WEAK GROTHENDIECK'S THEOREM

LAHCÈNE MEZRAG

Received 14 June 2005; Revised 9 March 2006; Accepted 20 June 2006

Let $E_{n} \subset L_{1}^{2 n}$ be the n-dimensional subspace which appeared in Kašin's theorem such that $L_{1}^{2 n}=E_{n} \oplus E_{n}^{\perp}$ and the $L_{1}^{2 n}$ and $L_{2}^{2 n}$ norms are universally equivalent on both E_{n} and E_{n}^{\perp}. In this paper, we introduce and study some properties concerning extension and weak Grothendieck's theorem (WGT). We show that the Schatten space S_{p} for all $0<p \leq \infty$ does not verify the theorem of extension. We prove also that S_{p} fails GT for all $1 \leq p \leq$ ∞ and consequently by one result of Maurey does not satisfy WGT for $1 \leq p \leq 2$. We conclude by giving a characterization for spaces verifying WGT.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

This work was inspired by the celebrated theorem of Kašin [5]. We use his decomposition cited in the abstract and which states that $L_{1}^{2 n}$ (this space is of dimension $2 n$ and which will be defined in the sequel) can be decomposed into two orthogonal n-dimensional subspaces "respecting" the inner product induced by the norm of $L_{2}^{2 n}$ and on each the norms of $L_{1}^{2 n}$ and $L_{2}^{2 n}$ are universally equivalent on these subspaces. It is interesting to observe that the constants of equivalence are independent of n. Recently this was investigated by Anderson [1] and Schechtman [15]. We will say that a Banach space X verifies weak Grothendieck's theorem if $\pi_{2}\left(X, l_{2}\right)=B\left(X, l_{2}\right)$. Let $\left\{\varphi_{i}\right\}_{1 \leq i \leq n}$ be a sequence of orthogonal random variables in $L_{2}^{2 n}$, which generates E_{n}. Consider $0<p \leq \infty$. Let $u: E_{n} \rightarrow S_{p}^{n}$ be a linear operator and let \tilde{u} be any extension of u. In this paper we show that $\|\tilde{u}\| \geq C \sqrt{n}$, where C is an absolute constant. We prove that S_{p} fails extension theorem for all $1 \leq p \leq \infty$. We also show that S_{p} does not verify GT for $1 \leq p \leq \infty$ and consequently fails WGT for all $1 \leq p \leq 2$ by using one result of Maurey. We end this work by giving a characterization for operators satisfying WGT.

We start the first section by recalling some necessary notations and definitions such as the definition of cotype q-Kašin as studied in [9] and which is inspired by the Kašin decomposition. We introduce also the property of weak Grothendieck's theorem.

In section two, we recall the Schatten spaces S_{p} which are the noncommutative analogues of the l_{p}-spaces and we give some properties concerning these spaces. After this,
we show that the space S_{p} fails the property of extension for all $0<p \leq \infty$ and GT for all $1 \leq p \leq \infty$. We deduce that the space S_{p} does not verify WGT for all $p, 1 \leq p \leq 2$. We do not know if S_{p} is of cotype 2-Kašin for $1 \leq p \leq 2$ like the classical cotype. We know that the Schatten space S_{p} is of cotype 2 for $1 \leq p \leq 2$ as the usual l_{p}-spaces; see [16]. By another method which is not adjustable to our case we have proved in $[10]$ that $L_{p}([0,1], d x)$ and l_{p} for $0<p<1$ fail the extension property.

In Section 4, we characterize the spaces which satisfy weak Grothendieck's theorem.

2. Notation and preliminaries

Let $0<p \leq+\infty$. We denote by L_{p}^{n} the space \mathbb{R}^{n} (or \mathbb{C}^{n}) equipped with the norm (and only a p-norm if $0<p<1$)

$$
\begin{equation*}
\left\|\left(a_{i}\right)\right\|_{L_{p}^{n}}=\left(\frac{1}{n} \sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{1 / p}, \tag{2.1}
\end{equation*}
$$

and if $p=\infty$, we take max $\left|a_{i}\right|$.
Recall that a p-norm on a vector space X is a functional

$$
\begin{gather*}
\|\cdot\|: X \longrightarrow \mathbb{R}_{+}, \\
x \longmapsto\|x\| \tag{2.2}
\end{gather*}
$$

such that

$$
\begin{gather*}
\|x\|=0 \Longleftrightarrow x=0 \\
\|\lambda x\|=|\lambda|\|x\| \quad \forall \lambda \text { in } \mathbb{C}, \tag{2.3}\\
\|x+y\| \leq\left(\|x\|^{p}+\|y\|^{p}\right)^{1 / p} \quad \forall x, y \text { in } X,
\end{gather*}
$$

X is called a p-normed space if its topology can be defined by a p-norm.
L_{p}^{n} is isometric to $L_{p}^{n}\left(\Omega_{n}, \mathscr{P}\left(\Omega_{n}\right), \mu_{n}\right)$ where Ω_{n} is the set $\{1,2, \ldots, n\}, \mathscr{P}\left(\Omega_{n}\right)$ the σ - algebra of all subsets $A \subset \Omega_{n}$ and μ_{n} the uniform probability on Ω_{n} (i.e., $\mu_{n}(i)=1 / n$ for all i in Ω_{n}). Hence each element in L_{p}^{n} can be considered as a random variable which we denote in the sequel by φ and we have for $0<p \leq q \leq \infty$,

$$
\begin{equation*}
\|\varphi\|_{L_{p}^{n}} \leq\|\varphi\|_{L_{q}^{n}} \leq n^{1 / p-1 / q}\|\varphi\|_{L_{p}^{n}} . \tag{2.4}
\end{equation*}
$$

