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Models of detritus-based ecosystems with delay have received a great deal of attention for
the last few decades. This paper deals with the dynamical analysis of a nonlinear model
of a detritus-based ecosystem involving detritivores and predator of detritivores. We have
obtained the criteria for local stability of various equilibrium points and persistence of
the model system. Next, we have introduced discrete time delay due to recycling of dead
organic matters and gestation of nutrients to the growth equations of various trophic
levels. With delay differential equation model system we have studied the effect of time
delay on the stability behaviour. Next, we have obtained an estimate for the length of
time delay to preserve the stability of the model system. Finally, the existence of Hopf-
bifurcating small amplitude periodic solutions is derived by considering time delay as a
bifurcation parameter.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

The dynamical theory of population biology has started to take a formal shape after the
pioneering work of Jorgensen [19]. The early studies of small mammals and laboratory
controlled organisms involve the interest of mathematician with the dynamics of the pop-
ulation. Our interest here involves in studying the detritus-based ecosystem mainly found
in India’s Sunderban Mangrove area. The mangrove ecosystem consists of several basic
subsystems connected with each other. This ecosystem comprises of many sand flats and
mud. Some algal species are always found in these sand flats and mud. They always con-
tribute some amount of detritus which is formed by the action of decomposers on dead
bodies of these species. At the primary level the major energy source is the leaves of the
mangrove trees which are the nutrient to the higher trophic levels [5]. The supralittoral
zones of this ecosystem are occupied by large number of mangrove plants and the plant
leaves are chief source of detritus. In this food chain some 10 percent or less of net primary
production is grazed and 90 percent passes through decomposers [8]. The food resource
of mangrove trees is consumed by small animals such as microarthropods, oligochaetes,

Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2006, Article ID 25619, Pages 1–28
DOI 10.1155/IJMMS/2006/25619



2 Effect of time delay on a detritus-based ecosystem

and micro-organisms like protozoa, fungi, actinomycetes, bacteria, and so forth. These
are considered as the detritivores. The abundance of this detritivores pool solely governs
abundance and persistence of invertebrates, namely, nematodes, unicellular animals, and
certain insect larvae [18, 31]. These are known as predators of detritivores. This type of
food chains is observed within every ecosystem and is very important for the circula-
tion of materials. The detritus is supplied by the action of decomposers on dead bodies
of the algal macrophytes present within the environment and this detritus provides food
and refuge for detritivores like amphipod and leptostracan crustaceans. These types of
detritus-based models are studied by Vetter [34] for the Southern California Submarine
canyon ecosystem. Faust and Gulledge [10] investigated the formation of detritus from
microalgae and its association with meiofauna such as nematodes, ciliales copepods, and
crustacean larvae at a mangrove island. Charles [5] pointed out that detritus is formed
by the action of two types of macrophytes, namely, Cytoseira mediteranca and Posidonia
oceanica and the role of detritivores is played by Abra ovata. Linley [21], Ray and Choud-
hury [29], and Linley and Adams [22] have established that the main source of detritus in
the supralittoral zone of mangrove ecosystem in Sunderban is not algae, which is mainly
formed by the excessive mortality rate of insect intruders, particularly, in the larval and
pupal stages due to high salinity of the trapped water in the supralittoral zone. Conse-
quently, the flow of dead organic matter is not always continuous and is maximum in the
intermediate period between a new moon and a full moon. Detritivores depend upon the
detritus for food as well as energy and these detritivores also support a novel food source
for fish, insect intruders present within the supralittoral zones. There has been consider-
able interest in mathematical models simulating the interaction between species and de-
composers. Sarkar et al. [32] studied the stability of partially closed producer-consumer
system via decomposer. In another work, they have studied the persistence and oscilla-
tions of the detritus-based prey-predator model and have found that the food conversion
efficiency rate of microbial organisms governs the dynamics of such a model.

The time delays of one type on another work was recognized by Volterra [35] and it
has been incorporated into biological models by many researchers, namely, Cushing [6],
Gopalsamy [15], Kuang [20], and MacDonald [23]. For the prey-predator model, the
delay has been studied by Bandyopadhyay [1], Beretta and Kuang [3], Gopalsamy [13,
14], Hastings [17], Martin and Ruan [25], May [26], Ruan [30], and the references cited
therein. In most of the cases, population of one species does not respond instantaneously
with the other species present in the community. It is believed that the time delays have
destabilizing effect on the models of population dynamics and time delays are responsible
for population oscillations within deterministic environment.

In this paper we have considered a deterministic model depicting the interaction be-
tween the micro-organism pool living on mangrove litter and their invertebrate preda-
tors. The growth equation of the detritus has a constant input rate maintained by large
macrophytes and algal flora. A part of dead organic matter is converted into detritus by
the action of micro-organisms. The consumption of detritus by micro-organism biomass
(detritivores) is assumed to follow Holling type-II functional response. Also, the amount
of detritivores biomass consumed by its predator follows Holling type-II functional re-
sponse. In our study we have taken into account the instantaneous constant supply of
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the detritus. In nature, certain days are required to form detritus from the dead organic
matter and hence we have considered a time delay due to recycle in the growth equation
of detritus. Also, in the growth equation of the detritivores we have considered time de-
lay in the functional response term for gestation due to the consumption of detritus by
the detritivores and same type of gestation delay is introduced in the growth equation
of the predator of detritivores due to the consumption of detritivores by the predators
of detritivores. We study the local stability in presence of time delay and also in absence
of time delay. Then we have obtained an estimate of time delay for which the stability
behaviour remains unaltered. Finally, we have derived the condition for the existence of
Hopf-bifurcating periodic solutions by considering the time delay as bifurcation param-
eter.

2. Basic model

Let N1 =N1(t) represent biomass of plant litter from the mangrove trees after decompo-
sition which we call detritus, let N2 =N2(t) be the biomass of micro-organisms, namely,
detritivores and the biomass of the predators of detritivores be represented by N3 =N3(t)
which are the invertebrate predators living on micro-organisms at time “t.” Here we as-
sume that the state variables are nutrient equivalent and the units are same as that of
detritus. It is assumed that the growth equation of the detritus is governed by a nonlinear
ordinary differential equation

dN1

dt
=N0− aN1−α

N1N2

β+N1
, (2.1)

where N0 is the constant supply rate of detritus within the system. We assume the loss
of detritus biomass due to that leaching is “aN1.” The loss of detritus biomass due to the
consumption by the detritivores follows the Holling type-II functional response, α is the
uptake rate and β is half saturation constant. The growth equation of the detritivores is
governed by

dN2

dt
= α1

N1N2

β+N1
− γN2− δ

N2N3

μ+N2
. (2.2)

Let e1 (0 < e1 < 1) be the consumption rate of detritus by detritivores and hence the
growth rate of detritivores due to consumption of the detritus is α1 = e1α < α. Clearly, the
rate at which detritus population decreases is higher than the growth rate of detritivores.
This is due to the conversion efficiency of detritivores and the coefficient of efficiency is
given by α1/α. In detritivores growth equation γ is the natural mortality rate of detri-
tivores, δ is the loss rate of detritivores biomass due to the uptake by the invertebrate
predators N3, μ parametrize the half saturation of Holling type-II functional response for
the detritivores. The growth rate of predator of detritivores is given by

dN3

dt
= δ1

N2N3

μ+N2
− γ1N3, (2.3)
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where δ1 is the rate of input to the predator of detritivores population due to consump-
tion of detritivores and γ1 is the natural mortality rate of predator of detritivores. With
the similar argument as above, we obtain δ1 < δ.

