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The finite symmetric trilinear integral transform is extended to distributions by using
quite different technique than Zemanian (1968) and Dube (1976) and an inversion for-
mula is established using Parseval’s identity. The operational calculus generated is applied
to find the temperature inside an equilateral prism of semi-infinite length.
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1. Introduction

Sen [6] with the help of trilinear coordinates has solved different types of boundary value
problems relating to boundaries in the form of an equilateral triangle.
An equilateral triangular region T is described by the set

{x=(x1,%,%3) /0<x;i < p, x1+%2+x3 = p, x; €R, i =1,2,3}, (1.1)

where x;, x,, and x3 are the trilinear coordinates of a point and p is the height of an
equilateral triangle.

Sen [6] has also expressed two-dimensional Laplace operator in trilinear coordinates
as

0> 0
2 2 4 7
Vi= " dy?
(1.2)
T P >

- (—Tx% BTC% aixg B 8x18x2 a 8x28x3 B 8x18x3 =0 (S&Y).

Later Patil [4] has developed the symmetric integral transform of function of trilinear
coordinates which is defined on T as

PP P
S(f)(n) = F(n) = jo L L F(x1,%20%5) Y (31,52, 3) dr dxadxcs, (1.3)

Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences
Volume 2006, Article ID 41620, Pages 1-16

DOI 10.1155/IJ]MMS/2006/41620


http://dx.doi.org/10.1155/S0161171206416203

2 Finite symmetric trilinear integral transform

where v, (x1,%2,x3) = sind,x; + sind,x; + sind,x3 are eigenfunctions corresponding to
the eigenvalues A, = 2n7/p, n = 1,2,3,..., in an eigenvalue problem

Oy + A5y =0 (1.4)
subjected to the Dirichlet type of boundary conditions
Yu(x) =0 atx;=0,x =0, x5 =0. (1.5)

If f(x1,x2,%3) is continuous, has piecewise continuous first- and second-order partial
derivatives on T, and satisfies the above Dirichlet type of boundary conditions, then in-
verse transform of (1.6) is given by

fx1,%2,x3) = ZF(n)cnl//n(xl,xz,xg), (1.6)
n=1
where 1/¢, = [ € [L w2dx)dx,dxs = 3p>/2 (see [4, page 129]).

In this paper we extend the finite symmetric trilinear integral transform to distribu-
tions analogous to the method employed in [1] which is quite different than Zemanian
[8] and Dube [2] and establish an inversion theorem by using Parseval’s identity as in [3].
At the end we find the temperature inside an equilateral prism of semi-infinite length.

2. The testing function space A

Let A denote the set of all infinitely differentiable complex-valued functions ¢ defined on
T which satisfy the following two conditions:
(i) O™¢ satisfy Dirichlet type of boundary conditions on T for each m = 0,1,2,...;

(ii)

am(P) = sup |[O0"p(x)| <o foreachm=0,1,2,.... (2.1)

xeT

We note that A is nonempty and for each n € N, eigenfunction y,(x) is in A.
A is a linear space. The topology of A is that generated by the countable multinorm

{am} m=o-
THEOREM 2.1. A is complete and therefore a Fréchet space.

The proof of this theorem is similar to the proof of [7, Theorem 3.1].
For every ¢ € A, the finite symmetric trilinear integral transform

PP P
S(¢)(n) = L L L 6 () Y (x)dx1 dxsdlxs (2.2)

exists and by (1.6), one has

P(x) = D cuS() () yu(x). (2.3)
n=1
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We call the sequence (S(¢)(#))nen as the finite symmetric trilinear integral transform
S(¢) of ¢. Therefore

S(¢) = (S(@) (1)) - (2.4)

The expression (2.3) can be seen as an inversion formula for the said transform.
ProrosITION 2.2. The map ¢ — S(¢) is a continuous linear transformation from A into I,

Proof. It can be proved by making use of the property of integrals and

1S(9)|] = sup [ S(§)(m)| < 3p ao(¢h). (2.5)
! 0

Let L,(T) denote the set of complex-valued functions ¢ defined on T such that

gl = UOP Jj JOP 1$(x)]| zdxldxzdx3]l/2 < oo, (2.6)

An inner product in L,(T) is defined by

PP P .
($y) = L JO L Sy dxiddxs, ¢y € L(T), 2.7)

where y(x) denotes the complex conjugate of y(x).
We prove the following results which we need in subsequent sections.

