V(G)$, where $\varepsilon(S, T)=2$ if $G[T]$ has an edge, or $G-(S \cup T)$ has a k-odd cut edge, or $G-(S \cup T)$ has a k-even component C such that $e_{G}(V(C), T) \geq 1$; otherwise, $\varepsilon(S, T)=0$.

Proof. A graph G has a k-factor excluding any given edge if and only if $G-e$ has a k-factor for every $e \in E(G)$. By Lemma 2.1, $G-e$ has a k-factor if and only if $\delta_{G-e}(S, T) \geq 0$ for all disjoint subsets S and T of $V(G)$. So, a graph G has a k-factor excluding any given edge if and only if for all disjoint subsets S and T of $V(G)$,

$$
\begin{equation*}
\min _{e \in E(G)} \delta_{G-e}(S, T) \geq 0 . \tag{2.2}
\end{equation*}
$$

Note that $\delta_{G}(S, T)=k|S|+\sum_{x \in T} d_{G-S}(x)-k|T|-h_{G}(S, T)$ and $\delta_{G-e}(S, T)=k|S|+$ $\sum_{x \in T} d_{G-e-S}(x)-k|T|-h_{G-e}(S, T)$. By the definition of $\varepsilon(S, T)$, we know that

$$
\begin{align*}
\varepsilon(S, T) & =\max _{e \in E(G)}\left[\left(\sum_{x \in T} d_{G-S}(x)-\sum_{x \in T} d_{G-e-S}(x)\right)+\left(h_{G-e}(S, T)-h_{G}(S, T)\right)\right] \\
& =\max _{e \in E(G)}\left(\delta_{G}(S, T)-\delta_{G-e}(S, T)\right) \tag{2.3}\\
& =\delta_{G}(S, T)-\min _{e \in E(G)} \delta_{G-e}(S, T) .
\end{align*}
$$

So,

$$
\begin{equation*}
\min _{e \in E(G)} \delta_{G-e}(S, T)=\delta_{G}(S, T)-\varepsilon(S, T), \tag{2.4}
\end{equation*}
$$

which completes the proof.
Lemma 2.3. Let G be a graph G and $k \geq 1$. Assume that there exists a real number θ and disjoint subsets S and T of $V(G)$ satisfying
(i) $\delta_{G}(S, T)<\theta$,
(ii) $|S \cup T|$ is as large as possible.

Then $d_{G-S}(u) \geq k+1$ and $e_{G}(u, T) \leq k-1$ for all $u \in V(G)-(S \cup T)$. Moreover, the order of each component of $G-(S \cup T)$ is at least 3 .
Proof. If there is $u^{*} \in V(G)-(S \cup T)$ such that $d_{G-S}\left(u^{*}\right) \leq k$. Set $S^{*}=S, T^{*}=T \bigcup\left\{u^{*}\right\}$, we have

$$
\begin{align*}
\delta_{G}\left(S^{*}, T^{*}\right) & =k\left|S^{*}\right|+\sum_{x \in T^{*}} d_{G-S}(x)-k\left|T^{*}\right|-h_{G}\left(S^{*}, T^{*}\right) \\
& =k|S|+\sum_{x \in T} d_{G-S}(x)+d_{G-S}\left(u^{*}\right)-k|T|-k-h_{G}\left(S, T^{*}\right) \tag{2.5}\\
& \leq k|S|+\sum_{x \in T} d_{G-S}(x)-k|T|-\left(h_{G}(S, T)-1\right) \leq \delta_{G}(S, T)+1
\end{align*}
$$

Therefore, $\delta_{G}\left(S^{*}, T^{*}\right) \leq \delta_{G}(S, T)$ by Lemma 2.1(ii), which contradicts the maximum of $|S \bigcup T|$.

Similarly, we can prove that $e_{G}(u, T) \leq k-1$ for each $u \in V(G)-(S \cup T)$.
Lemma 2.4 (see [4]). Let m, n, s, t, and ω_{0} be nonnegative integers. Suppose that $m \geq 3$, $\omega_{0} \geq 4$, and $m\left(\omega_{0}-1\right) \leq n-s-t-3$. Then it holds that

$$
\begin{equation*}
m-1+s+t \leq \frac{1}{3}\left[n+2\left(s+t+1-\omega_{0}\right)\right] . \tag{2.6}
\end{equation*}
$$

Proof of Theorem 1.4. If G contains a complete bipartite graph $K_{n / 2, n / 2}$ as a subgraph when n is even, then Theorem 1.4 holds by [1 , Theorems 8.9 and 8.12]. So we may suppose that G does not contain a complete bipartite graph as a subgraph when n is even.

