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We define the Cantor-type set E first, and then the Besicovitch subset Bp of E. We mainly
show the dimensions of subsets of Cantor-type set E in compatible case and incompatible
case.
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1. Introduction

Let I = [0,1] be the unit interval on the real line and m> 1 be an integer. Let J = {0,1, . . . ,
m− 1}. For every point x ∈ I , there is a unique base-m representation x = Σ∞k=1 jkm

−k

with jk ∈ J except for countable many points. Since countable sets do not interfere with
our work, we neglect them here.

For each j ∈ J , x ∈ [0,1], and n ∈ N, let τj(x,n) = �{k : ik = j, 1 ≤ k ≤ n}, then the
limit τj(x)= limn→∞(1/n)τj(x,n) is called the frequency of number j in the base-m repre-
sentation of x. Here and in the following context, the notation “�A” denotes the number
of elements in set A.

A classical result of Borel [3] says that for Lebesgue almost every x ∈ [0,1], we have
τj(x)= 1/m. As for another problem, for a given probability vector p= (p0, p1, . . . , pm−1)
such that Σ j∈J p j = 1, consider the set

Λm
(
p0, p1, . . . , pm−1

)= {x ∈ [0,1] : τj(x)= pj , for j ∈ J
}
. (1.1)

That is, the set Λm(p0, p1, . . . , pm−1) is composed of the number in [0,1] having a ratio pj

of digits equal to j in its base-m representation for each j. A precursor theory is due to
Besicovitch, when he showed in [1] that if p ∈ (0,1/2), then

dimΛ2(p,1− p)= p log p+ (1− p) log(1− p)
− log2

. (1.2)
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2 Dimensions of subsets of cantor-type sets

Eggleston generalized this formula for m> 2. He showed in [4] that

dimΛm
(
p0, p1, . . . , pm−1

)=−Σ j∈J p j log pj

logm
. (1.3)

From then on, Λm(p0, p1, . . . , pm−1) is called Besicovitch set. And later, Billingsley fur-
thered their work and the related information can be found in his book [2].

The research developed in this paper is motivated by Morán and Rey’s work, and
some of the proofs are edified by the methods mentioned in their article [7]. Let M =
{1,2, . . . ,m} and for any j ∈M, ω = i1i2 ··· in ··· ∈M∞, n∈N, we define

δj(ω,n)= �{k : ik = j, 1≤ k ≤ n
}
. (1.4)

Whenever there exists the limit

δj(ω)= lim
n→∞

1
n
δj(ω,n), (1.5)

it is called the frequency of number j in infinite length word ω. Then for a given prob-
ability vector p = (p1, p2, . . . , pm), we define the Besicovitch set Bp to be the subset of
Cantor-type set E (see Section 2) given by

Bp =
{
ϕ(ω) : δj(ω)= pj , ω ∈M∞, for any j ∈M

}
. (1.6)

Here ϕ is a bijective between M∞ and the Cantor-type set E and M∞ is the set of all
infinite length sequences consisted by M. A remark from [7] says that Bp is a Borel set.
In this paper, we give the Hausdorff dimension of Bp for any given probability vector
p= (p1, p2, . . . , pm) with pj > 0 for j ∈M as the following theorem.

Theorem 1.1. Denote

s=
∑

j∈M pj log pj
∑

j∈M pj logr j
, (1.7)

dimBp = s, and s≤ α, where α is uniquely decided by Σ j∈Mrαj = 1. The equality is attained
when p coincides with (rα1 ,rα2 , . . . ,rαm).

Furthermore, we will show that there exists a subset B of Besicovitch set Bp such that B
has full μp-measure (see Section 2) but zero Hausdorff measure when p �= (rα1 ,rα2 , . . . ,rαm),
which is described as follows.

Theorem 1.2. There exists a Borel subset B of Bp such that μp(B)= 1 and �s(B)= 0 in the
incompatible case, that is, p �= (rα1 ,rα2 , . . . ,rαm).