Finally, we assume that the dead micro-organism whose biomass is γN2 contributes to
the growth of the detritus. Then the growth equation (2.1) of the detritus is given by

dN1

dt
=N0− aN1−α

N1N2

β+N1
+ cγN2, (2.4)

where “c” (0 < c� 1) and “cγ” is the detritus recycle rate after the death of detritivores.
Thus our mathematical model takes its formal shape as

dN1

dt
=N0− aN1−α

N1N2

β+N1
+ cγN2,

dN2

dt
= α1

N1N2

β+N1
− γN2− δ

N2N3

μ+N2
,

dN3

dt
= δ1

N2N3

μ+N2
− γ1N3.

(2.5)

Nonnegative initial conditions are given by N1(0) = N10 > 0, N2(0) = N20 > 0, N3(0) =
N30 > 0.

3. Equilibria and boundedness of the model

We concentrate ourselves to the model system (2.5). The right-hand sides of the system
(2.5) are smooth functions of the biomass N1, N2, N3 with the initial condition men-
tioned as above. The parameters involved with the model system are all nonnegative. The
equilibria or steady states are the nonnegative solutions of the system of equations

dN1

dt
= 0,

dN2

dt
= 0,

dN3

dt
= 0. (3.1)

Solving these equations one can obtain the following equilibrium points:
(1) axial equilibrium: E1 ≡ (N0/a,0,0);
(2) boundary equilibrium: E2 ≡ (N1b,N2b,0), where N1b = βγ/(α1 − γ), N2b = (1/

γ(α/α1− c))(N0− aβγ/(α1− γ));
(3) interior equilibrium: E∗ ≡ (N1∗,N2∗,N3∗), where N1∗, N2∗, N3∗ are given by

N1∗ = 1
2a

[
N0 +

cμγγ1

δ1− γ1
− aβ− αμγ1

δ1− γ1

+

√√√√(N0 +
cμγγ1

δ1− γ1
− aβ− αμγ1

δ1− γ1

)2

+ 4aβ
(
N0 +

cμγγ1

δ1− γ1

)]
,

N2∗ = μγ1

δ1− γ1
, N3∗ = μδ1

δ
(
δ1− γ1

)( α1N1∗
β+N1∗

− γ
)
.

(3.2)



N. H. Gazi and M. Bandyopadhyay 5

Now from the expressions of the above equilibrium points we see that the axial equilib-
rium E1 always exists. The boundary equilibrium E2 will exist if the following restrictions
on the parameters are satisfied:

α

c
> α1 > γ, N0 >

aβγ

α1− γ
=N01, (3.3)

that is, if the growth rate of detritivores due to consumption of detritus biomass must
exceed some threshold value and the constant supply of detritus is higher than some
critical value N01. The existence of interior equilibrium E∗ demands

δ1 > γ1, N1∗ >
βγ

α1− γ
with α1 > γ. (3.4)

Using the expression for N1∗ from (3.2) we ultimately arrive at

N0 >
aβγ

α1− γ
+

μγγ1

δ1− γ1

(
α

α1
− c
)
=N02, (3.5)

that is, the uptake rate on detritivores exceeds the mortality rate of the predator of detri-
tivores and the constant supply of detritus exceeds some critical value N02.

Before going to obtain the conditions for local stability of various equilibria we first
give the criteria for which the detritivores and the predator of detritivores or both of them
may become extinct.

Theorem 3.1. Let the inequality

α1 < γ (3.6)

hold. Then limt→∞N2(t)= 0.

Proof. From the system (2.5), we have

dN2

dt
= α1

N1N2

β+N1
− γN2− δ

N2N3

μ+N2
=N2

[
α1

N1

β+N1
− γ− δ

N3

μ+N2

]

≤N2

[
α1

N1

β+N1
− γ
]
≤N2

[
α1− γ

]≤ 0 by (3.6).

(3.7)

This shows that Theorem 3.1 follows.
Theorem 3.1 shows that if the maximum nutrient uptake rate is less than the mortality

rate of the predator, then the predator (detritivores) population is eliminated. �

Theorem 3.2. Let the inequality

δ1 < γ1 (3.8)

hold. Then limt→∞N3(t)= 0.
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Proof. From the system (2.5), we have

dN3

dt
= δ1

N2N3

μ+N2
− γ1N3 =N3

[
δ1

N2

μ+N2
− γ1

]

≤N3
[
δ1− γ1

]
< 0 by (3.8).

(3.9)

This shows that Theorem 3.2 follows.
This shows that if the maximum uptake rate of detritivores is less than the mortality

rate of the predators of detritivores population, then the predators of detritivores popu-
lation become extinct.

If the conditions stated in Theorems 3.1 and 3.2 are satisfied, the system (2.5) cannot
be feasible for persistence and also there will be no equilibrium points for the model
under consideration except the axial equilibrium point. �

We now study the boundedness of the system.

Theorem 3.3. All the solutions of the model system (2.5) with initial conditions are uni-
formly bounded.

Proof. The right-hand sides of the system (2.5) are smooth functions of variables (N1,N2,
N3) and all parameters are nonnegative. Let us consider the time-dependent function

W(t)=N1 +
α

α1
N2 +

αδ

α1δ1
N3. (3.10)

Clearly,

dW(t)
dt

= dN1

dt
+

α

α1

dN2

dt
+

αδ

α1δ1

dN3

dt
. (3.11)

Using (2.5) in the above expression we obtain

dW(t)
dt

=
[
N0− aN1−α

N1N2

β+N1
+ cγN2

]
+

α

α1

[
α1

N1N2

β+N1
− γN2− δ

N2N3

μ+N2

]

+
αδ

α1δ1

[
δ1

N2N3

μ+N2
− γ1N3

]
=N0− aN1− γ

(
α

α1
− c
)
N2− αδγ1

α1δ1
N3

≤N0−ωW(t),

(3.12)

where ω is chosen as the minimum of {a,γ(1− c(α1/α)),γ1}. Thus

dW(t)
dt

+ωW(t)≤N0. (3.13)

Now applying the theorem of differential inequalities [4], we obtain

0 <W(t)≤W(0)e−ωt +
N0

ω
. (3.14)
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When the time t→∞,

0≤W ≤ N0

ω
. (3.15)

Hence all the solutions of the system (2.5) that initiate in {R3
+− 0} are bounded. �

4. Local stability analysis of deterministic model

In this section we consider the stability behaviour of the model system for the system of
(2.5). In the previous section we saw that E1(N0/a,0,0), E2(N1b,N2b,0), and E∗(N1∗,N2∗,
N3∗) are the exhaustive list of feasible equilibrium points if and only if the conditions
(3.3)–(3.5) on the parameters are satisfied. Now we study the stability of the model system
around different equilibrium points.

At the axial equilibrium point E1, the Jacobian matrix is given by

JE1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−a −
(

αN0

aβ+N0
− cγ

)
0

0
α1N0

aβ+N0
− γ 0

0 0 −γ1

⎞
⎟⎟⎟⎟⎟⎟⎠
. (4.1)

The characteristic equation corresponding to JE1 is

(−a− λ)
(

α1N0

aβ+N0
− γ− λ

)(− γ1− λ
)= 0. (4.2)

The axial equilibrium point E1 will be locally asymptotically stable if all the eigenvalues
are negative [4, 9, 27]. Here the eigenvalues are

λ1 =−a, λ2 = α1N0

aβ+N0
− γ, λ3 =−γ1. (4.3)

Thus if

α1N0

aβ+N0
− γ < 0, that is, if N0 <

aβγ

α1− γ
=N01, (4.4)

then point E1 is locally asymptotically stable. Therefore, if the constant supply of the
detritus is less than some critical value N01, then the axial equilibrium point is locally
asymptotically stable.