Suppose that there exists an edge e such that $G-e$ has no k-factor. By Lemma 2.2, there exists $S_{0}, T_{0} \subseteq V(G)$ with $S_{0} \cap T_{0}=\varnothing$ such that $\delta_{G}\left(S_{0}, T_{0}\right)<\varepsilon\left(S_{0}, T_{0}\right)$. Clearly $S_{0} \cup T_{0} \neq$ \varnothing. Otherwise, $\delta_{G}(\varnothing, \varnothing)<\varepsilon(\varnothing, \varnothing)=0$ implies $\delta_{G}(\varnothing, \varnothing) \leq-2$ by Lemma 2.1(ii) which contradicts the fact that G is 2 -connected. Set $\theta=\varepsilon\left(S_{0}, T_{0}\right)$; obviously, $\theta=2$. We choose disjoint subsets S and T of $V(G)$ such that S and T satisfy the condition of Lemma 2.3. It is easy to check that $S \cup T \neq \varnothing$.

By Theorem 1.1 and Lemma 2.1, we have $\delta_{G}(S, T)=0$. Therefore,

$$
\begin{equation*}
\omega \geq k|S|+\sum_{x \in T} d_{G-S}(x)-k|T| \tag{2.7}
\end{equation*}
$$

where ω denotes the number of components in $U:=G \backslash(S \cup T)$.

If $U \neq \varnothing$, let $C_{1}, C_{2}, \ldots, C_{\omega}$ be the components of U, labelled in such a way that their orders $m_{1}, m_{2}, \ldots, m_{\omega}$ are nondecreasing. By Lemma 2.3, we have $m_{j} \geq 3(1 \leq j \leq \omega)$.

Let $s=|S|, t=|T|$. Note that if $U \neq \varnothing$, then

$$
\begin{equation*}
|U|=n-s-t \geq 3 \omega, \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{G}(u) \leq m_{j}-1+s+t \tag{2.9}
\end{equation*}
$$

for every $u \in C_{j}(1 \leq j \leq \omega)$. In particular, we note that when $\omega \geq 2$,

$$
\begin{equation*}
m_{1} \leq \frac{n-s-t}{\omega}, \quad m_{2} \leq \frac{n-s-t-3}{\omega-1} . \tag{2.10}
\end{equation*}
$$

If $T \neq \varnothing$, we define

$$
\begin{equation*}
h_{1}:=\min \left\{d_{G-S}(v) \mid v \in T\right\} \tag{2.11}
\end{equation*}
$$

and let $x_{1} \in T$ be a vertex satisfying $d_{G-S}\left(x_{1}\right)=h_{1}$ for which $\left|N_{T}\left[x_{1}\right]\right|$ is as small as possible. Further, if $T \backslash N_{T}\left[x_{1}\right] \neq \varnothing$, we define

$$
\begin{equation*}
h_{2}:=\min \left\{d_{G-S}(v) \mid v \in T \backslash N_{T}\left[x_{1}\right]\right\} \tag{2.12}
\end{equation*}
$$

and let $x_{2} \in T \backslash N_{T}\left[x_{1}\right]$ be a vertex satisfying $d_{G-S}\left(x_{2}\right)=h_{2}$. Obviously, we have that

$$
\begin{gather*}
h_{1} \leq h_{2} \tag{2.13}\\
d_{G}\left(x_{i}\right) \leq s+h_{i} \quad(i=1,2) . \tag{2.14}
\end{gather*}
$$

By (2.7), we have that

$$
\begin{equation*}
\omega \geq k s+\left(h_{1}-k\right)\left|N_{T}\left[x_{1}\right]\right|+\left(h_{2}-k\right)\left|T \backslash N_{T}\left[x_{1}\right]\right| . \tag{2.15}
\end{equation*}
$$

We need to find a pair of nonadjacent vertices u, v in G such that

$$
\begin{equation*}
\max \left(d_{G}(u), d_{G}(v)\right)<\frac{n}{2} . \tag{2.16}
\end{equation*}
$$