As a corollary of Theorem 1.2, we can easily have that μp, �α, and �α are equivalent
on E in the compatible case, that is, p= (rα1 ,rα2 , . . . ,rαm) (see Corollary 3.7). Furthermore,
we can get another byproduct (see Corollary 3.8) that the set E \ Bp has zero �α and
�α-measure when p is substituted by (rα1 ,rα2 , . . . ,rαm).

If the gap condition (see Section 2) holds, we will see that not only Bp and the Cantor-
type set E have the same Hausdorff measure and packing measure, but also both of them
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are α-sets in the case of p = (rα1 ,rα2 , . . . ,rαm) (see Corollary 3.11). This can be regarded as
a corollary from Corollary 3.7. When it comes to the incompatible case, the Hausdorff

measure of Bp is infinity (Proposition 3.12), and so is the packing measure.
From Corollary 3.8, we see that the complementary of Bp with respect to E has zero

�α-measure in the compatible case, which implies that it is rather small from the view-
point of measure theory.

The following section will give the basic definitions and notations of the paper, and
the proofs of the above results are displayed in Section 3.

2. Definitions and notations

Let I = [0,1] be the unit interval and M = {1,2, . . . ,m}. Let Ωn be the set of all sequences
of length n with each sequence consisting of letters in M and let Ω =⋃∞n=1Ωn. Suppose
that a sequence of closed subsets {Iω : ω ∈Ωn} of I satisfies

(1) Iω∗i ⊂ Iω for any ω ∈Ω and i∈M,
(2) Iω∗i∩ Iω∗ j = φ for any ω ∈Ω and i, j ∈M with i �= j,
(3) |Iω∗i|/|Iω| = ri with ri ∈ (0,1) for any ω ∈Ω and i∈M.

Then the set E =⋂∞n=1

⋃
ω∈Ωn

Iω is called a Cantor-type set.
Notice that

⋂∞
n=1 Ii1i2···in consists of a single point which we will denote by ϕ(ω) since

ω ∈Ωn, and we write Ii1i2···in for Iω sometimes. We can easily see that ϕ : M∞ → E is 1-1
and onto.

We denote by νp the probability measure on M∞ defined by the infinite product p×
p×p×··· . Let μp be the projected measure supported by E, that is, μp = νp ◦ϕ−1, then
for any n-level basic interval Iω(ω = i1i1 ··· in ∈ Ωn), we have μp(Iω) = Πn

j=1pij . By the
strong law of large numbers, we see that μp(Bp) = 1 and since Bp ⊂ E, thus μp(Bp) =
μp(E)= 1. Such a measure μp is called Bernoulli measure.

For the use in next section, we give some notations here.
Let �= {Iω : ω ∈Ω}, we define

�s
δ,�(E)= inf

⎧
⎨

⎩Σ
∣
∣I

j
ω
∣
∣s :

{
I
j
ω
}⊂�,

∣
∣I

j
ω
∣
∣≤ δ, E ⊂

⋃

j

I
j
ω

⎫
⎬

⎭ ,

�s
�(E)= lim

δ→0
�s

δ,�(E).

(2.1)

Similar to the definition of Hausdorff dimension, we define

dim�E = sup
{
s≥ 0 : �s

�(E)=∞}

= inf
{
s≥ 0 : �s

�(E)= 0
}
.

(2.2)

Now, we would like to define μsp-measure as follows:

μsp(E,δ)= inf

⎧
⎨

⎩Σμp
(
Ui
)s

: μp
(
Ui
)≤ δ, E ⊂

⋃

i

Ui

⎫
⎬

⎭ ,

μsp(E)= lim
δ→0

μsp(E,δ)

(2.3)
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then the μp-dimension of E is given by

dimμp E = sup
{
s≥ 0 : μsp(E)=∞}

= inf
{
s≥ 0 : μsp(E)= 0

}
.

(2.4)

We see that if μp(E) > 0, then dimμp E = 1.

3. Proofs

Now we set to prove the results displayed in Section 1. First, let us look at some lemmas.

Lemma 3.1 [5]. Suppose that p = (p1, p2, . . . , pm) is a probability vector with Σ j∈Mpj = 1
and pj > 0. For any q1, . . . ,qm ∈R,

Σm
i=1pi

(− log pi + qi
)≤ logΣm

i=1e
qi . (3.1)

The equality is attained if and only if pi = eqi(Σm
i=1e

qi)−1 for i∈M.