Moreover, we will denote by $l_{p}^{n}(X)$ for any Banach space X (resp., $L_{p}^{n}(X)$), the space X^{n} equipped with the norm if $1 \leq p \leq+\infty$ and the p-norm if $0<p<1$:

$$
\begin{gather*}
\left\|\left(x_{i}\right)\right\|_{L_{p}^{n}(X)}=\left(\sum_{i=1}^{n}\left\|x_{i}\right\|_{X}^{p}\right)^{1 / p} \\
\left(\text { resp., }\left\|\left(x_{i}\right)\right\|_{L_{p}^{n} t(X)}=\left(\frac{1}{n} \sum_{i=1}^{n}\left\|x_{i}\right\|_{X}^{p}\right)^{1 / p}\right) \tag{2.5}
\end{gather*}
$$

for all $\left(x_{i}\right)_{1 \leq i \leq n} \subset X$. If $p=\infty$, the sums should be replaced by sup.

We will use the following decomposition due to B. S. Kašin (see also [13] and recently $[1,15]$), which is the principal inspiration of our idea.

Theorem 2.1 [5]. Consider p in $\{1,2\}$ and n in \mathbb{N}. There are three constants A_{p}, B_{p}, and C (C independent of p and n) and a sequence $\left(\varphi_{i}\right)_{1 \leq i \leq n}$ of orthogonal random variables in $L_{2}^{2 n}$ such that for all $\left(a_{i}\right)_{1 \leq i \leq n}$ in \mathbb{R}, there exist

$$
\begin{gather*}
A_{p}\left(\sum_{1}^{n}\left\|a_{i}\right\|^{2}\right)^{1 / 2} \leq\left\|\sum_{1}^{n} a_{i} \varphi_{i}\right\|_{L_{p}^{2 n}} \leq B_{p}\left(\sum_{1}^{n}\left|a_{i}\right|^{2}\right)^{1 / 2}, \tag{2.6}\\
\sup _{1 \leq i \leq n}\left\|\varphi_{i}\right\|_{L_{\infty}^{n}} \leq C(\log n)^{1 / 2}
\end{gather*}
$$

Remark 2.2. It is well known that if X is a finite dimensional space, then, all the norms are equivalent. But what is most remarkable in Theorem 2.1 is that the constants are independent of the dimension n. It is also true for all p in $] 0,2]$. We can and do choose the φ_{i} to be orthonormal, that is what we do in the sequel.

Let E_{n} be the subspace of $L_{1}^{2 n}$ spanned by the functions $\left(\varphi_{i}\right)_{1 \leq i \leq n}$ and let $\mathbf{e}_{n}: E_{n} \rightarrow L_{1}^{2 n}$ be the natural injection. By the above theorem, E_{n} is isomorphic to l_{2}^{n}, we denote by $\beta_{n}: l_{2}^{n} \rightarrow E_{n}$ the isomorphism which maps e_{i} onto φ_{i}, where $\left(e_{i}\right)$ the unit vector basis of l_{2}^{n}. We have by (2.6) that $\left\|\beta_{n}\right\| \leq B_{1}$ and $\left\|\beta_{n}^{-1}\right\| \leq A_{1}^{-1}$.

Now we give the following definition which is introduced in [9].
Definition 2.3. Let X and Y be Banach spaces and let $u: X \rightarrow Y$ be a linear operator. Say that u is of cotype q-Kašin for $2 \leq q<+\infty$, if there is a positive constant K such that for all integer n and for all finite sequence $\left(x_{i}\right)_{1 \leq i \leq n}$ in X, there exists

$$
\begin{equation*}
\left(\sum_{i=1}^{n}\left\|u\left(x_{i}\right)\right\|^{q}\right)^{1 / q} \leq K\left\|\sum_{i=1}^{n} \varphi_{i} x_{i}\right\|_{L_{1}^{2 n}(X)} \tag{2.7}
\end{equation*}
$$

Denote by $K_{q}(u)$ the smallest constant for which this holds. X is of cotype q-Kašin if the identity of X is of cotype q-Kašin.

For example $L_{p}(1 \leq p \leq 2)$ is of cotype 2-Kašin.
For being complete, we add (see [13, page 115]) that there is an orthonormal basis $\left(\varphi_{n}\right)$ of $L_{2}([0,1], \nu)$ (ν is the Lebesgue measure) such that the L_{1} and L_{2} norms are equivalent on each of the spans of $\left\{\varphi_{n}, n\right.$ odd $\}$ and $\left\{\varphi_{n}, n\right.$ even $\}$. Let E_{0} be the space spanned by one of these sequences in $L_{1}([0,1], \nu)$ and let $e: E_{0} \rightarrow L_{1}([0,1], \nu)$ be the isometric embedding. We denote also by E_{0}^{n} the space spanned by the n first φ_{i}.