In fact, it suffices to prove that at least one of the following three statements holds in each case.
(A) $\omega \geq 2$ and $m_{2}-1+s+t<n / 2$. (Then (2.16) holds for any $u \in V\left(C_{1}\right), v \in V\left(C_{2}\right)$, by (2.9) and $m_{1} \leq m_{2}$.)
(B) $T \neq \varnothing, \omega>0, d_{G}\left(x_{1}\right)<n / 2$, there exists a vertex $u \in V(U) \backslash N\left(x_{1}\right)$ such that $d_{G}(u)<n / 2$. (Then (2.16) holds with $u=u$ and $v=x_{1}$.)
(C) $T \neq \varnothing, T \backslash N_{T}\left[x_{1}\right] \neq \varnothing$, and $s+h_{2}<n / 2$. (Then (2.16) holds with $u=x_{1}$ and $v=x_{2}$, by (2.14) and $h_{1} \leq h_{2}$.)

Case $1(T=\varnothing)$. Then $s \geq 1$ since $S \cup T \neq \varnothing$. We have $\omega \geq k s \geq 3 s \geq 3$ by (2.7). So $s \geq 2$ and $\omega \geq 3 s>4$. Otherwise, when $s=1$, it holds that $\omega \geq 3$, which contradicts the fact that G is 2 -connected. By (2.7) and (2.8), we get $s \leq n /(3 k+1)$. This inequality, together with (2.10), gives

$$
\begin{align*}
m_{2}-1+s+t & \leq \frac{n-s-3}{\omega-1}-1+\frac{n}{3 k+1} \\
& \leq \frac{n-5}{2 k-1}-1+\frac{n}{3 k+1}<\frac{n}{2} . \tag{2.17}
\end{align*}
$$

This shows (A) in this case.
Therefore we may assume $T \neq \varnothing$.
Case $2(T \neq \varnothing)$.
Case $2.1\left(h_{1} \geq k+2\right)$. Let

$$
\begin{equation*}
\omega_{0}:=k s+\left(h_{1}-k\right) t . \tag{2.18}
\end{equation*}
$$

When $s=0$ and $t=1$, we have $\omega \geq \omega_{0} \geq 2$, which contradicts that G is 2 -connected. Suppose that $s \neq 0$ or $t \geq 2$, then $\omega_{0} \geq 4$, and so, by Lemma 2.4, with $m=m_{2}$,

$$
\begin{align*}
m_{2}-1+s+t & \leq \frac{1}{3}\left[n+2\left(s+t+1-k s-h_{1} t+k t\right)\right] \\
& =\frac{1}{3}\left[n-2(k-1) s-2\left(h_{1}-k-1\right)+2\right]<\frac{n}{3} \tag{2.19}
\end{align*}
$$

which shows that (A) holds in this case.
Case $2.2\left(h_{1}=k+1\right)$. Let $\omega_{0}:=k s+\left(h_{1}-k\right) t$, and suppose that $s \neq 0$ or $t \geq 4$. Then $\omega \geq \omega_{0} \geq 4$, using the same arguments as in Case 2.1, we get that

$$
\begin{equation*}
m_{2}-1+s+t<\frac{n+2}{3}<\frac{n}{2} . \tag{2.20}
\end{equation*}
$$

This also shows (A) in this case. Thus we may consider the following three cases.
(i) $s=0$ and $t=1$.

Clearly, $\delta_{G}(S, T)=0=\epsilon(S, T)$. According to the choice of S and T, when $T \neq \varnothing$ and $|S \cup T| \geq 2$, we have $\delta_{G}(S, T) \geq 2$, which is a contradiction by Lemma 2.2.
(ii) $s=0$ and $t=3$.

Then by (2.7) we have $\omega \geq \omega_{0} \geq 3$. By (2.14), we have

$$
\begin{equation*}
m_{2}-1+s+t \leq \frac{n-s-t-3}{\omega-1}-1+s+t \leq \frac{n-6}{2}-1+3<\frac{n}{2} \tag{2.21}
\end{equation*}
$$

which shows that (A) holds in this case.
(iii) $s=0$ and $t=2$.