Let us now study the boundary equilibrium point E2 ≡ (N1b,N2b,0). The Jacobian ma-
trix at E2 is given by

JE2 =

⎛
⎜⎜⎜⎜⎜⎝
f1
(
N0
) −γ

(
α

α1
− c
)

0

f2
(
N0
)

0 f3
(
N0
)

0 0 f4
(
N0
)

⎞
⎟⎟⎟⎟⎟⎠ , (4.5)
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where

f1
(
N0
)=−a− α

βγ

(
1− γ/α1

)2

α/α1− c

(
N0− aβγ

α1− γ

)
, f2

(
N0
)=

(
1− γ/α1

)2

α/α1− c

(
N0− aβγ

α1− γ

)
,

f3
(
N0
)= −δ(N0− aβγ/

(
α1− γ

))
μγ
(
α/α1− c

)
+
(
N0− aβγ/

(
α1− γ

)) ,

f4
(
N0
)= −μγγ1

(
α/α1− c) +

(
δ1− γ1

)(
N0− aβγ/

(
α1− γ

))
μγ
(
α/α1− c

)
+
(
N0− aβγ/

(
α1− γ

)) .

(4.6)

From the community matrix JE2 it is clear that the eigenvalues of JE2 are λ3 = f4(N0)
and the eigenvalues of the matrix

JE′2 =
⎛
⎜⎝ f1

(
N0
) −γ

(
α

α1
− c
)

f2
(
N0
)

0

⎞
⎟⎠ . (4.7)

Now λ3 is negative if

f4
(
N0
)
< 0=⇒N0 <

aβγ

α1− γ
+

μγγ1

δ1− γ1

(
α

α1
− c
)
=N02. (4.8)

Since Tr(JE′2 ) = f1(N0) < 0 if N0 > N01 and det(JE′2 ) = γ (α/α1 − c) f2(N0) > 0, the other
two eigenvalues are negative. Thus we conclude that the boundary equilibrium point E2

is exponentially asymptotically stable if

N01 < N0 < N02. (4.9)

Thus, the boundary steady state will be locally asymptotically stable if the constant
supply of detritus belongs to two critical values N01 and N02.

Now we study the stability of the most interesting interior equilibrium point E∗ which
is also known as coexisting equilibrium point. As we are interested of the stability of the
steady state E∗ which is singular point in the phase plane of (2.5), a linear stability analysis
around the equilibrium point E∗ is equivalent to the phase space analysis. We linearize
the system about the interior equilibrium point E∗ for which the community matrix JE∗
is as follows:

JE∗ =
⎛
⎜⎝
a11 a12 0
a21 a22 a23

0 a32 0

⎞
⎟⎠ , (4.10)
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where

a11 =−a− αβμγ1

δ1− γ1

1(
β+N1∗

)2 , a12 =−δ1− γ1

μγ1

(
N0− aN1∗

)
,

a21 = α1βμγ1

δ1− γ1

1(
β+N1∗

)2 , a22 = α1γ1

αδ1

[
δ1− γ1

μγ1

(
N0− aN1∗

)
+ γ
(
α

α1
− c
)]

,

a23 =−δγ1

δ1
, a32 = α1

(
δ1− γ1

)
αδ

[
δ1− γ1

μγ1

(
N0− aN1∗

)
+ γ
(
α

α1
− c
)]

(4.11)

with the restrictions (3.3), (3.4), and (3.5). From the above community matrix, we obtain
the characteristic equation

λ3 + pλ2 + qλ+ r = 0, (4.12)

where

p =−(a11 + a22
)
, q = a11a22− a12a21− a23a32, r = a11a23a32. (4.13)

The characteristic equation (4.12) will have roots with negative real part if it satisfies the
Routh-Hurwitz criteria [27, 28], that is, p, r, and pq− r are all positive.

To find the conditions for which p, r, and pq− r are positive we use the bound of N1∗
as

− cμγγ1

δ1− γ1
< N0− aN1∗ < aβ+

μγ1

δ1− γ1
(α− cγ). (4.14)

Now r is positive if

N0 <
acβγ

α− cγ
=N03, (4.15)

p will be positive if a11 + a22 < 0, that is, if

N0 <

√
b

d− a
+ e =N04 along with α1 <

α

2c

(
aδ1

γγ1
− 1
)

, (4.16)

where b = a2αβ(μγ1/(δ1− γ1)), d = (α1γγ1/αδ1)(α/α1 − 2c), e = (μγ1/(δ1− γ1))(α− cγ).
Now pq− r > 0 holds if

(
a11 + a22

)(
a12a21− a11a22

)
+ a22a23a32 > 0. (4.17)

Using the bound of N1∗ from (4.14) one can obtain the following result:

N0 >
f g

f + g

(
1 +

gh

f +h

)
− cμγγ1

δ1− γ1
=N05, (4.18)

where f = (α1γ1/αδ1)(cμγγ1/(δ1− γ1)), g = aβ+ (αμγ1/(δ1− γ1)), h= aβ+d.
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Let N̂0 =max{N02,N05} and Ñ0 =min{N03,N04}, then from (3.5) and (4.8), we see
that if

N̂0 < N0 < Ñ0, (4.19)

then the interior equilibrium point E∗ is locally asymptotically stable. Therefore, the in-
terior steady state E∗ is locally asymptotically stable if the constant supply of detritus
belongs to the two critical values N̂0 and Ñ0.

Now we show that the system (2.5) is persistent.

Theorem 4.1. If the inequality

N0 >
aβγ

α1− γ
+

μγγ1

δ1− γ1

(
α

α1
− c
)

, δ1
N2b

μ+N2b
− γ1 > 0, (4.20)

then the system is persistent.

Proof. In the above discussion we saw that the equilibrium on the prey axis is stable when
N0 < aβγ/(α1− γ). If N0 > aβγ/(α1− γ), then the point on the prey axis becomes unstable
saddle point. This instability condition of the system in (2.5) at the axial steady state leads
to the stability of the boundary equilibrium point E2 in the N1N2-plane.

Again, if

N0 >
aβγ

α1− γ
+

μγγ1

δ1− γ1

(
α

α1
− c
)

, (4.21)

then the boundary steady state becomes unstable. The instability condition of the bound-
ary equilibrium point leads to the stability of the interior equilibrium point within the
positive octant of N1N2N3-space.

Now, let us suppose that

H
(
N1,N2,N3

)= δ1
N2

μ+N2
− γ1. (4.22)

Then

H
(
N1b,N2b,0

)= δ1
N2b

μ+N2b
− γ1 > 0 by (4.20). (4.23)

Therefore, according to Theorem 5.1 of Freedman and Waltman [12], the model system
(2.5) is persistent. �

5. Delay model: local stability analysis

In this section we consider the discrete time delay model which is in a modified version
of deterministic model system (2.5). Construction of discrete time delay model is based
upon the following assumptions: (i) the conversion from dead biomass of detritivores to
detritus through decomposition is not an instantaneous phenomenon, it takes some time
τ1, (ii) on the other hand, the consumed biomass of detritus by the detritivores contribute
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to the biomass of detritivores after a finite-time interval τ2, which is known as gestation
delay, (iii) τ3 is the time required for conversion of detritivores biomass to predator of
detritivore’s biomass.