Given two Banach spaces X and Y, denote by $X \hat{\otimes}_{\epsilon} Y$ their injective tensor product, that is, the completion of $X \otimes Y$ under the cross norm:

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} x_{i} \otimes y_{i}\right\|_{\epsilon}=\sup \left\{\left|\sum_{i=1}^{n} x_{i}(\xi) y_{i}(\eta)\right|:\|\xi\|_{X^{*}} \leq 1,\|\eta\|_{Y^{*}} \leq 1\right\} . \tag{2.8}
\end{equation*}
$$

Let $u: X \rightarrow Y$ be a linear operator. We will say that u is absolutely p-summing, $0<p<\infty$ (we write $u \in \Pi_{p}(X, Y)$), if there exists a positive constant C such that for every n in \mathbb{N},

4 Weak Grothendieck's theorem
the mappings

$$
\begin{align*}
& I_{n} \otimes u: l_{p}^{n} \otimes_{\epsilon} X \longrightarrow l_{p}^{n}(Y), \\
& \sum_{1}^{n} e_{i} \otimes x_{i} \longmapsto\left(u\left(x_{i}\right)\right)_{1 \leq i \leq n} \tag{2.9}
\end{align*}
$$

are uniformly bounded by C (i.e., $\left\|I_{n} \otimes u\right\|_{p_{p} \otimes_{\epsilon} X \rightarrow l_{p}^{n}(Y)} \leq C$).
We define the p-summing norm of an operator u by

$$
\begin{equation*}
\pi_{p}(u)=\sup _{n}\left\|I_{n} \otimes u\right\|_{l_{p}^{n} \otimes_{\epsilon} X \rightarrow l_{p}^{n}(Y)} . \tag{2.10}
\end{equation*}
$$

The following proposition is a characterization of spaces of cotype 2-Kašin.
Proposition 2.4. Let C be a positive constant. Then the following properties of a Banach space X are equivalent.
(i) The space $X^{*}\left(X^{*}\right.$ is the Banach space dual of $\left.X\right)$ is of cotype 2-Kašin and $K_{2}\left(X^{*}\right) \leq$ C.
(ii) For all integers n and for all finite sequences $\left(x_{i}\right)_{1 \leq i \leq n}$ in X, the operator $u: E_{n} \rightarrow X$ defined by $u\left(\varphi_{i}\right)=x_{i}$ admits an extension $\tilde{u}: L_{1}^{2 n} \rightarrow X$ such that $\tilde{u} / E_{n}=u$ and $\|\tilde{u}\| \leq$ $C\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}\right)^{1 / 2}$.

Proof. Let n be a fixed integer. Since X^{*} is of cotype 2-Kašin, hence for all $\left(\xi_{i}\right)_{1 \leq i \leq n} \subset X^{*}$ we have

$$
\begin{equation*}
\left(\sum_{i=1}^{n}\left\|\xi_{i}\right\|_{X^{*}}^{2}\right)^{1 / 2} \leq C\left\|\sum_{i=1}^{n} \varphi_{i} \xi_{i}\right\|_{L_{1}^{2 n}\left(X^{*}\right)} . \tag{2.11}
\end{equation*}
$$

Let $E=\left\{\sum_{i=1}^{n} \varphi_{i} \xi_{i},\left(\xi_{i}\right)_{1 \leq i \leq n} \subset X^{*}\right\}$, which is a closed subspace of $L_{1}^{2 n}\left(X^{*}\right)$. We now define the operators

$$
\begin{gather*}
T: E \longrightarrow l_{2}^{n}\left(X^{*}\right), \\
\sum_{i=1}^{n} \varphi_{i} \xi_{i} \longmapsto\left(\xi_{i}\right)_{1 \leq i \leq n} . \tag{2.12}
\end{gather*}
$$

This definition is unambiguous (indeed, $\sum_{i=1}^{n} \varphi_{i} \xi_{i}=\sum_{i=1}^{n} \varphi_{i} \eta_{i}$ implies that $\xi_{i}=\eta_{i}$ for all $1 \leq i \leq n$ because the φ_{i} are orthogonal and consequently $\left.\left(\xi_{i}\right)_{1 \leq i \leq n}=\left(\eta_{i}\right)_{1 \leq i \leq n}\right)$.

Observe that

$$
\begin{equation*}
\|T\| \leq C . \tag{2.13}
\end{equation*}
$$

By duality we have

$$
\left.\begin{array}{rl}
T^{*} & : l_{2}^{n}(X)
\end{array}\right) \frac{L_{\infty}^{2 n}(X)}{E^{\perp}}, ~=\left(x_{i}\right)_{1 \leq i \leq n} \longmapsto \sum_{i=1}^{n} x_{i} \varphi_{i}+E^{\perp}, ~ \$
$$

where $E^{\perp}=\left\{\sum_{i=n+1}^{2 n} \varphi_{i} x_{i}^{\prime},\left(x_{i}^{\prime}\right)_{n+1 \leq i \leq 2 n} \subset X\right\}$ is the subspace of $L_{\infty}^{2 n}(X)$ which is orthogonal to E.