Let $T=\left\{y_{1}, y_{2}\right\}$, and $d_{G}\left(y_{i}\right)=k+1$, for $i=1,2$. Otherwise, $\omega \geq 3$ since $\delta(G) \geq k+1$. We prove in this case that (A) holds in a similar way to that in (ii). Since $k \geq 3$ and $n \geq 4 k+1$, we have that $k-1<n / 2$. So, we may suppose that y_{1} and y_{2} are adjacent, otherwise, (2.16) holds with $u=y_{1}$ and $v=y_{2}$. Since G is 2 -connected and $\omega \geq \omega_{0}=2$, we may assume that y_{1} is adjacent to some vertex of a component, say C_{2}, where $C_{1}, C_{2}, \ldots, C_{\omega}$ are the components of $G-(S \cup T)$. Thus we have the following claim.

Claim 1. y_{1} can be adjacent to at most $k-1$ vertices of C_{1}.
Note that $m_{1} \leq(n-2) / 2$. Suppose that $m_{1}=(n-2) / 2$. Since $(n-2) / 2 \geq k+1$, there exists at least one vertex u_{1} of $V\left(C_{1}\right)$ not adjacent to y_{1}, and $d_{G}\left(u_{1}\right) \leq m_{1}-1+1<n / 2$. Thus (2.16) holds with $u=u_{1}$ and $v=y_{1}$. Thus we assume that $m_{1}<(n-2) / 2$. Clearly, $m_{1} \geq k$ since $\delta(G) \geq k+1$. Note that $d_{G}(u) \leq m_{1}-1+2<n / 2$ for every $u \in V\left(C_{1}\right)$. By Claim 1, there exists at least $u_{2} \in V\left(C_{1}\right)$ not adjacent to y_{1}. Thus (2.16) holds with $u=u_{2}$ and $v=y_{1}$.

For the case where $0 \leq h_{1} \leq k$, $\operatorname{since} \min \left\{d_{G}(u) \mid u \in V(G)\right\} \geq k+1$ by the hypothesis of the theorem, it holds that

$$
\begin{equation*}
s \geq k-h_{1}+1 . \tag{2.22}
\end{equation*}
$$

We will prove that $d_{G}\left(x_{1}\right)<n / 2$ in the case where $0 \leq h_{1} \leq k$.
Case $A\left(h_{1}=0\right)$. By (2.7), we have $0 \geq k s-k t-\omega, G[T]$ is an isolated set if the equality holds. By (2.8), we have $k s-k t-\omega \geq k s-k(n-s)$, and $n-s-t=\omega=0$ when the equality holds. Thus,

$$
\begin{equation*}
0 \geq k s-k t-\omega \geq k s-k(n-s) \tag{2.23}
\end{equation*}
$$

It follows from the inequality above that $G[T]$ is an isolated set and $n-s-t=\omega=0$ if none of the inequalities in (2.23) is strict. Moreover, in this case, we have $s=t=n / 2$. From (2.14) we get

$$
\begin{equation*}
d_{G}\left(x_{1}\right) \leq h_{1}+s=\frac{n}{2} . \tag{2.24}
\end{equation*}
$$

If $d_{G}\left(x_{1}\right)=n / 2$, it is easy to see that each vertex in T is adjacent to all vertices in S by the choice of x_{1}. Therefore, G contains $K_{n / 2, n / 2}$ as a subgraph, which is a contradiction. So $d_{G}\left(x_{1}\right)<n / 2$.

If one of the inequalities in (2.23) is strict, we can get $s<n / 2$ from (2.23), thus $d_{G}\left(x_{1}\right) \leq$ $s+h_{1}<n / 2$ by (2.14).
Case B ($h_{1}=1$). In this case, it follows from (2.7) and (2.8) that

$$
\begin{equation*}
0 \geq k s+(1-k) t-\omega \geq k s+(1-k)(n-s) \tag{2.25}
\end{equation*}
$$

Thus by (2.14) we have that

$$
\begin{equation*}
d_{G}\left(x_{1}\right) \leq h_{1}+s \leq 1+\frac{(k-1) n}{2 k-1}<\frac{n}{2} . \tag{2.26}
\end{equation*}
$$