So, we introduce the discrete time delay τ1 in the recycling term of N2 in the growth
equation of N1 population and obtain the growth equation of detritus as

dN1

dt
=N0− aN1− αN1N2

β+N1
+ cγN2

(
t− τ1

)
. (5.1a)

We introduce the gestation delay τ2 in the functional response term of detritus in the
growth equation of detritivores as follows:

dN2

dt
= α1

N1(t− τ2)N2

β+N1(t− τ2)
− γN2− δ

N2N3

μ+N2
. (5.1b)

Finally, we introduce the gestation delay τ3 in the functional response term involved with
the growth equation of predators of detritivores to obtain the following:

dN3

dt
= δ1

N2
(
t− τ3

)
N3

μ+N2
(
t− τ3

) − γ1N3. (5.1c)

Thus we have a delay differential equation model system (5.1a)–(5.1c) for the detritus-
based food chain model where the discrete time delays τ1,τ2,τ3 are all positive constants.
The initial conditions for the model system (5.1) are given by

N1(t)=N0
1 (t) for − τ2 ≤ t ≤ 0, N2(t)=N0

2 (t) for − τ4 ≤ t ≤ 0,

τ4 =max
{
τ1,τ3

}
, N3(0)=N30 > 0,

(5.1d)

where N0
i (t)∈ C([−τi,0],R+), i= 2,4, are given nonnegative functions.

The steady states of the delayed system (5.1) are same as those for the system (2.5).
Thus the steady states of the system (5.1) are E1(N0/a,0,0), E2(N1b,N2b,0), and E∗(N1∗,
N2∗,N3∗), where expressions for N1∗, N2∗, and N3∗ are given in (3.2).

Let us now linearize the above system of nonlinear delay differential equations (5.1)
about the interior equilibrium point E∗(N1∗,N2∗,N3∗). Let x ≡ x(t), y ≡ y(t), z ≡ z(t)
be the small perturbations from the equilibrium values Ni∗, i= 1,2,3, substituting N1 =
N1∗ + x, N2 =N2∗ + y, N3 =N3∗ + z in (5.1) and retaining linear terms we get the follow-
ing system of linear ordinary differential equations [20]:

dx

dt
= a11x+ a12y

(
t− τ1

)
,

dy

dt
= a21x

(
t− τ2

)
+ a22y + a23z,

dz

dt
= a32y

(
t− τ3

)
,

(5.2)

where the coefficients are given in (4.11). The characteristic equation corresponding to
the linearized system (5.2) is given by [15]

Δ
(
λ,τ1,τ2,τ3

)≡ λ3 + pλ2 +
[
θ + ρe−λ(τ1+τ2) +φe−λτ3

]
λ+ re−λτ3 = 0, (5.3)
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where p, θ, ρ, φ, r are given by

p =−(a11 + a22
)
, θ = a11a22, ρ=−a12a21, φ =−a23a32, r = a11a23a32.

(5.4)

Let us now substitute T1 = τ1 + τ2, T2 = τ3 in (5.3) in order to simplify the forthcoming
mathematical calculations,

Δ
(
λ,T1,T2

)≡ λ3 + pλ2 +
[
θ + ρe−λT1 +φe−λT2

]
λ+ re−λT2 = 0. (5.5)

Let us try to find the condition for nonexistence of delay-induced instability by using
the following theorem [15].

Theorem 5.1. A set of necessary and sufficient conditions for E∗ is to be locally asymptoti-
cally stable in presence of time delays, Tj , j = 1,2, if the following conditions are satisfied:

(i) the real parts of all the roots of Δ(λ,0,0)= 0 are negative;
(ii) for all real s and any Tj > 0, the following holds:

Δ
(
is,T1,T2

) �= 0, where i=√−1. (5.6)

In (5.5), substituting T1 = 0= T2 we get

Δ(λ,0,0)= λ3 + pλ2 + qλ+ r = 0 (5.7)

which is same as (4.12). The real parts of the roots of (5.5) are negative if (4.18) holds
along with the existence conditions for E∗. Hence the first condition of Theorem 5.1 is
satisfied.

Let us suppose there exists a real s>0 for someTj≥0, j=1,2, such thatΔ(is,T1,T2)=0,
then the characteristic equation (5.5) will have a pair of purely imaginary roots and hence
E∗ is not asymptotically stable in presence of discrete time delay.

For s= 0, Δ(0,T1,T2)= r > 0, that is, Δ(0,T1,T2) �= 0.
Next we assume s �= 0,

Δ
(
is,T1,T2

)=−is3− ps2 +
[
θ + ρe−isT1 +φe−isT2

]
is+ re−isT2 . (5.8)

Separating real and imaginary parts of the equation Δ(is,T1,T2)= 0, we get

ps2 = sρ sinsT1 + sφ sinsT2 + r cossT2,

s3− sθ = sρcossT1 + sφcossT2− r sinsT2.
(5.9)

Squaring the above two equations and then addition leads to a sixth degree polynomial
equation in “s” as follows:

p2s4 + s2(s2− θ
)2 = ρ2s2 +φ2s2 + r2 + 2ρφs2 coss

(
T1−T2

)
+ 2rsρ sins

(
T1−T2

)
.
(5.10)
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Figure 5.1. Stable population distribution of the model (5.1) with the parametric values as described
in the text.

Let us denote the right-hand side of (5.10) by f (s). Using the trigonometrical inequal-
ities 0≤ |sinΥ| ≤ 1 and 0≤ |cosΥ| ≤ 1 to f (s), we arrive at

f (s)≤ (ρ2 +φ2)s2 + r2 + 2ρφs2 + 2ρr|s|. (5.11a)

Thus, (5.10) can be put in the following inequality:

p2s4 +
(
s2− θ

)2
s2 ≤ (ρ2 +φ2)s2 + 2ρφs2 + 2ρr|s|+ r2. (5.11b)

Therefore, the sufficient conditions for the nonexistence of a real number “s” satisfying
Δ(is,T1,T2)= 0 depend upon the satisfaction of the inequality

s6 +
(
p2− 2θ

)
s4 +

[
θ2− (ρ+φ)2]s2− 2ρr|s|− r2 > 0. (5.12)

It is quite difficult to find out the condition for which the inequality in (5.12) will be
satisfied for all real s and hence the stability condition independent of length of discrete
time delay cannot be obtained for the present model system. Thus, the second condition
of Theorem 5.1 is never satisfied for the model system under consideration. We illustrate
this result with help of numerical simulation.

For numerical simulation we take a hypothetical set of parameter values as N0 = 100,
a= 10, α= 10, β = 25, α1 = 8, γ = 2, δ = 4, μ= 20, δ1 = 3, γ1 = 0.6, and c = 0.7. For τ1 =
0.5, τ2 = 0.1, and τ3 = 0.2, we get stable population distribution and the solution trajec-
tory approaches E∗(9.34,5,1.099) in phase space (see Figures 5.1 and 5.2). If we increase
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Figure 5.2. Stable phase-space diagram corresponding to Figure 5.1.
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Figure 5.3. Unstable population distribution of the model (5.1) with the parametric values as de-
scribed in the text.

the magnitude of delay parameters from τ1 = 0.5, τ2 = 0.1, and τ3 = 0.2 to τ1 = 3.5,
τ2 = 0.3, and τ3 = 1.5 (keeping all other parameters fixed), then the system loses its sta-
bility and we obtain unstable solution (see Figure 5.3).