Since $\|T\|=\left\|T^{*}\right\|\left(T^{*}\right.$ is the adjoint operator of $\left.T\right)$, hence we have

$$
\begin{equation*}
\inf _{R \in E^{-}}\left\|\sum_{i=1}^{n} x_{i} \varphi_{i}+R\right\|_{L_{\infty}^{2 n}(X)} \leq C\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{2}\right)^{1 / 2} . \tag{2.15}
\end{equation*}
$$

If now $\tilde{u}: L_{1}^{2 n} \rightarrow X$ is an extension of u, by Riesz representation theorem then there is Ψ in $L_{\infty}^{2 n}$ such that

$$
\begin{gather*}
\forall \varphi \in L_{1}^{2 n}, \quad \tilde{u}(\varphi)=\frac{1}{2 n} \sum_{i=1}^{2 n} \varphi_{i} \Psi_{i}, \tag{2.16}\\
\|\tilde{u}\|=\|\Psi\|_{L_{\infty}^{2 n} .}
\end{gather*}
$$

Since $\tilde{u}\left(\varphi_{i}\right)=x_{i}$, we have

$$
\begin{equation*}
\Psi=\sum_{i=1}^{n} x_{i} \varphi_{i}+R \tag{2.17}
\end{equation*}
$$

The correspondence $\tilde{u} \rightarrow \Psi$ is bijective and this implies that

$$
\begin{equation*}
\inf \|\tilde{u}\|=\inf _{R \in E^{ \pm}}\left\|\sum_{i=1}^{n} x_{i} \varphi_{i}+R\right\|_{L_{\infty}^{2 n}(X)} \tag{2.18}
\end{equation*}
$$

This concludes the proof.
We say now that a Banach space X is of cotype strongly 2-Kašin if there is a positive constant C such that, for all integers n and for all finite sequences $\left(x_{i}\right)_{1 \leq i \leq n}$ in X, we have

$$
\begin{equation*}
\pi_{2}(v) \leq C\left\|\sum_{i=1}^{n} \varphi_{i} x_{i}\right\|_{L_{1}^{2 n}(X)}, \tag{2.19}
\end{equation*}
$$

where $v: l_{2}^{n} \rightarrow X$ is the operator defined by $v\left(e_{i}\right)=x_{i}$ for all $1 \leq i \leq n$.
We denote by

$$
\begin{equation*}
K_{2}^{\text {strong }}(X)=\inf \left\{C:(2.19) \text { holds } \forall\left(x_{i}\right)_{1 \leq i \leq n}, n \geq 1\right\} . \tag{2.20}
\end{equation*}
$$

Corollary 2.5. Let X be a Banach space and let C be a positive constant. The following assertions are equivalent.
(i) The space X^{*} is of cotype strongly 2-Kašin and $K_{2}^{\text {strong }}\left(X^{*}\right) \leq C$.
(ii) For all integers n and any $u: l_{2}^{n} \rightarrow X$, u admits an extension \tilde{u} to $L_{1}^{2 n}$ such that $\tilde{u} / E_{n}=$ $u \beta_{n}^{-1}$ and $\|\tilde{u}\| \leq C \pi_{2}\left(u^{*}\right)$.

Proof. Fixed n in \mathbb{N}, let $E=\left\{\sum_{i=1}^{n} \varphi_{i} \xi_{i},\left(\xi_{i}\right)_{1 \leq i \leq n} \subset X^{*}\right\}$ which is a closed subspace of $L_{1}^{2 n}\left(X^{*}\right)$. We now define the operators

$$
\begin{gather*}
T: E \longrightarrow \pi_{2}\left(l_{2}^{n}, X^{*}\right), \\
\sum_{i=1}^{n} \varphi_{i} \xi_{i} \longmapsto v \tag{2.21}
\end{gather*}
$$

where $v: l_{2}^{n} \rightarrow X^{*}$ defined by $v\left(e_{i}\right)=\xi_{i}$.
We have

$$
\begin{equation*}
\left\|T\left(\sum_{i=1}^{n} \varphi_{i} \xi_{i}\right)\right\|=\pi_{2}(v) \leq C\left\|\sum_{i=1}^{n} \varphi_{i} \xi_{i}\right\| . \tag{2.22}
\end{equation*}
$$

By duality, we obtain

$$
\begin{gather*}
T^{*}: \pi_{2}\left(X^{*}, l_{2}^{n}\right) \longrightarrow \frac{L_{\infty}^{2 n}(X)}{E^{\perp}} \\
w \longmapsto \sum_{i=1}^{n} x_{i} \varphi_{i}+E^{\perp} \tag{2.23}
\end{gather*}
$$

where $w: X^{*} \rightarrow l_{2}^{n}$ is a linear operator defined by $w(\xi)=\left\langle x_{i}, \xi\right\rangle$.
Let $u\left(e_{i}\right)=x_{i}$. We have

$$
\begin{equation*}
\inf _{R \in E^{\perp}}\left\|\sum_{i=1}^{n} x_{i} \varphi_{i}+R\right\|_{L_{\infty}^{2 n}(X)} \leq C \pi_{2}\left(u^{*}\right) \tag{2.24}
\end{equation*}
$$

We conclude directly by using (2.18).
Remark 2.6. Let X be a Banach space. If X has Gaussian (resp., Rademacher) cotype 2, then (2.19) holds with $\left(g_{i}\right)$ (resp., $\left(r_{i}\right)$) and conversely. The space X is of cotype strongly 2-Kašin implies that X is of cotype 2-Kašin. We do not know if the converse is true.