Lemma 3.2. For any subset F ⊂ E, α≥ 0, there exists a constant c > 0 such that c�α
�(F)≤

�α ≤�α
�(F).

Proof. Denote r =min1≤i≤m{ri}, A(n)
r = {Iω : rn < |Iω| ≤ rn−1}. For any δ-covering {Ui}

of F, for any Ui, there exists ni such that rni < |Ui| ≤ rni−1. For any x ∈ Ui, F ∩Ui ⊂⋃
Iω∈Ani

r Iω∩Ui �=φ Iω ⊂ B(x,2rni−1), then we have �{Iω : Iω ∈ Ani
r Iω ∩Ui �= φ} ≤ 4rni−1/rni =

4/r, so for this Ui, there exists a sequence {Inii j } j=1,2,...,li
i=1,2,... ⊂Ani

r such that F ∩Ui ⊂
⋃li

j=1 I
(ni)
i j ,

li ≤ 4/r. Since |Ui| ≥ rni ≥ r|I(ni)
i j | for j = 1,2, . . . , li, then li|Ui|α ≥ Σli

j=1r
α|I(ni)

i j |α, we fur-

ther get (4/r)Σ∞i=1|Ui|α ≥ rαΣ∞i=1Σ
li
j=1|I(ni)

i j |α, thus we get �α(F)≥ (rα+1/4)�α
�(F). Letting

c = rα+1/4, we have c�α
�(F)≤�α ≤�α

�(F). �

To prove Theorem 1.1, we need another lemma.

Lemma 3.3. If

E ⊂
{

ϕ(ω) : lim
|ω|→∞

logμp
(
Iω
)

log
∣
∣Iω
∣
∣ = δ

}

, (3.2)

then dimE = δdimμp E.

Proof. With Lemma 3.2, we can get the same dimension result if we use the basic intervals
to cover E, so we first prove that if

E ⊂
{

ϕ(ω) : liminf
|ω|→∞

logμp
(
Iω
)

log
∣
∣Iω
∣
∣ ≥ δ

}

, (3.3)

then dimE ≥ δdimμp E.
If ϕ(ω) ∈ E, then for any ε > 0, there exists N > 0 such that for any n > N , we have

μp(Iω)≤ |Iω|δ−ε. Thus there are only many finite ω such that Iω does not satisfy the above
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inequality. Let

Ek =
{
ϕ(ω)∈ E :

∣
∣Iω
∣
∣ >

1
k

or μp
(
Iω
)≤ ∣∣Iω

∣
∣δ−ε

}
. (3.4)

We see that Ek is increasing. On the other hand, since we have μp(Iω) > 0 for any ω ∈Ω,
then there exists k such that |Iω| > 1/k for any given ω ∈Ω, which implies that ϕ(ω)∈ Ek.
Thus we have E =⋃k Ek.

For any (1/k >)ρ > 0, ε1 > 0, ε2 > 0, there exists a sequence of intervals {I jω} ⊂� such

that |I jω| ≤ ρ, I
j
ω ∩ Ek �= φ, and Ek ⊂

⋃
j I

j
ω. Since dim�E = dimE and Ek ⊂ E, we have

�dimE+ε2
ρ (Ek) < ε1, that is, Σ|I jω|dimE+ε2 < ε1, which follows Σ(μp(I

j
ω))(dimE+ε2)/(δ−ε) < ε1.

Thus we have dimμp Ek ≤ (dimE+ ε2)/(δ− ε). Since ε and ε2 are arbitrary small, we have
dimE ≥ δdimμp Ek, which further implies dimE ≥ δdimμp E.

With the same method we can prove that if

E ⊂
{

ϕ(ω) : limsup
|ω|→∞

logμp
(
Iω
)

log
∣
∣Iω
∣
∣ ≤ δ

}

, (3.5)

then dimE ≤ δdimμp E.
With the above arguments, we complete the proof. �

Proof of Theorem 1.1. For any ω ∈Ω,

lim
|ω|→∞

logμp
(
Iω
)

log
∣
∣Iω
∣
∣ = lim

|ω|→∞
Σn
j=1 log pij

Σn
j=1 logrij

= lim
|ω|→∞

Σ j∈Mδj(ω,n) log pj

Σ j∈Mδj(ω,n) logr j

= Σ j∈Mpj log pj

Σ j∈Mpj logr j
= s.