Case C $\left(2 \leq h_{1} \leq k-1\right)$. It follows from (2.7) And (2.8) that

$$
\begin{equation*}
0 \geq k s+\left(h_{1}-k\right) t-\omega \geq k s+\left(h_{1}-k\right)(n-s), \tag{2.27}
\end{equation*}
$$

thus $s \leq n-k n /\left(2 k-h_{1}\right)$. Suppose that $d_{G}\left(x_{1}\right) \geq n / 2$, by (2.14), we have that

$$
\begin{equation*}
\frac{n}{2} \leq s+h_{1} \leq n-\frac{k n}{2 k-h_{1}}+h_{1} . \tag{2.28}
\end{equation*}
$$

So $n \leq 4 k-2 h_{1} \leq 4 k-4$, which contradicts the fact that $n \geq 4 k+1$.

Case $D\left(h_{1}=k\right)$. Thus $s \geq 1$ by (2.22). From (2.7) we have that $\omega \geq k s$. Suppose that $d_{G}\left(x_{1}\right) \geq n / 2$, by (2.14), we have that

$$
\begin{equation*}
k s \geq k+s-1 \geq d_{G}\left(x_{1}\right)-1 \geq \frac{n-2}{2} . \tag{2.29}
\end{equation*}
$$

Thus, by (2.8), we have that

$$
\begin{equation*}
n-s-t \geq 3 \omega \geq 3 k s \geq \frac{3(n-2)}{2} \tag{2.30}
\end{equation*}
$$

which is a contradiction.
Case 3 ($0 \leq h_{1} \leq k$ and $\left.T=N_{T}\left[x_{1}\right]\right)$. In this case $t \leq k$ unless $h_{1}=k$. Thus it follows from (2.7) and (2.22) that

$$
\begin{equation*}
\omega \geq k s+\left(h_{1}-k\right) t \geq k+\left(k-h_{1}\right)(k-t) \geq k \geq 3 . \tag{2.31}
\end{equation*}
$$

Suppose that $V\left(C_{j}\right) \subset N_{G}\left(x_{1}\right)$ for some $j(1 \leq j \leq \omega)$. Since $|T|=\left|N_{T}\left(x_{1}\right)\right|+1$ and $\left|V\left(C_{j}\right)\right| \leq e\left(x_{1}, U\right)$, we get

$$
\begin{equation*}
d_{G / S}(u) \leq|T|+\left(\left|V\left(C_{j}\right)\right|-1\right) \leq\left|N_{T}\left(x_{1}\right)\right|+e\left(x_{1}, U\right)=d_{G / S}\left(x_{1}\right)=h_{1} \leq k \tag{2.32}
\end{equation*}
$$

for every $u \in C_{j}$, which contradicts the result of Lemma 2.3. Hence $V\left(C_{j}\right) \not \subset N_{G}\left(x_{1}\right)$, and so there exists a vertex $u \in C_{j}$, which is not adjacent to x_{1}.

Let $u_{1} \in V\left(C_{1}\right) \backslash N_{G}\left(x_{1}\right)$. If $d_{G}\left(u_{1}\right)<n / 2$, then (B) holds. Thus we may assume that $d_{G}\left(u_{1}\right) \geq n / 2$. Note that $d_{G}\left(u_{1}\right)$ is strictly less than the upper bound in (2.9) because u_{1} is not adjacent to all vertices of T. Therefore, we obtain

$$
\begin{equation*}
\frac{n}{2} \leq d_{G}\left(u_{1}\right) \leq m_{1}-1+s+(t-1) \leq \frac{n-s-t}{3}+s+t-2 . \tag{2.33}
\end{equation*}
$$

Hence, it follows that

$$
\begin{equation*}
4 s \geq n-4 t+12 \tag{2.34}
\end{equation*}
$$

On the other hand, by (2.8) and (2.31), we have that

$$
\begin{equation*}
(3 k+1) s \leq n-\left[3\left(h_{1}-k\right)+1\right] t . \tag{2.35}
\end{equation*}
$$

This inequality, together with (2.34), implies that

$$
\begin{align*}
3(k-1) n & \leq(3 k+1)(4 s+4 t-12)-4 n \\
& \leq 12\left(2 k-h_{1}\right) t-36 k-12 \tag{2.36}\\
& \leq 12\left(2 k-h_{1}\right)\left(h_{1}+1\right)-36 k-12<12(k-1)^{2},
\end{align*}
$$

which contradicts that $n \geq 4 k+1$.
Thus we may assume that $T \backslash N_{T}\left[x_{1}\right] \neq \varnothing$. Let $p=\left|N_{T}\left[x_{1}\right]\right|$. We know that $t \geq p+1$, $h_{1} \geq p-1$.
Case $4\left(0 \leq h_{1} \leq k-1\right.$ and $\left.T \backslash N_{T}\left[x_{1}\right] \neq \varnothing\right)$.