Hence we can conclude that the system is not always stable for arbitrary values of
delay parameters and length of discrete time delay plays a vital role behind the stability
behaviour of the model system. In the next section we try to find the upper bounds of
delay parameters for preservation of local asymptotic stability of E∗.
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6. Estimation for the length of delay to preserve stability

In this section we try to find an estimate for the length of time delay for the system (5.1)
which will preserve the stability behaviour of E∗. For this purpose we assume that in ab-
sence of delay, the interior equilibrium point E∗ is locally asymptotically stable, (4.19)
gives the condition for local asymptotic stability of E∗ when T1 = 0 = T2. By continuity
and sufficiently small T1,T2 > 0 all eigenvalues of (5.5) will have negative real parts, pro-
vided one can guarantee that no eigenvalue with positive real part bifurcates from infinity
(which could happen for retarded system sometimes) [32]. We obtain the length of delay
which will preserve stability of E∗, by applying Nyquist criteria [33]. For this purpose we
consider the system of (5.1) and assume that the variables involved with the system of
equations are continuous functions defined over [T ,∞), where T =min{−T1,−T2} and
satisfying initial conditions (5.1d). We recall the linearized system of (5.2) corresponding
to the model system (5.1) as follows:

dx

dt
= a11x+ a12y

(
t− τ1

)
,

dy

dt
= a21x

(
t− τ2

)
+ a22y + a23z,

dz

dt
= a32y

(
t− τ3

)
,

(6.1)

where ai j ’s are same as in (4.11). Let x = x(s), y = y(s), and z = z(s) denote the Laplace
transform of x, y, and z, respectively. Taking Laplace transform of the system of (6.1), we
get

(
s− a11

)
x = a12

[
y + k1(s)

]
e−sτ1 + x(0),

(
s− a22

)
y = a21

[
x+ k2(s)

]
e−sτ2 + a23z+ y(0),

sz(s)= a32
[
y(s) + k3(s)

]
e−sτ3 + z(0),

(6.2a)

where

k1(s)=
∫ 0

−τ1

y(t)e−stdt, k2(s)=
∫ 0

−τ2

x(t)e−stdt, k3(s)=
∫ 0

−τ3

y(t)e−stdt. (6.2b)

Solving the above system of equations for z(s) we obtain

z(s)= Γ
(
s,τ1,τ2,τ3,ajk

)
s3 + ps2 +

[
θ + ρe−s(τ1+τ2) +φe−sτ3

]
s+ re−sτ3

, (6.3)

where Γ(·) is function of s, τi, i= 1,2,3, and ajk’s are given in (4.11). Let

G(s)= s3 + ps2 +
[
θ + ρe−s(τ1+τ2) +φe−sτ3

]
s+ re−sτ3 (6.4)

then G(s) is the polynomial involved with the characteristic equation (5.5).
The inverse Laplace transformation of z(s) will have terms which increase exponen-

tially with time if z(s) has poles with positive real part. Thus for local asymptotic stability
of interior equilibrium point E∗, it is necessary and sufficient that all poles of z(s) have
negative real parts. For this purpose we apply Nyquist criteria to ensure that z(s) has any
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pole in the right-half of complex s-plane. Nyquist criteria lead us to the following condi-
tions (for details see [33]):

ImG
(
iw0
)
> 0, ReG

(
iw0
)= 0, (6.5)

where w0 is the smallest positive root of the equation ReG(iw)= 0. In (6.4), putting s= iω
we obtain

G(iw)=−iw3− pw2 +
[
θ + ρ

(
coswT1− isinwT1

)
+φ
(

coswT2− isinwT2
)]
iw

+ r
(

coswT2− isinwT2
)
.

(6.6)

Therefore, the conditions (6.5) can be written as

−w3
0 + θw0 >−ρw0 cosw0T1−φw0 cosw0T2 + r sinw0T2,

−pw2
0 =−ρw0 sinw0T1−φw0 sinw0T2− r cosw0T2.

(6.7)

To get an estimate for the length of delay which preserves the stability we utilize the
following conditions:

−w3 + θw >−ρw coswT1−φw coswT2 + r sinwT2, (6.8)

pw2 = ρw sinwT1 +φw sinwT2 + r coswT2. (6.9)

Therefore, E∗ will be stable if the inequality (6.8) holds for w = w0, where w0 is the
smallest positive root of (6.9). Our target is to find an upper bound w+ of w which would
be independent of T1 and T2 such that (6.8) holds for all values of w, 0 ≤ w ≤ w+, and
hence, in particular, for w =w0.

Maximizing the expression in the right-hand side of (6.9) subject to the restriction
|cosξ| ≤ 1 and |sinξ| ≤ 1 we obtain from (6.9)

pw2 ≤ (ρ+φ)w+ r. (6.10)

Thus the unique positive solution of

pw2− (ρ+φ)w− r = 0 (6.11)

denoted by w+ is always greater than or equal to w0. Hence, if

w+ = 1
2p

[
ρ+φ+

√
(ρ+φ)2 + 4pr

]
, (6.12)

then from (6.9) we see that w0 < w+. Here w+ is independent of T1 and T2. Now we need
to find an estimate on T1 and T2 so that (6.8) holds for 0≤ w ≤ w+. Dividing (6.8) by w,
we get

w2 < θ + ρcoswT1 +φcoswT2− r

w
sinwT2. (6.13)
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Note that at τj = 0, j = 1,2,3, that is, at Tj = 0, j = 1,2, (6.13) reduces to

w2 < θ + ρ+φ (6.14)

and from (6.9), we obtain

w2 = r

p
. (6.15)

Therefore, from the conditions (6.14) and (6.15) we obtain r/p < θ + ρ + φ. Using
(5.4), we see that pq− r > 0 which is already satisfied under Routh-Hurwitz criteria. This
justifies the validity of inequality (6.13) for Tj = 0, j = 1,2, and w =w0.

So, by continuity it will hold for small enough Tj > 0, j = 1,2, at w = w0. Now substi-
tuting the expression of w2 from (6.9) in (6.13) we obtain

1
p

[
ρw sinwT1 +φw sinwT2 + r coswT2

]
< θ + ρcoswT1 +φcoswT2− r

w
sinwT2

(6.16)

or, equivalently,
[
ρw

p
sinwT1 + ρ

(
1− coswT1

)]
+
[∣∣∣∣φwp +

r

w

∣∣∣∣sinwT2 +
∣∣∣∣φ− r

p

∣∣∣∣(1− coswT2
)]

< θ + ρ+φ− r

p
= η(say).

(6.17)

Let us denote the left-hand side of (6.17) by Θ1(T1,w) +Θ2(T2,w). Using trigonomet-
ric inequalities sinwTj ≤ wTj and 1− coswTj ≤ (1/2)w2T2

j for j = 1,2, we obtain the
following inequality from (6.17):

Θ1
(
T1,w

)
+Θ2

(
T2,w

)≤ [ρw2

p
T1 +

1
2
ρw2T2

1

]
+
[∣∣∣∣φwp +

r

w

∣∣∣∣wT2 +
1
2

∣∣∣∣φ− r

p

∣∣∣∣w2T2
2

]

≡Φ1
(
T1,w

)
+Φ2

(
T2,w

)
.