ProrosITION 2.3. If ¢ € A, then
S(O™M¢)(n) = (—1)"AZ"S(¢p)(n) foreveryn € N, m=0,1,2,.... (2.8)

Proof. Integrating by parts and using boundary conditions, we get

PP (P
S(@¢)(n) = J J I () Oy, (x)dxidxadxs = (—1)A2S(¢)(n)  foreveryne N. (2.9)
0 Jo Jo
Using (2.9), it is quite simple to see that

S(O™M¢)(n) = (—1)"A2"S(p)(n) foreveryn € N, m =0,1,2,.... (2.10)
O

ProrosITION 2.4. Let ¢ € A. Then the series

PRANEEIOIR (2.11)
n=1
converges and Bessel’s inequality
> el SO™g) (m)|* < [|07¢)|" < o0 (2.12)

n=1

holds for each m = 0,1,2,3,....
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Proof. Expanding the inner product and using the fact that {y,} is an orthogonal set, we
get

n 2 n
0<omg - 3 as@ o ®u| = I079IP - S als@ 9w @13
k=1 k=1
and so, for any n € N,
> el S@) (k)| =< ||, (2.14)

k=1
It is clear that the series (2.11) converges and taking the limit as n — o we get (2.12). [

ProrosITION 2.5. If ¢ € A, then the series

i (=DM, A2"S(9) () yn(x), m=0,1,2,..., (2.15)
n=1

converges absolutely and uniformly over T.

Proof. We have
[ (=)™, A2 S(@) (n)yn(x) | < 3c,A2™[S(9)(n)| (x €T, n=1,2,...). (2.16)

By using Proposition 2.3, Cauchy-Schwarz inequality, and (2.12), we get

k © 1/2
> 3¢, A2 [ S(@)(n) | < 3co|[1mFL ]| for every k € N, where ¢y = [Z ;—Z] . (217)
n=1 n=1""1n

In view of ¢, = 2/3p> (see [4, page 129]), A, = 2n7/p, and >, (1/n*) = 74/90 (see [3,

page 112]), we have ¢y = (1/6),/p/60.

It is obvious that >;” ; 3c,A2™|S(¢)(n)| is convergent. By Weierstrass M test, the series
(2.15) converges absolutely and uniformly over T. O

COROLLARY 2.6. If ¢ € A, then

(o]

1Mp(x) = > (=1)"c,A2S(¢) () yu(x), m=0,1,2,..., (2.18)

n=1
and the series converges uniformly over T.

Proof. From (1.6), we have

o(x) = ilg}o > aS() (k)i (x),
) ! (2.19)
I"p(x) = %ljg I ( Z CkS(fb)(k)l//k(x)) = ,1152 Z ck(=1)™AZ"S(¢) (k) ye (x).

k=1 k=1
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In view of (2.19) and in view of Proposition 2.5, it is inferred that the series
S (=1)Mc,A2mS(p) - (n)yy(x) converges to [ ¢ uniformly on T for each m = 0,1,2,....

O
The following is an immediate consequence of Corollary 2.6.
COROLLARY 2.7. Forall ¢ € A, ¢, — ¢ in A, where ¢, (x) = >;_; ckS(¢) (k) yi(x).
TareoreM 2.8. For every ¢ € A, Parseval’s identity holds, that is,
> el S(@)(m) [P = l1glI% (2.20)
n=1
Equivalently
(S(¢1),S(¢2)) = Z cnS(¢1)(n (¢2) = (¢1,¢2). (2.21)
n=1

Proof. We have from Proposition 2.4 that

n

o= tall® = 111> = > ci | S(¢) (k) |*,  where t,(x) =Z ORye(x).  (2.22)

k=1 k=1
But
2 P P (P 2 2
[P =j J J 1 $(x) — £u(x) | 2dxrdxadies < [ao (b — 1) ]* . (2.23)
0 JOo JO
Hence
0<ll¢l> - ch|5(¢>) k)| < oo — ta)]7 P> (2.24)

k=1

Taking the limit as n — co and using Corollary 2.7, we get (2.20).
By using polarization identity, we get (2.21). O

3. The space of rapidly decreasing sequences

Let B be the set of all complex sequences (a,)nen satisfying

zcn)t,zj”|an| <o Vm=0,1,2,.... (3.1)

B is a linear space and

Bun <(an neN) ch/lzm|an| m=0,1,2,..., (3.2)

defines a countable multinorm on B. B is complete and therefore a Fréchet space.
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THEOREM 3.1. For each continuous linear functional h defined on B, there exist a positive
constant C and a nonnegative integer r such that for every (a,)nen € B,

| {1y (@n) pend) | = G2k Br((an) yen)- (3.3)

The proof is similar to the proof of [8, Theorem 1.8.1].