Let us introduce the following definition.
Definition 2.7. Let X be a Banach space. Say that X satisfies weak Grothendieck's theorem if there is a positive constant C such that for all n in \mathbb{N} and any linear operator u from X into l_{2}^{n}, there exists

$$
\begin{equation*}
\pi_{2}(u) \leq C\|u\| . \tag{2.25}
\end{equation*}
$$

Remark 2.8. (1) X satisfies W.G.T. if and only if $X^{* *}$ satisfies WGT.
(2) L_{1} and L_{∞} verify weak Grothendieck's theorem. The spaces S_{1} (see below) and $B\left(l_{2}\right)$ (see [8, Corollary 4.2]) fail this.
(3) The classical definition is let X be a Banach space. We will say that X satisfies Grothendieck's theorem if there is a constant C such that, for any linear operator u from X into a Hilbert space H, we have

$$
\begin{equation*}
\pi_{1}(u) \leq C\|u\| . \tag{2.26}
\end{equation*}
$$

(4) We can replace H by l_{2}^{n} for any integer n (i.e., there is a constant C such that for any integer n and any $u: X \rightarrow l_{2}^{n}$ we have $\left.\pi_{1}(u) \leq C\|u\|\right)$. Also, this is equivalent to the dual property (i.e., there is a constant C^{\prime} such that for every linear operator from X^{*} into an L_{1}-space, we have $\left.\pi_{2}(u) \leq C^{\prime}\|u\|\right)$. GT implies WGT. If X is of (classical) cotype 2 , then we have equivalence between GT and WGT because $\pi_{p}(X, Y)=\pi_{2}(X, Y)$ for any Banach space Y and for all $p \leq 2$ (see [7]).
(5) The space L_{1} verifies Grothendieck's theorem. In [2] Bourgain proved that L_{1} / H_{1} is of cotype 2 and verifies Grothendieck's theorem (L_{1} is the L_{1}-space relative to the circle group and H_{1} the subspace of L_{1} spanned by all functions $\left\{e^{\text {int }}, n \geq 0\right\}$).
(6) Suppose that X is a subspace of $C(K)$ and that $C(K) / X$ is reflexive. Then every operator with domain X and range a cotype 2 space is 2 -summing $[6,11]$. As corollary, let X be a reflexive subspace of an L_{1}. Then, every operator $u: L_{1} / X \rightarrow l_{2}$ is 1 -summing.
(7) For any Banach E of cotype 2, Pisier has constructed in [12] a Banach space X which contains isometrically E such that, X and X^{*} are both of cotype 2 and verify Grothendieck's theorem.

3. S_{p} fails WGT for all $1 \leq p \leq 2$

We recall (see [14]) the noncommutative analogues of l_{p} which is the Schatten class S_{p}. Let $0<p<\infty$. We will denote by $B\left(l_{2}\right)$ the space of all bounded linear operators $u: l_{2} \rightarrow l_{2}$ and by S_{p} the subspace of all compact operators such that $\operatorname{tr}|u|^{p}<\infty$ (where $\left.|u|=\left(u u^{*}\right)^{1 / 2}\right)$. We equip it with the norm if $1 \leq p<\infty$ and the p-norm if $0<p<1$:

$$
\begin{equation*}
\|u\|_{p}=\left(\operatorname{tr}|u|^{p}\right)^{1 / p} \tag{3.1}
\end{equation*}
$$

for which it becomes a Banach space if $1 \leq p<\infty$ and a quasi-Banach if $0<p<1$. If $p=\infty, S_{\infty}$ is the subspace of all compact operators on l_{2} equipped with operator norm. We have $\left(S_{p}\right)^{*}=S_{q}$ for $1<p \leq \infty$ and $1 / p+1 / q=1$, and also $S_{1}^{*}=B\left(l_{2}\right)$. We do not know if the Schatten spaces S_{p} are of the same cotype Kašin as the usual l_{p}-spaces for $1 \leq p \leq 2$.

Finally, we denote by S_{p}^{n} and $B\left(l_{2}^{n}\right)$ the finite dimensional version of S_{p} and $B\left(l_{2}\right)$, respectively.

Let $0<p \leq q \leq \infty$. We have for $u \in B\left(l_{2}^{n}\right)$,

$$
\begin{equation*}
\|u\|_{q} \leq\|u\|_{p} \leq n^{1 / p-1 / q}\|u\|_{q} . \tag{3.2}
\end{equation*}
$$

Let R_{n} denote the subspace of S_{p}^{n} consisting of all $n \times n$ matrices u such that $u_{i, j}=0$ when $i \neq 1$ (first row matrices). Then $a=u u^{*}$ is the matrix with $a_{1,1}=\sum_{j=1}^{n}\left|u_{1, j}\right|^{2}=\|u\|_{2}^{2}$ and $a_{i, j}=0$ when $(i, j) \neq(1,1)$. Hence $|u|$ is the rank one operator $\|u\|_{2} e_{1} \otimes e_{1}$. Its norm in all spaces $S_{p}^{n}, 0<p \leq \infty$ is equal to $\|u\|_{2}$. In particular R_{n} equipped with the S_{p}^{n}-norm is isometric to l_{2}^{n}. We denote by p_{n} the natural projection from S_{p}^{n} into R_{n} defined by $p_{n}(u)=v$ such that $v_{1 j}=u_{1 j}$ for $1 \leq j \leq n$. We have $\left\|p_{n}\right\| \leq 1$.

The proposition to be proved now is the finite dimensional version of the theorem of extension.