(6.18)

We note that for 0≤w ≤w+,

Θ1
(
T1,w

)
+Θ2

(
T2,w

)≤Φ1
(
T1,w

)
+Φ2

(
T2,w

)≤Φ1
(
T1,w+

)
+Φ2

(
T2,w+

)
. (6.19)

Now if

Φ1
(
T1,w+

)
+Φ2

(
T2,w+

)
< η, (6.20)

then from the limit of w we can conclude that

Θ1
(
T1,w0

)
< η, Θ2

(
T2,w0

)
< η. (6.21)

Let us suppose that

Φ1
(
T1,w+

)= F1η, Φ2
(
T2,w+

)= F2η, (6.22)
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where F1 +F2 = 1, then

A1T
2
1 +B1T1−F1η = 0, (6.23a)

A2T
2
2 +B2T2−F2η = 0, (6.23b)

where

A1 = 1
2
ρw2

+, A2 = 1
2

∣∣∣∣φ− r

p

∣∣∣∣w2
+, B1 = ρ

p
w2

+, B2 =
∣∣∣∣φp +

r

w2
+

∣∣∣∣w2
+.

(6.24)

Let T+
1 and T+

2 be the unique positive roots of (6.23a) and (6.23b), respectively. Then

T+
1 =

1
2A1

[
−B1 +

√
B2

1 + 4A1F1η
]

, T+
2 =

1
2A2

[
−B2 +

√
B2

2 + 4A2F2η
]
. (6.25)

As F1 and F2 are two positive real numbers satisfying F1 + F2 = 1, one can find the
exact expressions for T+

1 and T+
2 for a particular choice of numerical values for F1 and F2.

Interested readers may concern the work by Das and Roy [7] for a suitable illustration.
Thus, for 0 < T1 < T+

1 and 0 < T2 < T+
2 , the Nyquist criteria hold. T+

1 and T+
2 give estimates

for the length of delay for which stability is preserved. For the estimate of T+
1 , A1 must be

positive. It is ensured by the existence of the interior equilibrium E∗ when

N0 <
acβγ

α− cγ
=N03. (6.26)

With set of parameter values as described in Section 5, one can find out estimated
length of stability preserving delays as T+

1 = 2.2137 and T+
2 = 0.7808, respectively, with

the choice F1 = F2 = 0.5. Figures 6.1 and 6.2 depict the solution of delayed model system
(5.1) for the situations T1 < T+

1 , T2 < T+
2 and T1 > T+

1 , T2 > T+
2 , respectively.

If A1 is very small, T+
1 will be very large. It is possible to find out the limiting value of

T+
1 as A1 → 0 but we are not interested with that particular limit. We like to comment that

when magnitude of A1 is small, then the time delays with large magnitude will not alter
the stability property of coexisting equilibrium point. Hence in that case large delay will
become harmless for stability of coexisting equilibrium point. Hence we can conclude
with the condition (6.26), namely, “the constant input of detritus is less than the critical
value N03” that if the sum of two delays, the nutrient recycling delay, and the gestation
delay due to consumption of detritus by the detritivores is very large, the model system
(5.1) with E∗ as interior equilibrium will remain stable. Since A2 is positive, the estimate
T+

2 is valid. If A2 is very small, then T+
2 is very large. Hence we can conclude that if the

delay in conversion of the detritivores to predators is very large, then the equilibrium
point E∗ will remain stable.

Let us suppose that the sum of two delays, recycling delay of the detritus and the delay
due to gestation of the detritivores, is equal to the delay due to gestation of the predators
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Figure 6.1. Solution of (5.1) with T1 = 2.1 and T2 = .7, other parameters are same as described in
Section 5.
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Figure 6.2. Solution of (5.1) with T1 = 2.5 > T+
1 and T2 = .8 > T+

2 , other parameters are same as de-
scribed in Section 5.
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of detritivores, that is, T1 = T2 = T , then (6.17) reduces to

[
ρw

p
sinwT + ρ

(
1− coswT

)]
+

[∣∣∣∣φwp +
r

w

∣∣∣∣sinwT +
∣∣∣∣φ− r

p

∣∣∣∣(1− coswT
)]

< θ + ρ+φ− r

p
= η

(6.27)

or, equivalently,

[
(ρ+φ)

w

p
+

r

w

]
sinwT +

(
ρ+φ− r

p

)
(1− coswT) < θ + ρ+φ− r

p
= η. (6.28)

Let us denote the left-hand side of (6.28) by Θ(w,T). The trigonometric inequalities
sinwT ≤wT and 1− coswT ≤ (1/2)w2T2 reduce (6.28) to

Θ(w,T)≤
[

(ρ+φ)
w2

p
+ r
]
T +

∣∣∣∣ρ+φ− r

p

∣∣∣∣1
2
w2T2 ≡Φ(T ,w). (6.29)

For 0 < w < w+, Θ(T ,w)≤Φ(T ,w)≤Φ(T ,w+).
Now if Φ(T ,w+) < η, then also Θ(T ,w0) < η. Let us now suppose that Φ(T ,w+) = η,

then

AT2 +BT −η = 0, (6.30)

where

A= 1
2

∣∣∣∣ρ+φ− r

p

∣∣∣∣w2
+, B = (ρ+φ)

w2
+

p
+ r. (6.31)

Therefore,

T+ = 1
2A

[
−B+

√
B2 + 4Aη

]
. (6.32)

Thus for 0 < T < T+, the Nyquist criteria hold. T+ gives estimate for the length of delay for
which stability is preserved. Here T+ is dependent on the expression of A in (6.31) which
is again function of the system parameters. Hence we can conclude that the estimate for
the delay is totally dependent on the system parameters for which the interior equilibrium
E∗ is locally asymptotically stable.

7. Bifurcation analysis

In this section we try to find condition (by considering the discrete time delays τ1, τ2,
τ3 as a bifurcation parameter) under which the models (5.1a)–(5.1c) exhibit small am-
plitude oscillation arising from Hopf-bifurcation [16, 24]. For this purpose we recall the
characteristic equation (5.5)

Δ
(
λ,T1,T2

)= λ3 + pλ2 +
[
θ + ρe−λT1 +φe−λT2

]
λ+ re−λT2 = 0 (7.1)
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as we are interested with bifurcation analysis around the interior equilibrium point E∗
for the variation of delay parameter. The stability of the equilibrium E∗ is determined by
the sign of real part of the characteristic root of (7.1).

By our assumption λ is a function of time delays τ1, τ2, τ3, if we write λ= μ+ iν, then μ
and ν are also functions of τ1, τ2, τ3, that is, μ≡ μ(τ1,τ2,τ3)≡ μ(T1,T2), ν≡ ν(τ1,τ2,τ3)≡
ν(T1,T2). Substituting

λ
(
τ1,τ2,τ3

)≡ λ(T1,T2)= μ
(
T1,T2

)
+ iν

(
T1,T2

)
(7.2)

in (7.1) and then separating real and imaginary parts, we obtain

μ3− 3μν2 + p
(
μ2− ν2)+

[
θ + ρe−μT1 cosνT1 +φe−μT2 cosνT2

]
μ

+
[
ρe−μT1 sinνT1 +φe−μT2 sinνT2

]
ν + re−μT2 cosνT2 = 0,

− ν3 + 3μ2ν + 2pμν +
[− ρe−μT1 sinνT1−φe−μT2 sinνT2

]
μ

+
[
θ + ρe−μT1 cosνT1 +φe−μT2 cosνT2

]
ν− re−μT2 sinνT2 = 0.

