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From the enumerative generating function of an abstract adjacency statistic, we deduce
the mean and variance of the variation on random permutations, rearrangements, com-
positions, and bounded integer sequences of finite length.

1. Introduction

When the finite sequence of integers w = 1,3,2,2,4,3 is sketched as below,

w =

4

3 3

2 2

1

(1.1)

its most compelling aspect is its vertical variation, that is, the sum of the vertical distances
between its adjacent terms. Denoted by varw, the vertical variation of the sequence in
(1.1) is varw = 2 + 1 + 0 + 2 + 1= 6. Our purpose here is to compute the mean and vari-
ance of var on four classical sets of combinatorial sequences.

To formalize matters and place our problem in the context of other work, let [m]n

denote the set of sequences w = x1x2 ···xn of length n with each xi ∈ {1,2, . . . ,m}. For
a real-valued function f on [m]2, the f -adjacency number of w = x1x2 ···xn ∈ [m]n is
defined to be

adf w =
n−1∑
k=1

f
(
xkxk+1

)
. (1.2)
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Table 1.1

Sequences Expected value of var Variance of var

Sn
n2− 1

3
(n− 2)(n+ 1)(4n− 7)

90

[m]n
(n− 1)(m2− 1)

3m
(m2− 1)(6m2n+ 6n− 7m2− 2)

90m2

Rn(�i) 2
n

∑
1≤x<y≤m

(y− x)ixiy See (3.10)

Cn(m)
2(n− 1)

(m− 1)n−1

�m/2�∑
x=1

(m− 2x)n−1 See (3.18)

Some specializations of the f -adjacency number have been considered elsewhere. For in-
stance, if f (xy) is 1 when x < y and 0 otherwise, then adf w is known as the rise number of
w [1, 3, 4]. For the selection f (xy)= |y− x|, adf w = varw. In a sorting problem of com-
puter science, Levcopoulos and Petersson [5] introduced the related notion of oscillation
(varw − n + 1) as a measure of the presortedness of a sequence of n distinct numbers.
In [6], compositions were enumerated by their ascent variation, the f -adjacency statis-
tic induced by f (xy) = y − x if x < y and 0 otherwise. For the case f (xy) = h(|y − x|)
where h is a linear, convex, or concave increasing real-valued function, Chao and Liang
[2] described the arrangements of n distinct integers for which adf achieves its extreme
values.

Besides considering the distribution of var on the set [m]n, we also consider it on
the set of rearrangements Rn(i1, i2, . . . , im) consisting of sequences of length n = i1 + i2 +
···+ im which contain l exactly il times, on the set of permutations Sn = Rn(1,1, . . . ,1)
of {1,2, . . . ,n}, and on the set of compositions of m into n parts Cn(m) = {x1x2 ···xn ∈
[m]n : x1 + x2 + ··· + xn = m}. For m,n ≥ 2, Table 1.1 displays the mean and variance
of var on these four sets. The kth falling factorial of n is nk = n(n− 1)···(n− k + 1),
�i = (i1, i2, . . . , im), and, for r a real number, �r� denotes the greatest integer less than or
equal to r. The results in Table 1.1 are new. David and Barton [3, Chapter 10] present
the distributions of several statistics (some f -adjacency numbers, some not) primarily
on permutations. We also note that Tiefenbruck [7] derived a generating function for
compositions with bounded parts by a close relative of var. We leave open questions con-
cerning the asymptotic behavior of var.

2. Enumerative factorial moments for f -adjacencies

Before working specifically with var, we discuss the enumerative generating function for
adf on sequences as developed by Fédou and Rawlings [4]. Let [m]∗ denote the set of
sequences of 1, 2, . . . , m of finite length (including the empty sequence of length 0). For
w = x1x2 ···xn ∈ [m]∗, we define Zw = zx1zx2 ···zxn . The enumerative generating func-
tion for adf over [m]∗ is then defined to be G(p)=∑w∈[m]∗ p

adf wZw.
By manipulating G(p), we will obtain all of the information in Table 1.1 (and more).