Subcase 4.1 ($h_{1} \leq h_{2} \leq k-1$). Since $\omega \leq n-s-t$ and $k-h_{2} \geq 1$, it follows by (2.15) that

$$
\begin{equation*}
\left(k-h_{2}\right)(n-s-t) \geq \omega \geq k s+\left(h_{1}-k\right) p+\left(h_{2}-k\right)(t-p) . \tag{2.37}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left(k-h_{2}\right)(n-s)-k s \geq\left(h_{1}-h_{2}\right) p \geq\left(h_{1}-h_{2}\right)\left(h_{1}+1\right) . \tag{2.38}
\end{equation*}
$$

Since $p \leq h_{1}+1$ and, by hypothesis, it holds that $n \geq 4 k+1>4 k$, we get that

$$
\begin{equation*}
h_{2} \cdot \frac{n}{2}>h_{2} \cdot 2 k \tag{2.39}
\end{equation*}
$$

We may suppose that $s \geq n / 2-h_{2}$, since otherwise (C) holds. So, we have that

$$
\begin{equation*}
\left(s-\frac{n}{2}\right)\left(2 k-h_{2}\right) \geq-h_{2}\left(2 k-h_{2}\right) . \tag{2.40}
\end{equation*}
$$

Adding (2.38), (2.39), and (2.40), we obtain

$$
\begin{align*}
0 & >h_{2}^{2}-h_{2}\left(h_{1}+1\right)+h_{1}^{2}+h_{1} \\
& =\frac{1}{4}\left(2 h_{1}-h_{2}\right)^{2}+\frac{3}{4}\left(h_{2}-\frac{2}{3}\right)^{2}+h_{1}-\frac{1}{3} . \tag{2.41}
\end{align*}
$$

For nonnegative integers h_{1} and $h_{2}, h_{2}^{2}-h_{2}\left(h_{1}+1\right)+h_{1}^{2}+h_{1} \geq-1 / 3$ implies that $h_{2}^{2}-$ $h_{2}\left(h_{1}+1\right)+h_{1}^{2}+h_{1} \geq 0$. So, the above inequality is impossible.

For the case where $0 \leq h_{1} \leq k-1$ and $h_{2} \geq k$, since $t \geq p+1$, we have $n-s-t \leq$ $n-s-p-1$. Further, since $h_{2} \geq k$, using (2.8), (2.15) we have

$$
\begin{equation*}
n-s-p-1 \geq n-s-t \geq 3 \omega \geq 3\left[k s+\left(h_{1}-k\right) p\right] \tag{2.42}
\end{equation*}
$$

that is,

$$
\begin{equation*}
(3 k+1) s \leq n+\left(3 k-3 h_{1}-1\right) p-1 . \tag{2.43}
\end{equation*}
$$

Subcase $4.2\left(h_{2}=k\right)$. Since $3 k-3 h_{1}-1>0$ and $h_{1} \geq p-1$, it follows by (2.43) that

$$
\begin{equation*}
(3 k+1) s \leq n+\left(3 k-3 h_{1}-1\right)\left(h_{1}+1\right)-1 . \tag{2.44}
\end{equation*}
$$

By the same reason as in the proof of Subcase 4.1, we may suppose that $s \geq n / 2-h_{2}=$ $n / 2-k$. This inequality, together with (2.44), gives

$$
\begin{align*}
(3 k-1) n & \leq(3 k+1)(2 s+2 k)-2 n \\
& \leq 2\left[\left(3 k-3 h_{1}-1\right)\left(h_{1}+1\right)-1\right]+6 k^{2}+2 k \\
& =-6 h_{1}^{2}+(6 k-8) h_{1}+6 k^{2}+8 k-4 \\
& <-3 h_{1}^{2}+(6 k-12) h_{1}+6 k^{2}+8 k-2 \tag{2.45}\\
& =-3\left[h_{1}-k+2\right]^{2}+9 k^{2}-4 k+10 \\
& \leq 9 k^{2}-4 k+10<(3 k+1)(3 k-1),
\end{align*}
$$

which contradicts that $n \geq 4 k+1$, for $k \geq 3$.