(7.3)

A necessary condition for the change of stability near the interior equilibrium point
E∗ is that the characteristic equation (7.1) has purely imaginary roots. Since λ as well as μ
and ν are functions of T1 and T2, the change of stability behaviour occurs at such values of
T1 and T2 such that μ(T1,T2)= 0 and ν(T1,T2) �= 0. Let T̂1 and T̂2 be the critical values of
T1 and T2, respectively, such that μ(T̂1, T̂2)= 0 and ν(T̂1, T̂2)≡ ν̂ �= 0. Then (7.3) become

−pν̂2 +
[
ρ sin ν̂T̂1 +φ sin ν̂T̂2

]
ν̂ + r cos ν̂T̂2 = 0,

−ν̂3 +
[
θ + ρcos ν̂T̂1 +φcos ν̂T̂2

]
ν̂− r sin ν̂T̂2 = 0.

(7.4)

Now we study the change of stability behaviour near the interior equilibrium E∗ when
the parameters T1 and T2 cross through their critical values T̂1 and T̂2. First we study the
change of stability behaviour near the interior equilibrium E∗ with respect to T1. For this
purpose we suppose that the other time delay T2 is fixed at its critical value T̂2.

From (7.4), eliminating T̂1 and then rearranging we arrive at

ν̂6 +
(
p2− 2θ− 2φcos ν̂T̂2

)
ν̂4− 2(pφ− r)ν̂3 sin ν̂T̂2

+
(
θ2 +φ2− ρ2− 2pr cos ν̂T̂2 + 2θφcos ν̂T̂2

)
ν̂2− rθν̂sin ν̂T̂2 + r2 = 0.

(7.5)

Equation (7.5) is a transcendental equation, the complicated form of this equation is an
obstruction to predict the nature of roots. Without going into a detailed analysis with
(7.5) we assume there exists at least one real positive root of (7.5) and is denoted by
ν̂. At this point we want to remark that the nonexistence of such a real root terminates
our forthcoming bifurcation analysis, so far as our knowledge is concern no important
ecological conclusion can be drawn based upon these mathematical outcome. The rest of
the part is based upon the assumption that “ν̂” is a positive real root of (7.5). Now, from
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(7.4) we can find the critical delay parameter T̂1 for ν= ν̂ as

T̂1 = 1
ν̂

arctan

[
pν̂2−φν̂sin ν̂T̂2− r cos ν̂T̂2

ν̂3− θν̂−φν̂cos ν̂T̂2 + r sin ν̂T̂2

]
+
nπ

ν̂
, where n= 0,1,2,3, . . . .

(7.6)

One possible value of T̂1 denoted by T̂0
1 can be obtained from (7.6) for the choice n= 0

as follows:

T̂0
1 =

1
ν̂

arctan

[
pν̂2−φν̂sin ν̂T̂2− r cos ν̂T̂2

ν̂3− θν̂−φν̂cos ν̂T̂2 + r sin ν̂T̂2

]
. (7.7)

The expressions in (7.5) and (7.7) give critical values ν̂ and T̂1 for which the characteristic
root of (7.1) will have a pair of purely imaginary roots.

To verify the transversality condition of Hopf-bifurcation, we examine the value of
dμ/dT1 evaluated at T1 = T̂1 with the condition that μ(T̂1) = 0 and ν(T̂1) ≡ ν̂ �= 0. If
dμ/dT1 is a nonvanishing quantity, stabilization cannot take place at the critical para-
metric value T̂1. We differentiate (7.4) with respect to T1 and putting T1 = T̂1 (using
μ(T̂1)= 0 and ν= ν̂) we get

A
[
dμ

dT1

]
T1=T̂1

+B
[
dν

dT1

]
T1=T̂1

= C,

−B
[
dμ

dT1

]
T1=T̂1

+A
[
dν

dT1

]
T1=T̂1

=D,

(7.8)

where

A=−3ν̂2 + θ + ρcos ν̂T̂1 +φcos ν̂T̂2−
[
ρT̂1 sin ν̂T̂1 +φT̂2 sin ν̂T̂2

]
ν̂− rT̂2 cos ν̂T̂2,

B =−2pν̂ + ρ sin ν̂T̂1 +φ sin ν̂T̂2 +
[
ρT̂1 cos ν̂T̂1 +φT̂2 cos ν̂T̂2

]
ν̂− rT̂2 sin ν̂T̂2,

C =−ρν̂2 cos ν̂T̂1, D = ρν̂2 sin ν̂T̂1.
(7.9)

Solving (7.8) for [dμ/dT1]T1=T̂1
one can obtain

[
dμ

dT1

]
T1=T̂1

= AC−BD

A2 +B2
. (7.10)

Clearly, the sign of [dμ/dT1]T1=T̂1
is same as that of AC−BD. Therefore, we calculate

AC−BD =−ρν̂2[(θ− 3ν̂2)cos ν̂T̂1− 2pν̂sin ν̂T̂1 + ρ+φcos ν̂
(
T̂1− T̂2

)]

− ρν̂2[φν̂T2 sin ν̂
(
T̂1− T̂2

)− rT̂2 cos ν̂
(
T̂1− T̂2

)]
.

(7.11)
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Now, for values of p, θ, ρ, φ, r and with (7.10) and (7.11) we see that [dμ/dT1]T1=T̂1
�= 0

and consequently the transversality condition of Hopf-bifurcation is satisfied for T1 = T̂0
1

which is given in (7.7). Thus the model system exhibits Hopf-bifurcating small amplitude
periodic solutions as T1 passes through its critical value T̂0

1 .
Similar study may be carried out by considering T2 as a variable parameter. Now we

consider the case when both the parameters are equal, that is, T1 = T2 = T . This may lead
the study of the behaviour of stability change to some specific condition on the parame-
ters of the model system. For the choice T1 = T2 = T , (7.3) become

μ3− 3μν3 + p
(
μ2− ν2)+

[
θ + (ρ+φ)e−μT cosνT

]
μ

+ (ρ+φ)νe−μT sinνT + re−μT cosνT = 0,

− ν3 + 3μ2ν + 2pμν−μ(ρ+φ)e−μT sinνT +
[
θ + (ρ+φ)e−μT cosνT

]
ν− re−μT sinνT = 0.

(7.12)

Now the characteristic root λ as well as μ and ν are functions of T only. To analyze the
change of stability behaviour around E∗ with respect to T , it occurs at a particular value
of T for which μ(T)= 0 and ν(T) �= 0. Let T̂ be the critical value of T such that μ(T̂)= 0
and ν(T̂)= ν̂ �= 0. Then (7.12) become

−pν̂2 + (ρ+φ)ν̂sin ν̂T̂ + r cos ν̂T̂ = 0,

−ν̂3 + θν̂ + (ρ+φ)ν̂cos ν̂T̂ − r sin ν̂T̂ = 0.
(7.13)

T̂ eliminant of (7.13) give

ν̂6 +
(
p2− 2θ

)
ν̂4 +

[
θ2− (ρ+φ)2]ν̂2− r2 = 0. (7.14)

This is a cubic equation in ν̂2. Here p2 − 2θ = (a11 − a22)2 is always positive and the
product of the roots is positive. Hence the equation has at least one positive root inde-
pendent of the sign of θ2− (ρ+φ)2. A positive real root of (7.14) gives the expression for
ν= ν̂. For this expression of ν̂ we can find the expression for T = T̂ from (7.13). Thus the
critical parametric value T̂ is given by

T̂n = 1
ν̂

arctan

[
p(ρ+φ)ν̂2− r

(
ν̂2− θ

)
(ρ+φ)

(
ν̂2− θ

)
ν̂ + prν̂

]
+
nπ

ν̂
, where n= 0,1,2,3, . . . . (7.15)