THEOREM 3.2. The finite symmetric trilinear integral transform S is a homeomorphism from
A onto the space B.

Proof. 1f ¢ € A, then, by Proposition 2.5, >.;”; ¢,A2"[S(¢)(n)| < oo for every m=0,1,2,....
It is simple to prove that the mapping S: A — B defined by S(¢) = (S(¢)(n))nen is
one-one and onto.
Hence S™!: B — A exists and is given by

S (a)(x) = ! ((a,,)neN>(x) = i cnan¥n(x), x €T, foreacha= (a,),.n €B.
n=1

(3.4)
Assume that (¢x)ren — ¢ in A as k — . By Proposition 2.3,
A S (k) (n) = S(¢) () |
= [S(1" (¢x — ¢)) (n) |
<3p’am(dpx—¢) — 0 ask— o0, VneN, m=0,1,2,...,
(3.5)

B (S(¢i) = S(¢))

= > ciA2™[S(¢k)(n) = S(¢)(n)| — 0 ask — o, foreach m =0,1,2,....
n=1

This proves S is continuous. To prove S~! is continuous, we proceed as follows.

Let a* — ain B as k — o0, where @ = (a'F) e @ = (@n)nen. Using (3.4),

K
3
9%
=
.
I
_
SN—"
|
w
[
o
e
o
=
_
=
I
N
=
SN—"
I
—_
3
=
I
3
S
=
=
2

(by Corollary 2.6)

<3> cidi"al) —a,| — 0 ask — o, foreachm=0,1,2,....
n=1

(3.6)

This completes the proof. O



G. L. Waghmare and S. V. More 7

4. Distribution space
In this section we will introduce the space of distributions and study its basic properties.

Definition 4.1. A linear functional U on a Fréchet space A, U : A — C, is called a distri-
bution if there exists a sequence (y,)sen in A such that

p rp (P
(U,¢) = limj J J Xn(x)@(x)dx1dx,dxs  exists for each ¢ € A. (4.1)
n—c Jo Jo Jo

The set of all distributions is a complex linear space and it will be denoted by A".

Let A denote the set of all functions f(x) which are continuous, have piecewise con-
tinuous first- and second-order partial derivatives on T, and satisfy the Dirichlet type of
boundary conditions on T.

ProrosiTioN 4.2. Let f € Ay. Then the formula

prp P
Wt = [ | feswdndnda, ¢ea, (12)

defines a distribution Uy on A. Aq can be embedded in A’.

Proof. Uy is clearly linear. Define y,(x) = i1 S (k) yk(x), xn €A, for all values of .
Moreover, x, — f uniformly on T follows from Corollary 2.6. Therefore

(Up, ) = hmJ J J An(X)p(x)dx1dxrdx (4.3)

n— oo

which proves that (4.2) defines a distribution Uy on A.
It is clear that the map f — Uy is linear, one-to-one, and continuous.
Finally, if Uy, — Uy in image of Ay, then

J J J ) @) ¢(x)dxidxrdxs = (Uy, — Uy, ¢) — 0 (4.4)

asn — oo forall ¢ € A.
This implies f, — f as n — . Thus A, can be embedded in A". O

There are distributions that do not have the form (4.2) with f € A,.

Example 4.3. Dirac function §, centered at x € T is given by

(0 ¢) = ¢(x), ¢E€A (4.5)

It is easy to prove that Jy is linear.
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Take yu(y)=>1_1 ckvk(x)¥(y), x, y € T, and x is fixed. Then y, is in A for each neN,

n—oo 0

P rp P n
hm[ j j 1 (NSdndydys = lim S a8 (R)yi(x) = $(x) = (8rg).  (4.6)
0 Jo T

Sod,eA’.