Proposition 3.1. Suppose that for some $p>0$, there exits a constant C_{p} such that for every n and every linear operator u from E_{n} to S_{p}^{n}, there is an extension $\tilde{u} \in B\left(L_{1}^{2 n}, S_{p}^{n}\right)$ of u with
$\|\tilde{u}\| \leq C_{p}\|u\|$. Then

$$
\begin{equation*}
C_{p} \geq C \sqrt{n}, \tag{3.3}
\end{equation*}
$$

where C is an absolute constant.
Proof. Let u_{n} be the operator sending the n vector basis of E_{n} to the n vector basis of R_{n} $\left(u_{n}\left(\varphi_{i}\right)=e_{1, i}, 1 \leq i \leq n\right)$. This operator is an isomorphism, by the above remark and (2.6). We have $\left\|u_{n}\right\| \leq B_{1}$ and $\left\|u_{n}^{-1}\right\| \leq A_{1}$. Let \tilde{u}_{n} be an extension of u_{n} to an operator from $L_{1}^{2 n}$ to S_{p}^{n}, with $\left\|\tilde{u}_{n}\right\| \leq C_{p}\left\|u_{n}\right\|$. Consider now the following commutative diagram:

Let $q_{n}=u_{n}^{-1} p_{n} \tilde{u}_{n}$. Then q_{n} is a projection from $L_{1}^{2 n}$ to E_{n}. Since E_{n} is $A_{1} B_{1}$-isomorphic to l_{2}^{n} (Theorem 2.1), we get by Grothendieck's theorem [4] that q_{n} is 1 -summing with $\pi_{1}\left(q_{n}\right) \leq A_{1} K_{G}\left\|p_{n} \tilde{u}_{n}\right\|$. Restricting q_{n} to E_{n} we obtain for the identity i_{n} of E_{n} the estimation

$$
\begin{equation*}
\sqrt{n}=\pi_{2}\left(i_{n}\right) \leq \pi_{2}\left(q_{n}\right) \leq \pi_{1}\left(q_{n}\right) \leq A_{1} K_{G}\left\|\tilde{u}_{n}\right\| \leq A_{1} K_{G} C_{p}\left\|u_{n}\right\| \leq A_{1} B_{1} K_{G} C_{p} . \tag{3.5}
\end{equation*}
$$

This completes the proof.
Let now \mathscr{B}_{n} be the σ-algebra on $[0,1]$ generated by the Rademacher functions $\left\{r_{1}, \ldots\right.$, $\left.r_{n}\right\}\left(r_{n}(t)=\operatorname{sign}\left(\sin 2^{n} \pi t\right)\right)$. The space $L_{p}\left([0,1], \mathscr{B}_{n}, \nu\right)$, where v is the Lebesgue measure in $[0,1]$, is isometric to $L_{p}^{2^{n}}$.

We denote by G (resp., G_{n}) the closed linear subspace in $L_{1}([0,1], v)$ (resp., $L_{1}^{2^{n}}$) of the Rademacher functions $\left\{r_{n}\right\}_{n \in \mathbb{N}}$ (resp., $\left\{r_{i}, 1 \leq i \leq n\right\}$). Let $g: G \rightarrow L_{1}([0,1], v)$ (resp., $\left.g_{n}: G_{n} \rightarrow L_{1}^{2^{n}}\right)$ be the isometric embedding. By Khinchine's inequalities, there are positive constants A_{1}^{\prime} and B_{1}^{\prime} such that for every $\left(a_{n}\right)$ in l_{2} we have

$$
\begin{equation*}
A_{1}^{\prime}\left(\sum_{n \geq 1}\left|a_{n}\right|^{2}\right)^{1 / 2} \leq\left(\int_{[0,1]}\left|\sum_{n \geq 1} a_{n} r_{n}(t)\right| d v \leq B_{1}^{\prime}\left(\sum_{n \geq 1}\left|a_{n}\right|^{2}\right)^{1 / 2} .\right. \tag{3.6}
\end{equation*}
$$

Hence G (resp., G_{n}) is isomorphic to l_{2} (resp., l_{2}^{n}). We will denote by $\alpha: l_{2} \rightarrow G$ (resp., $\left.\alpha_{n}: l_{2}^{n} \rightarrow G_{n}\right)$ the isomorphism which maps e_{i} onto r_{i}. We have $\|\alpha\| \leq B_{1}^{\prime},\left\|\alpha^{-1}\right\| \leq A_{1}^{\prime}$, and also the same for α_{n}.

Proposition 3.2. Suppose that for some $p>0$, there exits a constant C_{p} such that for every n and every linear operator u from G_{n} to S_{p}^{n} there is an extension $\tilde{u} \in B\left(L_{1}^{2^{n}}, S_{p}^{n}\right)$ of u with $\|\tilde{u}\| \leq C_{p}\|u\|$. Then

$$
\begin{equation*}
C_{p} \geq C \sqrt{n}, \tag{3.7}
\end{equation*}
$$

where C is an absolute constant.

Proof. The same proof as in Proposition 3.1.
Theorem 3.3. Let $0<p \leq \infty$. Let $u: G \rightarrow S_{p}$ be a compact linear operator. In general, there is no continuous linear operator \tilde{u} extending u to $L_{1}([0,1], \nu)$.

Proof. Suppose that for any compact linear operator $u: G \rightarrow S_{p}$ there is a bounded linear operator $\tilde{u}: L_{1}([0,1], v) \rightarrow S_{p}$ extending u. It follows from the open mapping theorem that there is an absolute constant C_{p} such that

$$
\begin{equation*}
\|\tilde{u}\| \leq C_{p}\|u\| \tag{3.8}
\end{equation*}
$$

for any u. This implies by Proposition 3.2 that $C_{p} \geq C \sqrt{n}$ for any integer n. This is impossible when n is large enough.