One possible value of T̂ denoted by T̂0 is obtained by choosing n= 0 as

T̂0 = 1
ν̂

arctan

[
p(ρ+φ)ν̂2− r(ν̂2− θ)
(ρ+φ)

(
ν̂2− θ

)
ν̂ + prν̂

]
. (7.16)
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Now, to analyze the change in stability behaviour around E∗ with respect to T , we
examine the sign of dμ/dT when μ(T̂)= 0 and ν= ν̂ �= 0. If the value of the derivative is
not zero, then clearly stability cannot take place at T = T̂0. We differentiate (7.12) with
respect to T and then put T = T̂0, μ= 0, and ν= ν̂ �= 0, which gives

P
[
dμ

dT

]
T=T̂0

+Q
[
dν

dT

]
T=T̂0

= R, −Q
[
dμ

dT

]
T=T̂0

+P
[
dν

dT

]
T=T̂0

= S, (7.17)

where

P =−3ν̂2 + θ + (ρ+φ)
(

cos ν̂T̂0− ν̂T̂0 sin ν̂T̂0)− rT̂0 cos ν̂T̂0,

Q =−2pν̂ + (ρ+φ)
(

sin ν̂T̂0 + ν̂T̂0 cos ν̂T̂0)− rT̂0 sin ν̂T̂0,

R=−(ρ+φ)ν̂2 cos ν̂T̂0 + rν̂sin ν̂T̂0, S= (ρ+φ)ν̂2 sin ν̂T̂0 + rν̂cos ν̂T̂0.

(7.18)

Solution of (7.17) for [dμ/dT]T=T̂0 gives

[
dμ

dT

]
T=T̂0

= PR−QS

P2 +Q2
. (7.19)

The sign of [dμ/dT]T=T̂0 is same as PR−QS. Using (7.13) and expressions (7.18) in
(7.19), we obtain

PR−QS= ν̂2[3ν̂4 + 2
(
p2− 2θ

)
ν̂2 + θ2− (ρ+φ)2]. (7.20)

Now [
dμ

dT

]
T=T̂0

�= 0 if 3ν̂4 + 2
(
p2− 2θ

)
ν̂2 + θ2− (ρ+φ)2 �= 0. (7.21)

An expression for ν̂2 can be obtained from the biquadratic equation 3ν̂4 + 2(p2− 2θ)ν̂2 +
θ2− (ρ+φ)2 = 0 as follows:

ν̂2 = 1
3

[
− (p2− 2θ) +

√(
p2− 2θ

)2− 3
{
θ2− (ρ+φ)2

}]= ν̂2
0, (7.22)

where θ2− (ρ+φ)2 < 0 due to the condition p2− 2θ > 0. Thus
[
dμ

dT

]
T=T̂0

�= 0 if ν̂2 �= ν̂2
0 for θ2− (ρ+φ)2 < 0,

i.e., when
∣∣a11a22

∣∣ < ∣∣a12a21 + a23a32
∣∣.

(7.23)

If T = 0, then E∗ is stable. According to Butler’s lemmas [11, 25], the negative real part
of the eigenvalue remains negative for T < T̂0, and therefore, E∗ remains stable. When
T = T̂0, [dμ/dT]T=T̂0 �= 0 if the condition (7.23) is satisfied. Then the real part of the
eigenvalue becomes positive and the equilibrium point E∗ becomes unstable. When T >

T̂0, the real part of the eigenvalue remains positive and the stabilization cannot take place
as T passes through its critical value T̂0 and the solution bifurcates into Hopf-bifurcating
small amplitude periodic solution around E∗.
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8. Conclusion

In this paper we have considered the dynamical behaviour of a homogeneous model of
detritus-based ecosystem comprised with detritivores and predator of detritivores within
deterministic environment. The present work is an extension of earlier work by Bandy-
opadhyay and Bhattacharya [2], where a simpler version of detritus-based ecosystem
model is considered in absence of delay parameters. In the present study we have modi-
fied the model system by considering Holling type-II functional response for detritivores
and predators of detritivores instead of mass action law. Discrete time delay is incorpo-
rated to study the effect of gestation delay and recycling delay on the dynamical behaviour
of the model system. At this position we want to remark that no specific model can be set
up to describe and understand the behaviours of natural systems like the detritus-based
model system. Exposed discrepancies always suggest some modifications for the standing
model. For this reason mathematical modelling of natural system is an evolving process.

Firstly we have stated and proved several results giving criteria for the existence of vari-
ous equilibrium points, boundedness of solution, and local asymptotic stability condition
of various equilibrium points of model system in absence of time delay. The most inter-
esting and important result we have obtained for the delay differential equation model
system is the estimated length of gestation delay and recycling delay which will preserve
the stability of E∗. It is a well-known fact that the discrete time delays have ability to al-
ter the dynamical behaviours significantly compared to the models described in terms of
ordinary differential equation. Discrete time delay has the ability to drive a stable equi-
librium point to an unstable one and it is also responsible for the oscillations of various
trophic levels [2].

Before giving some ecological interpretations of the mathematical outcomes we want
to remark that complex nature of the model system leads us some complicated mathe-
matical results that are interesting from applied mathematics viewpoint but no conclu-
sion can be drawn from ecological point of view. Ecological significance of various results
obtained in this paper are as follows.

(i) Local stability analysis of the deterministic model (in absence of delay) reveals the
fact that the constant input rate of detritus plays a crucial role behind the stability of co-
existing equilibrium point and is also responsible for coexistence of detritivores and their
predators. Food intake rate and conversion efficiencies have some significant contribu-
tion behind the dynamical behaviour of the model system.

(ii) For the present model system the stability of interior equilibrium point demands
some extra criteria apart from its existence conditions which is a different result compared
to the model considered in [2].

(iii) Inclusion of gestation delay and recycling delay into the model system produce
some interesting dynamical behaviours. In Section 5, we have shown that the local as-
ymptotic stability of E∗ must depend upon the length of time delays. It is impossible to
find out stability condition of E∗ which will be independent of the magnitude of delay pa-
rameters. Numerically we have shown the change of stability behaviour with the increase
in magnitude of discrete time delay. Conditions of local asymptotic stability of coexisting
equilibrium point indicate that the longer time for gestation and recycling of biomass are
responsible for instability of population density.
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(iv) In Section 6, we have obtained estimates for the length of delay, which will preserve
the coexistence of individual species at their equilibrium levels. Length of gestation delays
and recycling delay are related to the abundance of either species and detritus biomasses,
consequently larger values of these parameters regulate the amount of food availability
for other species. If the length of time delays were less than their estimated values, then
the growth of detritivores and their predators are sufficient for their long time survival
and also maintain the necessary amount of nutrients for higher trophic levels.

(v) Bifurcation analysis in Section 7 and the existence of Hopf-bifurcating periodic so-
lution give some support behind the oscillating population density of individual species.
Earlier model fails to capture this oscillatory behaviour of various species that is com-
monly observed in natural environment.

Finally, we want to remark that the complicated mathematical expressions involved
with the analysis in Section 7 can be made simpler by considering some alternative math-
ematical models for detritus-based ecosystem. Verification of mathematical results with
the help of practical data set will give better realization and in turn suggest some necessary
modification for the modelling approach. At this moment we have no practical data set
in our hand to verify the mathematical outcomes of the previous sections. Other types
of functional responses and introduction of time delay in some different manners may
give rise to better realization of biological phenomenon associated with detritus-based
ecosystem, which remain an open problem for forthcoming days.
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