Define d(¢,v) = > n_o(1/2™) (ot (¢ — ¥)/(1 + (¢ — ¥))). Then d is a compatible
translation invariant metric on A [5, page 27]. Furthermore (A,d) is a complete metric
space.

THEOREM 4.4. Every distribution is a continuous linear functional on A.
The proof is similar to the proof of [3, Theorem 3.143].

ProposiTioN 4.5. A’ is the dual of A, that is, A’ is precisely the collection of all continuous
linear functionals from A into C.

Proof. Let f: A — C be a continuous linear functional. For each ¢ € A, by Corollary 2.7,
Eu¢) = > aS@)(Kyx — ¢ inA. (47)
We have

(o) = lim (£ @) = Jim [ [ [T p0dn dads. (4.8)

Thus the condition in the definition of distribution is satisfied with

n

xn (%) = > ek (> i) v (). (4.9)
k=1
O

PrOPOSITION 4.6. A is a subspace of A" and the topology of A is stronger than that induced
onitby A’

Proof. Let f € A. By Proposition 4.2,

PP rp
o= || gt drads, (4.10)
0 Jo Jo

defines a distribution Uy. Therefore A C A,
Further

=19 <a(fHa(@)p® fEA, ¢ €A, (4.11)

implies the second statement. O
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ProrosiTiON 4.7. For each f € A’, there exist a nonnegative integer r and a positive con-
stant C such that

[(f¢) | = CoZcrom(9). (4.12)
Here C and r depend on f but not on ¢.
The proof is similar to proof of [8, Theorem 1.8.1].

5. Generalized finite symmetric trilinear integral transform

The generalized finite symmetric trilinear integral transform S’ of f € A’ is defined by

(S"(f)s (an) yen) = <f(x), > cnant//n(x)>, (@n) yen € B. (5.1)
n=1

Ifp(x) = 3,1 cn@nWn(x), then, by Theorem 3.2, (a,)nen = (S(¢)(n))nen = S(¢) and (5.1)
can be written as

(S'(f):S(¢)) = (f>9). (5.2)

THEOREM 5.1. §' is a homeomorphism from B" onto the space A’.

Proof. This result can be seen as a consequence of Theorem 3.2 and [8, Theorem 1.10.2].
U

ProrosITION 5.2. The finite symmetric trilinear integral transform S is a special case of the
generalized transform S'. That is, S’ f = Sf for every f € A.

Proof. By using Proposition 4.6, (5.1), Theorems 3.2, and 2.8, it is simple to prove

<S,f’ (a")n€N> = z C”S(f)(n)an = <(S(f)(n))n€N:(an)n€N>> (a")nEN € B. (53)
n=1 |

Motivated by the above result, we define the generalized integral transform S’ f of
feA as

§'(f) = (G yn())) e (5.4)

and we set

S(f)n) = (f(x),yu(x)), yn€A neN. (5.5)

We now state and prove an inversion theorem for the elements of A’ that can be seen
as an inversion formula for the §'-transformation.



10  Finite symmetric trilinear integral transform

TaEOREM 5.3. Let f € A'. Then

f=lim > e (fyi) v (5.6)
k=1

where the limit is taken in the sense of A’.

Proof. Let F,(x) = >.;_; ck{f, W)Yk Since F, € A for every n, by Proposition 4.2,

(frym) ifm=<n,
(FusWim) ={ s 1 e (5.7)
0 ifm>n.
By using Theorem 2.8, Parseval’s identity, we have
<F1’1)¢> = Z Ck (Fn’Wk>S(¢)(k)
k=1
= > al ) S(9) k) (by (5.7)) (5.8)
k=1
= (f,Eq(¢)) forevery¢ €A, E,(¢) = z cxS(¢) (k) yy.
k=1
By Corollary 2.7, E,(¢) — ¢ for all ¢ € A. Therefore
lim (F,,¢) = lim (f,E,(9)) = (f,¢), V¢ EA. (5.9)
O

THEOREM 5.4 (uniqueness theorem). If f,g € A" are such that §'(f)(n) = §'(g)(n) for
every n, then f = g in the sense of equality in A’

The following example illustrates the inversion theorem.