As a brief outline of our approach, note that the coefficient of pkzi11 z
i2
2 ···zimm in G(p) is
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just the number of rearrangementsw in Rn(�i) with adf w = k. Thus, by dividing the coeffi-

cient of zi11 z
i2
2 ···zimm inG′(1) by the cardinality ofRn(�i), we will obtain the mean of adf . So,

in general, we compute the dth enumerative factorial moment G(d)(1)=∑w∈[m]∗(adf w)d

Zw.
From the work of Fédou and Rawlings [4], it follows that

G(p)= 1
D(p)

, (2.1)

where

D(p)= 1−
∑
n≥1

∑
x1···xn∈[m]n

Zx1···xn
n−1∏
k=1

(
p f (xkxk+1)− 1

)
. (2.2)

Examples are presented in [4, 6] for which D has a closed form. We do not know a closed
form for D when adf = var (that is, when f (x, y) = |y − x|). Nevertheless, (2.1) is still
useful in computing the mean and variance of var.

Although the formula for taking the d-fold derivative with respect to p of a function
of the form in (2.1) is known, we provide a short derivation. To avoid the quotient and
chain rules, rewrite (2.1) as GD = 1. Differentiating the latter d times, d ≥ 1, and dividing
by d! gives

d∑
j=0

G(d− j)

(d− j)!
D( j)

j!
= 0. (2.3)

To solve for G(d), consider the system

G(d)

d!
D(0)

0!
+

G(d−1)

(d− 1)!
D(1)

1!
+

G(d−2)

(d− 2)!
D(2)

2!
+ ···+

G(0)

0!
D(d)

d!
= 0,

G(d−1)

(d− 1)!
D(0)

0!
+

G(d−2)

(d− 2)!
D(1)

1!
+ ···+

G(0)

0!
D(d−1)

(d− 1)!
= 0,

...

G(1)

1!
D(0)

0!
+
G(0)

0!
D(1)

1!
= 0,

G(0)

0!
D(0)

0!
= 1,

(2.4)

where the top d equations arise from repeated application of (2.3). Cramer’s rule applied



2280 Variation of random sequences

to the above system yields

G(d)

d!
= (−1)d

Dd+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

D(1)

1!
D(2)

2!
D(3)

3!
··· D(d)

d!
D(0)

0!
D(1)

1!
D(2)

2!
D(d−1)

(d− 1)!

0
D(0)

0!
D(1)

1!
D(d−2)

(d− 2)!
...

...

0 ··· 0
D(0)

0!
D(1)

1!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.5)

which, when expanded, implies that

G(d) =
d∑

ν=1

(−1)ν

Dν+1

∑
j1+···+ jν=d

jk≥1

(
d

j1 ··· jν

)
D( j1) ···D( jν). (2.6)

To determine the enumerative factorial moment G(d)(1), we see from (2.2) that

D( j)(1)=−
j+1∑
r=2

D
( j)
r , (2.7)

where

D
( j)
r =

∑
x1···xr∈[m]r

Zx1···xr
∑

l1+···+lr−1= j
lk≥1

(
j

l1 ··· lr−1

) r−1∏
k=1

f
(
xkxk+1

)lk . (2.8)

For instance,

D′2 =
∑

xy∈[m]2

f (xy)zxzy , D′′2 =
∑

xy∈[m]2

f (xy)2zxzy ,

D′′3 = 2
∑

vxy∈[m]3

f (vx) f (xy)zvzxzy.
(2.9)

Further setting �j = ( j1, . . . , jν), s(�j)= j1 + ···+ jν,

(
d
�j

)
=
(

d
j1 ··· jν

)
, and D

(�j)
µ =

∑
r1+···+rν=µ

rk≥2

D
( j1)
r1 ···D( jν)

rν , (2.10)

it follows from (2.6) and (2.7) that

G(d)(1)=
d∑

ν=1

1
Dν+1(1)

∑
s(�j)=d
jk≥1

(
d
�j

) d+ν∑
µ=2ν

D
(�j)
µ . (2.11)
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As D(1) = 1− (z1 + ···+ zm), extracting the contributions made by all w ∈ [m]n from
both sides of (2.11) gives the dth enumerative factorial moment of adf over [m]n as

∑
w∈[m]n

(adf w)dZw =
d∑

ν=1

∑
s(�j)=d
jk≥1

(
d
�j

) d+ν∑
µ=2ν

(
n+ ν−µ

ν

)( m∑
i=1

zi

)n−µ
D

(�j)
µ (2.12)

valid for d ≥ 1. When d = 1,2, (2.9) and (2.12) imply that

∑
w∈[m]n

adf wZw = (n− 1)