Subcase $4.3\left(h_{2} \geq k+1\right) . \operatorname{By}(2.15)$ and (2.22),

$$
\begin{align*}
\omega & \geq k s+\left(h_{1}-k\right) p+\left(h_{2}-k\right)(t-p) \tag{2.46}\\
& \geq\left(k-h_{1}\right)(k-p)+t+k-p . \tag{2.47}
\end{align*}
$$

Subcase 4.3.1 $(p \leq k-1)$. Let $\omega_{0}=2 k-h_{1}-p+t$. Then $\omega \geq \omega_{0} \geq 5$ by (2.47). Suppose that $m_{2}-1+s+t \geq n / 2$, since otherwise (A) holds. Hence, by (2.10), the hypotheses of Lemma 2.4 are satisfied for $m=m_{2}$. Therefore

$$
\begin{equation*}
m_{2}-1+s+t \leq \frac{1}{3}\left[n+2\left(s+t+1-2 k+h_{1}+p-t\right)\right] . \tag{2.48}
\end{equation*}
$$

This, together with the inequality $m_{2}-1+s+t \geq n / 2$, gives

$$
\begin{equation*}
n \leq 4\left(s+h_{1}+p-2 k\right)+4 . \tag{2.49}
\end{equation*}
$$

By (2.43) and (2.49), we obtain

$$
\begin{align*}
3(k-1) n & \leq(3 k+1)\left[4 s+4 h_{1}+4 p-8 k+4\right]-4 n \\
& \leq 4\left[\left(3 k-3 h_{1}-1\right) p-1\right]+(3 k+1)\left(4 h_{1}+4 p-8 k+4\right) \tag{2.50}\\
& \leq 4\left(3 k-3 h_{1}-1\right)(k-1)+(3 k+1)\left(4 h_{1}-4 k\right)-4 \leq-4 k-16 .
\end{align*}
$$

This is obviously impossible.
Subcase 4.3.2 $(p=k)$. In this case $h_{1}=k-1$. Then by (2.22), $s \geq 2$. Since $t \geq p+1=$ $k+1 \geq 4$, by (2.46), we have $\omega \geq k s+t-2 k \geq t$. Let $\omega_{0}=t$, then $\omega \geq \omega_{0} \geq 4$ by (2.46). Hence, by (2.10), the hypotheses of Lemma 2.4 are satisfied for $m=m_{2}$. Therefore,

$$
\begin{equation*}
m_{2}-1+s+t \leq \frac{n+2 s+2}{3} . \tag{2.51}
\end{equation*}
$$

By the same reason as in the proof of Subcase 4.3.1, we may suppose that $m_{2}-1+s+$ $t \geq n / 2$. This, together with (2.51), gives

$$
\begin{equation*}
n \leq 4 s+4 \tag{2.52}
\end{equation*}
$$

Further, when $p=k$ and $h_{1}=k-1,(2.43)$ is as follows:

$$
\begin{equation*}
(3 k+1) s \leq n+2 k-1 . \tag{2.53}
\end{equation*}
$$

By (2.52) and (2.53), we get

$$
\begin{equation*}
(3 k+1) s \leq 4 s+2 k+3 \tag{2.54}
\end{equation*}
$$

which contradicts that $s \geq 2$ in this case.
Case 5 ($h_{1}=k$ and $T \backslash N_{T}\left[x_{1}\right] \neq \varnothing$).
Subcase $5.1\left(k \leq h_{2} \leq k+1\right)$. In this case $t \geq 2$, so that $n-2-s \geq n-s-t$. Since $h_{1}=k$ and $t \geq p+1$, we have

$$
\begin{equation*}
\left(h_{1}-k\right) p+\left(h_{2}-k\right)(t-p) \geq h_{2}-k . \tag{2.55}
\end{equation*}
$$