Theorem 3.4. Let $0<p \leq \infty$. Let u : $E_{0} \rightarrow S_{p}$ be a compact linear operator. In general, there is no continuous linear operator \tilde{u} extending u.

Proof. Using the same proof as in Proposition 3.2 (we take E_{0}^{n} instead of G_{n}) and Theorem 3.3, we show that the extension property concerning $\left(L_{1}([0,1], \nu), E_{0}\right)$ fails for all $0<p \leq$ ∞.

The following result shows that space S_{p} fails GT.
Theorem 3.5. The space S_{p} fails GT for all $1 \leq p \leq \infty$ and consequently $W G T$ for $1 \leq p \leq 2$. Proof. Consider the following diagram:

$$
\begin{equation*}
R_{n} \xrightarrow{i_{n}} S_{p}^{n} \xrightarrow{p_{n}} R_{n}, \tag{3.9}
\end{equation*}
$$

where i_{n} is the canonical injection. We have $\operatorname{id}_{R_{n}}=p_{n} \circ i_{n}$. Since $\sqrt{n} \leq \pi_{1}\left(\mathrm{id}_{R_{n}}\right) \leq \pi_{1}\left(p_{n}\right)$ and $\left\|p_{n}\right\| \leq 1$, hence S_{p} fails GT for all $1 \leq p \leq \infty$. As S_{p} is of cotype 2 for $1 \leq p \leq 2$ then, by one result of Maurey, we have $\pi_{1}\left(p_{n}\right) \leq C \pi_{2}\left(p_{n}\right)$ for some constant C. This implies the proof.

Remark 3.6. The space $B\left(l_{2}\right)$ fails weak Grothendieck's theorem because by [8, Corollary 4.2] we have $\pi_{2}\left(B\left(l_{2}\right), l_{2}\right) \neq B\left(B\left(l_{2}\right), l_{2}\right)$.

4. Characterization of spaces which satisfy WGT

We start this section by recalling some notations and facts. We denote by $l_{p}^{\omega}(X)$ (resp., $\left.l_{p}^{n \omega}(X)\right)$ the space of all sequences $\left(x_{i}\right)$ (resp., $\left.\left(x_{i}\right)_{1 \leq i \leq n}\right)$ in X with the norm

$$
\begin{gather*}
\left\|\left(x_{i}\right)\right\|_{L_{p}^{\omega}(X)}=\sup _{\|\xi\|_{X^{*}=1}}\left(\sum_{1}^{\infty}\left|\left\langle x_{i}, \xi\right\rangle\right|^{p}\right)^{1 / p}<\infty \tag{4.1}\\
\left(\text { resp., }\left\|\left(x_{i}\right)\right\|_{p_{p}^{n \omega}(X)}=\sup _{\|\xi\|_{X^{*}=1}}\left(\sum_{1}^{n}\left|\left\langle x_{i}, \xi\right\rangle\right|^{p}\right)^{1 / p}\right) .
\end{gather*}
$$

We know (see [3]) that $l_{p}(X)=l_{p}^{\omega}(X)$ for some $1 \leq p<\infty$ if and only if $\operatorname{dim}(X)$ is finite. If $p=\infty$, we have $l_{\infty}(X)=l_{\infty}^{\omega}(X)$. We have also if $1<p \leq \infty, l_{p}^{\omega}(X) \equiv B\left(l_{p^{*}}, X\right)$, and $l_{1}^{\omega}(X) \equiv$ $B\left(c_{O}, X\right)$ isometrically (where p^{*} is the conjugate of p, i.e., $1 / p+1 / p^{\star}=1$). In other words, let $v: l_{p^{*}} \rightarrow X$ be a linear operator such that $v\left(e_{i}\right)=x_{i}$ (namely, $v=\sum_{1}^{\infty} e_{j} \otimes x_{j}, e_{j}$ denotes the unit vector basis of l_{p}), then

$$
\begin{equation*}
\|v\|=\left\|\left(x_{i}\right)\right\|_{l_{p}^{\omega}(X)}=\left\|\sum_{1}^{\infty} e_{j} \otimes x_{j}\right\|_{l_{p} \hat{\otimes}_{\epsilon} X} . \tag{4.2}
\end{equation*}
$$

We prove in the following theorem that the spaces which satisfy WGT and which happen to be also of cotype strongly 2-Kašin can be characterized by an extension property.

Theorem 4.1. The following properties of a Banach space X are equivalent:
(i) the space X^{*} is of cotype strongly 2-Kašin and verifies WGT;
(ii) there is a positive constant C such that for every $n \in \mathbb{N}$ and every $u: E_{n} \rightarrow X$, then u admits an extension $\tilde{u}: L_{1}^{2 n} \rightarrow X$ such that $\tilde{u} / E_{n}=u$ and $\|\tilde{u}\| \leq C\|u\|$.