Example 5.5. Dirac function J, centered at x € T is given by
(00,9) = 9(x), €A (5.10)

In Example 4.3, we have shown that J; is in A’. The finite symmetric trilinear integral
transform of §, is given as

S,((Sx)(n) = <5x(t))ll/n(t)> = Wn(x)- (5.11)

By virtue of Proposition 4.2, for all ¢(t) € A,

N N
< > mem(x)wm(t),¢(t)> = D S m)yYm(x) — ¢(x) asN— oo  (5.12)

m=0 m=0

But ¢(x) = (6x(1),¢(¢)). Therefore §,(t) = limy- o Z:‘,ZO CmWm (X)W ().
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A trivial consequence of Theorem 5.3 is the following version of Parseval’s identity.

COROLLARY 5.6. Let ¢ € Aand f € A’. Then
(f>¢) = Z (f>un)S(9)(n) = (S f,S¢). (5.13)

6. Characterization of distributions in A" and their generalized finite symmetric
trilinear integral transform §'

ProrositioN 6.1. Let H : B — C. Then H € B’ if and only if there exists a complex sequence
(b)) nen such that

|b,| <CA*, neN, (6.1)

for some C >0 and some k € N, for which

(H, (an) pen) chan w (an) e € B. (6.2)

Proof. Assume that H takes the form (6.2) where (b,)en satisfies (6.1). By using (3.2)
it is simple to prove H € B’. Conversely, let H € B’. Then by Theorem 3.1, there exists
k € N such that

| (H, (an) yen) | < C2% i Z cady" |an| < C Z CnAZk lanl, (an),cn €B. (6.3)
n=1

We now define the mapping, /] : B— J(B) C [

(a”)neN - (Aﬁkan)ngw (6.4)

J is one-one.
Moreover, the linear mapping M : J(B) c |, — C

(Aztka“)neN - <H’(a”)neN> (65)

is continuous by virtue of (6.3).
By Hahn-Banach theorem, M can be extended to /; as a member of I;. Then there
exists (d,)nen € I such that
MA*a,), = (H, (an) o) Z dua A, (ay),cn € B. (6.6)

neN

Taking b, = d,A2¥/c,, where ¢, = 2/3p> [4, page 129], n € N. Since every sequence in /.
is bounded sequence, we have

<H neN Z Cnnby. (6.7)
O
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THEOREM 6.2. Let (b,)uen be a complex sequence. There exists f € A" such that F(n) =
S'(f)(n) = by, n €N, if and only if there exist C >0 and k € N such that

|b,| <CAZ*, neN. (6.8)

Proof. The condition is necessary and follows from Proposition 4.7.
Let (b,)nen be a sequence satisfying condition (6.8).
For any ¢ € A,

lim <ch W (%), ¢ > chb S(¢ (6.9)

From (6.8) and Theorem 3.2, it is clear that the series >.;" ¢,0,S(¢)(n) is absolutely con-
vergent.
Define f : A — C by the formula

(fo¢) = > cnbuS(@)(m), ¢ € A. (6.10)
n=1
Then f is a linear functional on A and
PP (P
(o) =lim | [ ] o0 dada, (6.11)

where y,(x) = X[, ckbryi(x) € A for every n € N.
By using orthogonal relations, we have §'(f)(n) = b,, n € N.
Thus the condition is sufficient. O

7. Operational calculus

Integrating by parts and using boundary conditions, one can easily prove that if f € Ay,
then

(1f,¢) = (f,1¢) forevery ¢ € A. (7.1)

It allows us to define that for any f € A,

(If,¢) = (f,1¢), ¢€A. (7.2)

Itis clear that I f € A".
It can also be seen inductively that for any integer m,

(I"f,¢) = (f,1"¢p) foreveryp €A (7.3)

and 1" f € A'.
Therefore

(W foyn) = (F0"yn) = (D" f ). (7.4)
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That is,
S (1" f)(n) = (=1)"A"S' (f)(n) (7.5)

which gives an operation transform formula.
Now consider the partial differential equation of the form

G()f =h, (7.6)

where given h and unknown f are required to be in A’, and G is a polynomial such that
G(-12) 4 0,n=1,2,3,....
By applying the operation transform formula (7.5) to (7.6), we obtain