(3.6)

Since μp(Bp)= 1, by Lemma 3.3 we have dimBp = s.
Put qi = logrαi in Lemma 3.1, we get s≤ α. Furthermore, if we put

pi = elogrαi
(
Σm
i=1e

logrαi
)−1 = rαi , (3.7)

we have s= α. �

Lemma 3.4 (law of iterated logarithm (Hartman-Winter)). Suppose that {Xn : n ≥ 1}
is a sequence of independent, identically distributed random variables (i.i.d.r.v.) satisfying
E(Xn)= 0 and E(X2

n)= σ2 ∈ (0,+∞), then

limsup
n→∞

Σn
i=1Xi√

2nσ2 loglognσ2
= 1, p a.e.,

liminf
n→∞

Σn
i=1Xi√

2nσ2 loglognσ2
=−1 p a.e.

(3.8)
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Remark 3.5. We suppose that E denotes the mathematical expectation and V denotes the
mean variance here and in the following context.

Proof of Theorem 1.2. Put p = μp ◦ϕ, Xi = log pi− s logri, i∈M, then {Xi} is a sequence
of i.i.d.r.v. with respect to p. We see that E(Xi)= Σm

i=1pi(log pi− s logri)= 0. Suppose that
p �= (rα1 , . . . ,rαm), then

0 < E
(
X2
i

)= Σm
i=1pi

(
log pi− s logri

)2 =: σ2 <∞. (3.9)

Set

B′ =
{

ϕ(ω) : limsup
n→∞

Σn
i=1Xi√

2nσ2 loglognσ2
= 1

}

, (3.10)

then μp(B′)= 1 by Lemma 3.4. Since μp(Bp)= 1. Let B = B′ ∩Bp, we get μp(B)= 1.
With the above arguments, we see that Σ∞j=1Xij =∞ a.e., that is,

log
Πn

j=1pij
Πn

j=1r
s
i j

−→∞, as n−→∞, (3.11)

from which we also have

μp
(
Iω
)

∣
∣Iω
∣
∣s −→∞, as |ω| −→∞. (3.12)

Let �k
n = {Iω : μp(Iω)/|Iω|s > k, for ω ∈Ωn}, �k =⋃∞n=1 �k

n. For any δ > 0, k > 0, choose
{Ikj } ⊂�k such that B ⊂⋃ j I

k
j , |Ikj | ≤ δ, and Iki ∩ Ikj = φ(i �= j). By the definition of �k, we

have

μp
(
Ikj
)

∣
∣Ikj
∣
∣s > k, ∀ j. (3.13)

Thus

�s
δ(B)≤ Σ

∣
∣Ikj
∣
∣s ≤ 1

k
Σμp

(
Ikj
)≤ 1

k
. (3.14)

Letting k→∞, we have �s
δ(B)= 0, from which it follows that �s(B)= 0. �

Lemma 3.6 [6]. Suppose that μ is a finite Borel measure such that

0 < limsup
|ω|→∞

μ
(
Iω
)

∣
∣Iω
∣
∣α <∞, 0 < liminf

|ω|→∞
μ
(
Iω
)

∣
∣Iω
∣
∣α <∞, for any ω ∈Ω, (3.15)

then μ ∼ �α
∼ �α on E.

Corollary 3.7. μp ∼ �α
∼ �α on E in case of p= (rα1 ,rα2 , . . . ,rαm).
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Proof. Since μp(Iω)=Πn
j=1pij , for ω = i1i2 ··· in ∈Ωn, then

μp
(
Iω
)

∣
∣Iω
∣
∣α =

Πn
j=1pij

Πn
j=1r

α
ij

= 1, when p= (rα1 ,rα2 , . . . ,rαm
)
. (3.16)

So by Lemma 3.6, we have μp ∼ �α
∼ �α on E in case of p= (rα1 ,rα2 , . . . ,rαm). �

Corollary 3.8. �α(E \Bp)=�α(E \Bp)= 0, �α(E)=�α(Bp), and �α(E)=�α(Bp) in
case of p= (rα1 ,rα2 , . . . ,rαm).