By (2.8) and (2.46), we get

$$
\begin{equation*}
n-s-2 \geq n-s-t \geq 3\left[k s+\left(h_{2}-k\right)\right] \tag{2.56}
\end{equation*}
$$

that is,

$$
\begin{equation*}
s \leq \frac{n-2+3\left(k-h_{2}\right)}{3 k+1} \leq \frac{n-2}{3 k+1} . \tag{2.57}
\end{equation*}
$$

We still suppose that $s+h_{2} \geq n / 2$, since otherwise (C) holds. Therefore, this, together with (2.57), gives

$$
\begin{equation*}
\frac{n}{2} \leq s+h_{2} \leq \frac{n-2}{3 k+1}+k+1 \tag{2.58}
\end{equation*}
$$

that is,

$$
\begin{equation*}
(3 k-1) n \leq 6 k^{2}+8 k-2<\left(2 k+\frac{11}{3}\right)(3 k-1), \tag{2.59}
\end{equation*}
$$

which contradicts that $n \geq 4 k+1$, for $k \geq 3$.
Subcase $5.2\left(h_{2} \geq k+2\right)$. By (2.22), we have $s \geq 1$. Since $t \geq p+1$ and $p \leq h_{1}+1=k+1$, by (2.46), we get $\omega \geq k s+2(t-p)$. Let $\omega_{0}=k s+2(t-p)$, then $\omega \geq \omega_{0} \geq 5$. By (2.9), the hypotheses of Lemma 2.4 are satisfied for $m=m_{2}$, we get

$$
\begin{align*}
m_{2}-1+s+t & \leq \frac{1}{3}[n+2(s+t+1-k s-2 t+2 p)] \\
& \leq \frac{1}{3}[n-2(k-1) s-2(p+1)+2+4 p] \tag{2.60}\\
& \leq \frac{1}{3}[n-2(k-1) s+2(k+1)] \leq \frac{n+4}{3}<\frac{n}{2} .
\end{align*}
$$

This shows that (A) holds in this case. This completes the proof of Theorem 1.4.

3. Sharpness of Theorem 1.4

The condition $\delta(G) \geq k+1$ in Theorem 1.4 is necessary. The assumption that G is 2connected and $n \geq 4 k+1$ in Theorem 1.4 cannot be weakened any further. Let k be an odd integer such that $k \geq 3$, and let n be an even integer such that $n \geq 4 k+1 . G_{1}$ is a graph obtained by adding an edge e to connect K_{k+2} and K_{n-k-2}. Then G_{1} satisfies all the conditions of Theorem 1.4 except that G_{1} is 1 -connected and G_{1} has no k-factors excluding edge e. Let $G_{2}=K_{2 k-1}+\left(K_{1} \cup k K_{2}\right)$, then G_{2} satisfies all the conditions of Theorem 1.4 except $n=4 k$. Setting $S=V\left(K_{2 k-1}\right)$ and $T=V\left(K_{1} \cup k K_{2}\right)$, we have $\delta_{G}(S, T)=0<\varepsilon(S, T)=2$; by Lemma 2.2, Theorem 1.4 does not hold.

Acknowledgment

I would like to thank the referees for their valuable comments which led to a considerable improvement of the original paper.

References

[1] G. Chartrand and L. Lesniak, Graphs and Digraphs, The Wadsworth \& Brooks/Cole Mathematics Series, Wadsworth \& Brooks/Cole Advanced Books \& Software, California, 1986.
[2] Y. Egawa and H. Enomoto, Sufficient conditions for the existence of k-factors, Recent Studies in Graph Theory (V. R. Kulli, ed.), Vishwa International Publications, India, 1989, pp. 96-105.
[3] T. Iida and T. Nishimura, An ore-type condition for the existence of k-factors in graphs, Graphs Combin. 7 (1991), no. 4, 353-361.
[4] T. Nishimura, A degree condition for the existence of k-factors, J. Graph Theory 16 (1992), no. 2, 141-151.
[5] W. T. Tutte, The factors of graphs, Canad. J. Math. 4 (1952), 314-328.
Changping Wang: Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, Canada B3H 3J5

E-mail address: cwang@mathstat.dal.ca

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

[^0]: Copyright © 2005 Hindawi Publishing Corporation
 International Journal of Mathematics and Mathematical Sciences 2005:6 (2005) 863-873
 DOI: 10.1155/IJMMS.2005.863