G(=M\)F(n)=H(n), F(n)=(Sf)(n), Hn)=(S'h)(n),

H(n) (7.7)

e

By applying the inversion theorem (Theorem 5.3), we get

Z TP} )tz Vn, G(—=A2) #0, forn=1,2,.... (7.8)

8. Application

In this section we apply the present theory to find the temperature inside an equilateral
prism of semi-infinite length. The formulation of the problem is given below.
Find the conventional function v(x,z) on the domain

R={(x,2) = (x1,%2,%3,2) /0<x;< p, i=1,23, xj+x2+x3 = p, 0<z< o0}  (8.1)
that satisfies Laplace equation

ox?  ox2 ox} 0x10xy 0x10x3 0xp0x3 0Z2

=0 (8.2)

in R and the following boundary conditions:
(i) as z — 0+, v(x,2z) — f(x) € A’ in the sense of convergence in A’;
(ii) as x; — 0+, i = 1,2,3, v(x,2), converges to zero uniformly on Z < z < oo for each
Z >0;
(iii) as z — oo, v(x,z) converges uniformly to zero uniformlyon 0 < x; < p,i=1,2,3.
Every section of the prism by a plane perpendicular to z-axis is an equilateral triangle
with its centroid on the z-axis,

set V(n,z) =S (v(x,2)) = (v, ¥n). (8.3)
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By applying the finite symmetric trilinear integral transform S’ to (8.2), we arrive at

2
-A2V(n,z)+ %V(n,z) =0, (8.4)

whose general solution is
V(n,z) = A(n)eM? + B(n)e™*,  A(n) and B(n) do not depend on z. (8.5)

In view of boundary condition (iii), it is reasonable to choose A(n) = 0 and B(n) = F(n)
because of boundary condition (i). Therefore,

V(n,z) = F(n)e ™= (8.6)

Applying the inversion theorem (Theorem 5.3) to the above equation, we get
v(x,2) = > caF(n)e My, (x). (8.7)
n=1

We now verify that (8.7) is truly a solution of (8.2).
By Theorem 6.2, there exist C >0 and k € N such that |F(n)| < C/\f,k. ForZ <z<w
where Z > 0, the nth term of the series (8.7) satisfies the condition

|cuF(n)e ™y, (x)| < 3c,CAZKe M2, (8.8)

Using ¢, = 2/3p%, A, = 2nn/p, and e % < (2k +2)!1/A2K+2 72K+2 we get

B 1 2k+2)!C
[eaFme o) < Gk, where €7 < 25D

(8.9)
By Weierstrass M test, the series on the right-hand side of (8.7) converges absolutely and
uniformly over R. The factor e *? ensures the uniform convergence of any series ob-
tained by term-by-term differentiation of (8.7) with respect to x;, i = 1,2,3, or z. We may
apply the operator [ + D? under the summation sign in (8.7). Since e "y, (x1,x2,X3) sat-
isfies Laplace equation, so does v. Thus the differential equation (8.2) is satisfied in the
conventional sense.
To verify the boundary condition (i), we have to show that for each ¢ € A,

(v(x,2),¢(x)) — (f,¢) asz— 0+, (8.10)
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Now, for any fixed z > 0, the series (8.7) defines a function in Ay, and by Proposition 4.2
we have for every ¢ € A,

prp P2
(v,¢) = L JO L [Z an(n)e‘A"Zv/n(x)}¢(x)dx1dxzdx3
n=1
(8.11)

= > c,F(n)e ™28(¢)(n).
n=1

The series in (8.11) converges uniformly for all z > 0. By taking the limit as z — 0+, one
has

lim (v,¢) = >’ caF(n)S()(n)

n=1

] N (8.12)
= lim < > an(n)t//n(x),¢(x)>
n=1
=(f,¢) by virtue of Theorem 5.3.
Finally, for Z < z < o0 (Z > 0), we have from (8.7) that
[v(x,2)| <D cu| F(n)|e™ [y, (x)]. (8.13)

n=1

The series in (8.13) converges absolutely and uniformly on T. So we may take limit as
x; — 0+ under the summation sign in (8.13), which verifies boundary condition (ii).
In the same way we have

|v(x,2)| <3 cu| E(n)|e ™M= (8.14)

n=1

The series in (8.14) converges uniformly on 0 < z < c. By taking the limit as z — co under
the summation sign in (8.14), one verifies boundary condition (iii).
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