( m∑
i=1

zi

)n−2 ∑
xy∈[m]2

f (xy)zxzy (2.13)

and that

∑
w∈[m]n

(adf w)2Zw = (n− 1)

( m∑
i=1

zi

)n−2 ∑
xy∈[m]2

(
f (xy)

)2
zxzy

+ 2(n− 2)

( m∑
i=1

zi

)n−3 ∑
vxy∈[m]3

f (vx) f (xy)zvzxzy

+ (n− 2)(n− 3)

( m∑
i=1

zi

)n−4( ∑
xy∈[m]2

f (xy)zxzy

)2

.

(2.14)

3. Discussion of Table 1.1

The entries in Table 1.1 are consequences of (2.13) and (2.14) with f (xy)= |y− x| and
with appropriate substitutions for Z. For the mean and variance of var on the set of
bounded sequences [m]n, put zi = 1 for 1≤ i≤m. Noting that

∑
xy∈[m]2

|y− x| =
∑

1≤x<y≤m
2(y− x)= 2

(
m+ 1

3

)
, (3.1)

it follows from (2.13) that the mean of var on [m]n is

1
mn

∑
w∈[m]n

varw = 2(n− 1)mn−2

mn

(
m+ 1

3

)
= (n− 1)

(
m2− 1

)
3m

. (3.2)

As

∑
xy∈[m]2

|y− x|2 = 4

(
m+ 1

4

)
(3.3)



2282 Variation of random sequences

and as
∑

vxy∈[m]n
|x− v||y− x| =

∑
1≤v<x<y≤m

2(x− v)(y− x)

+
∑

1≤x<y≤v≤m
4(v− x)(y− x)−

∑
1≤x<y≤m

2(y− x)2

= 7m2− 8
10

(
m+ 1

3

)
,

(3.4)

(2.14) implies that

1
mn

∑
w∈[m]n

(varw)2 = 4(n− 1)
m2

(
m+ 1

4

)
+

(n− 2)
(
7m2− 8

)
5m3

(
m+ 1

3

)

+
4(n− 2)(n− 3)

m4

(
m+ 1

3

)2

.

(3.5)

Then, subbing the last result into

1
mn

∑
w∈[m]n

(varw)2 +
(n− 1)

(
m2− 1

)
3m

−
(

(n− 1)
(
m2− 1

)
3m

)2

(3.6)

and simplifying gives the variance of var as recorded in Table 1.1.

For Rn(�i), extracting the coefficient of zi11 z
i2
2 ,··· ,zimm from (2.13) leads to

∑
w∈Rn(�i)

varw = 2(n− 1)
∑

1≤x<y≤m
(y− x)

(
n− 2

i1 ··· ix − 1··· iy − 1··· im

)
. (3.7)

As the cardinality of Rn(�i) is

(
n

i1i2 ··· im

)
=
(
n
�i

)
, (3.8)

it follows that the mean of var on Rn(�i) is

(
n
�i

)−1 ∑
w∈Rn(�i)

varw = 2
n

∑
1≤x<y≤m

(y− x)ixiy. (3.9)

Let�i\r = (i1, . . . , ir − 1, . . . , in). For example, (3,2,1,4)\3\2\3 = (3,1,−1,4). The variance on

Rn(�i) is then

(
n
�i

)−1 ∑
w∈Rn(�i)

varw2 +
2
n

∑
1≤x<y≤m

(y− x)ixiy −
(

2
n

∑
1≤x<y≤m

(y− x)ixiy

)2

, (3.10)
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where, upon extraction of the coefficient of zi11 z
i2
2 , . . . ,zimm from (2.14), we have

∑
w∈Rn(�i)

(varw)2 = (n− 1)
∑

1≤x, y≤m
|y− x|2

(
n− 2
�i\x\y

)

+ 2(n− 2)
∑

1≤v,x,y≤m
|x− v||y− x|

(
n− 3
�i\v\x\y

)

+ (n− 2)(n− 3)
∑

1≤u,v,x,y≤m
|v−u||y− x|

(
n− 4
�i\u\v\x\y

)
.