Proof. By the definition of equivalence, μp ∼ �α on E ⇔ for any F ⊂ E, μp(F) = 0 ⇔
�α(F) = 0. It is clear that Bp is the subset of E with μp(E) = μp(Bp) = 1, then we get
immediately μp(E \Bp)= 0, which further implies �α(E \Bp)= 0 by Corollary 3.7. Fur-
thermore, �α(Bp)≤�α(E)≤�α(Bp) + �α(E \Bp)=�α(Bp), we have �α(E)=�α(Bp).

Similar arguments will prove that �α(E \Bp)= 0 and �α(E)=�α(Bp). �

For the simplicity of proof of the following results, we would like to make a hypothesis
here.

We say that the Cantor-type set E satisfies the gap condition if there exists a constant
δ > 0 such that

dist
(
Ii1i2···in ,Ii1i2···i′n

)≥ δmax
{∣∣Ii1i2···in

∣
∣,
∣
∣Ii1i2···i′n

∣
∣} (3.17)

for any n∈N and in �= i′n.

Lemma 3.9 [6]. If the gap condition holds, then for any ω ∈Ω and finite Borel measure μ,
the following inequalities hold:

(aδ)α liminf
|ω|→∞

∣
∣Iω
∣
∣α

μ
(
Iω
) ≤ liminf

r→0

rα

μ
(
B
(
ϕ(ω),r

)) ≤ a−α liminf
|ω|→∞

∣
∣Iω
∣
∣α

μ
(
Iω
) ,

(aδ)α limsup
|ω|→∞

∣
∣Iω
∣
∣α

μ
(
Iω
) ≤ limsup

r→0

rα

μ
(
B
(
ϕ(ω),r

)) ≤ a−α limsup
|ω|→∞

∣
∣Iω
∣
∣α

μ
(
Iω
) ,

(3.18)

where a=mini∈M{ri}.
Lemma 3.10 [8]. For finite Borel measure μ, there exists constants c1, c2, c3, c4 such that

c1μ(E) inf
x∈E

liminf
r→0

rα

μ
(
B(x,r)

) ≤�α(E)≤ c2μ(R)sup
x∈E

liminf
r→0

rα

μ
(
B(x,r)

) ,

c3μ(E) inf
x∈E

limsup
r→0

rα

μ
(
B(x,r)

) ≤�α(E)≤ c4μ(R)sup
x∈E

limsup
r→0

rα

μ
(
B(x,r)

) .
(3.19)

Corollary 3.11. If E is the Cantor-type set satisfying gap condition and Bp is the Besicov-
itch set defined in Section 1, then 0 < �α(E)=�α(Bp) <∞ and 0 < �α(E)=�α(Bp) <∞,
when p= (rα1 ,rα2 , . . . ,rαm).
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Proof. From Lemma 3.10, we see that the density of balls is comparable with that of in-
tervals. So we have

c′1μ(E) inf
x∈E

liminf
|ω|→∞

∣
∣Iω
∣
∣α

μ
(
Iω
) ≤�α(E)≤ c′2μ(R)sup

x∈E
liminf
|ω|→∞

∣
∣Iω
∣
∣α

μ
(
Iω
) (3.20)

together with Lemmas 3.9 and 3.10.
Since

μp
(
Iω
)

∣
∣Iω
∣
∣α = 1, in case of p= (rα1 ,rα2 , . . . ,rαm

)
, (3.21)

so we get c′1 ≤ �α(E) ≤ c′2 by substituting μ with μp in (3.20), which implies that 0 <
�α(E) <∞. Since we have proved in Corollary 3.8 that �α(E) = �α(Bp), we have 0 <
�α(E)=�α(Bp) <∞.

Analogously, we can prove 0 < �α(E)=�α(Bp) <∞. �

Remark 3.12. Corollary 3.11 reinforces the assertion in Theorem 1.1.
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