(3.11)

The permutation entries in Table 1.1 follow from (3.9) and (3.10). Selecting m= n and
ik = 1 for 1≤ k ≤ n in (3.9) reveals the mean of var on Sn as

1
n!

∑
w∈Sn

varw = 2
n

∑
1≤x<y≤n

(y− x)= 2
n

(
n+ 1

3

)
= n2− 1

3
. (3.12)

From (3.11), with m= n and ik = 1 for 1≤ k ≤ n,

∑
w∈Sn

(varw)2 = (n− 1)!
∑

1≤x, y≤n
|y− x|2

+ 2(n− 2)!
∑

1≤v,x,y≤n
|x− v||y− x|

+ (n− 2)!
∑

1≤u,v,x,y≤m
{u,v}∩{x,y}=∅

|v−u||y− x|

=
(

4
15

)
(n− 2)!

(
10n2 + 14n− 27

)(n+ 1
4

)
.

(3.13)

So the variance of var on Sn is

1
n!

∑
w∈Sn

varw2 +
n2− 1

3
−
(
n2− 1

3

)2

= (n− 2)(n+ 1)(4n− 7)
90

. (3.14)

For w = x1 ···xn ∈ [m]n, let ‖w‖ = x1 + ··· + xn. For the composition results in
Table 1.1, set zk = qk for 1≤ k ≤m. Then (2.13) implies that

∑
w∈[m]n

varwq‖w‖ = (n− 1)qn−2
(

1− qm

1− q

)n−2 ∑
1≤x, y≤m

|y− x|qx+y (3.15)
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and (2.14) leads to

∑
w∈[m]n

(varw)2q‖w‖ = (n− 1)qn−2
(

1− qm

1− q

)n−2 ∑
1≤x, y≤m

|y− x|2qx+y

+ 2(n− 2)qn−3
(

1− qm

1− q

)n−3 ∑
1≤v,x,y≤m

|x− v||y− x|qv+x+y

+ (n− 2)(n− 3)qn−4
(

1− qm

1− q

)n−4 ∑
1≤u,v,x,y≤m

|v−u||y− x|qu+v+x+y.

(3.16)

Extracting the coefficient of qm from (3.15) to obtain

∑
w∈Cn(m)

varw = 2(n− 1)
∑

1≤x<y≤m
(y− x)

(
m− 1− x− y

n− 3

)

= 2(n− 1)
∑

1≤x≤�m/2�

(
m− 2x
n− 1

) (3.17)

and then dividing by the cardinality
(
m−1
n−1

)
of Cn(m) gives the mean of var as stated in

Table 1.1. The variance is

(
m− 1
n− 1

)−1 ∑
w∈Cn(m)

varw2 +
2(n− 1)

(m− 1)n−1

∑
1≤x≤�m/2�

(m− 2x)n−1

−
(

2(n− 1)
(m− 1)n−1

∑
1≤x≤�m/2�

(m− 2x)n−1
)2

,

(3.18)

where, pulling the coefficient of qm from (3.16), we have

∑
w∈Cn(m)

(varw)2 = (n− 1)
∑

1≤x, y≤m
|y− x|2

(
m− 1− x− y

n− 3

)

+ 2(n− 2)
∑

1≤v,x,y≤m
|x− v||y− x|

(
m− 1− v− x− y

n− 4

)

+ (n− 2)(n− 3)
∑

1≤u,v,x,y≤m
|v−u||y− x|

(
m− 1−u− v− x− y

n− 5

)
.

(3.19)

The sums in (3.19) are marginally simplified. For instance,

∑
1≤x, y≤m

|y− x|2
(
m− 1− x− y

n− 3

)
= 4

∑
1≤x≤�m/2�

(
m− 2x

n

)
. (3.20)
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As a part of the second sum on the right-hand side of (3.19), we note that

∑
1≤v<x<y≤m

(x− v)(y− x)

(
m− 1− v− x− y

n− 4

)

=
∑

2≤x≤�(m+1)/2�

((
m− 3x+ 1

n

)
−
(
m− 2x+ 1

n

)
+ x

(
m− 2x
n− 1

))
.

(3.21)

The four-fold sums arising in the last sum in (3.19) reduce to double sums.
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