Proof. We prove that (ii) \Rightarrow (i). Let $v: l_{2}^{n} \rightarrow X$ be a linear operator. Consider $u=v \beta_{n}^{-1}$: $E_{n} \rightarrow X$, then u admits an extension $\tilde{u}: L_{1}^{2 n} \rightarrow X$ such that

$$
\begin{equation*}
\|\tilde{u}\| \leq C\|u\| \leq C\left\|\beta_{n}^{-1}\right\|\|v\| \leq C / A_{1} \pi_{2}\left(v^{*}\right) \tag{4.3}
\end{equation*}
$$

From Corollary 2.5, we obtain that X^{*} is of cotype strongly $2-$ Kašin and $K_{2}^{\text {strong }}\left(X^{*}\right) \leq$ C / A_{1}. Let now $u: X^{*} \rightarrow l_{2}^{n}$ be an operator. First, we notice that $B\left(l_{2}^{n}, X^{* *}\right) \equiv B\left(l_{2}^{n}, X\right)^{* *} \equiv$ $B\left(X^{*}, l_{2}^{n}\right)$ isometrically. Since $u: X^{*} \rightarrow l_{2}^{n}$ is in $B\left(l_{2}^{n}, X\right)^{* *}$, then by Goldstine's theorem, there is a net of operators $u_{i}^{*}: X^{*} \rightarrow l_{2}^{n}$ which are w^{*}-continuous with $\left\|u_{i}\right\| \leq\|u\|$ for all i and $\left\{u_{i}^{*}\right\}$ converges to u in w^{*}-topology of $B\left(l_{2}^{n}, X\right)^{* *}$. As u_{i}^{*} is 2 -summing this implies that u is 2 -summing and $\pi_{2}(u)=\lim _{i} \pi_{2}\left(u_{i}^{*}\right)$. Indeed,

$$
\begin{align*}
\pi_{2}(u) & =\sup \left\{\operatorname{Tr}(u v), v: l_{2}^{n} \longrightarrow X^{* * *} \pi_{2}(v) \leq 1\right\} \\
& =\sup \left\{\lim _{i} \operatorname{Tr}\left(u_{i}^{*} v\right), v: l_{2}^{n} \longrightarrow X^{* * *} \pi_{2}(v) \leq 1\right\} \\
& =\lim _{i} \sup \left\{\operatorname{Tr}\left(u_{i}^{*} v\right), v: l_{2}^{n} \longrightarrow X^{* * *} \pi_{2}(v) \leq 1\right\} \tag{4.4}\\
& =\lim _{i} \pi_{2}\left(u_{i}^{*}\right) .
\end{align*}
$$

Let us consider the following commutative diagram:

by duality, we have

hence

$$
\begin{align*}
\pi_{2}\left(u_{i}^{*}\right) & =\pi_{2}\left(\beta_{n}^{*}\left(\beta_{n}^{-1}\right)^{*} u_{i}^{*}\right) \leq\left\|\beta_{n}^{*}\right\| \pi_{2}\left(\left(\beta_{n}^{-1}\right)^{*} u_{i}^{*}\right) \\
& \leq\left\|\beta_{n}^{*}\right\|\left\|\tilde{u}_{i}^{*}\right\| \pi_{2}\left(\mathbf{e}_{n}^{*}\right) \leq\left\|\beta_{n}^{*}\right\|\left\|\beta_{n}^{-1}\right\|\left\|u_{i}\right\| \pi_{2}\left(\mathbf{e}_{n}^{*}\right) \tag{4.7}\\
& \leq A_{1}^{-1} B_{1}\left\|u_{i}\right\| \pi_{2}\left(\mathbf{e}_{n}^{*}\right)
\end{align*}
$$

Thus

$$
\begin{equation*}
\lim _{i} \pi_{2}\left(u_{i}^{*}\right) \leq A_{1}^{-1} B_{1} \pi_{2}\left(\mathbf{e}_{n}^{*}\right) \lim _{i}\left\|u_{i}\right\| \leq A_{1}^{-1} B_{1} \pi_{2}\left(\mathbf{e}_{n}^{*}\right)\|u\| . \tag{4.8}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
\pi_{2}(u) \leq A_{1}^{-1} B_{1} \pi_{2}\left(\mathbf{e}_{n}^{*}\right)\|u\| . \tag{4.9}
\end{equation*}
$$

This shows that X has WGT because the numbers $\pi_{2}\left(\mathbf{e}_{n}^{*}\right)$ are uniformly bounded by Maurey's theorem [7].
(i) \Rightarrow (ii). The space X^{*} is of cotype strongly 2-Kašin which implies by Corollary 2.5 that for any $u: l_{2}^{n} \rightarrow X, u$ admits an extension \tilde{u} to $L_{1}^{2 n}$ such that $\tilde{u} / E_{n}=u \beta_{n}^{-1}$ and $\|\tilde{u}\| \leq$ $K_{2}^{\text {strong }}\left(X^{*}\right) \pi_{2}\left(u^{*}\right)$. As X^{*} verifies WGT, then $\pi_{2}\left(u^{*}\right) \leq C^{\prime}\|u\|$ and hence

$$
\begin{equation*}
\|\tilde{u}\| \leq C^{\prime} K_{2}\left(X^{*}\right)\|u\| \leq C\|u\|\left(C=C^{\prime} K_{2}\left(X^{*}\right)\right) \tag{4.10}
\end{equation*}
$$

which gives the extension.
We end this paper by the following remark.
Remark 4.2. We do not know if S_{p} for $1 \leq p \leq 2$ is of cotype 2-Kašin.

Acknowledgment

The author is very grateful to the referees for pointing out some mistakes in the first version and for several valuable suggestions and comments which improved the paper.

References

[1] G. W. Anderson, Integral Kašin splittings, Israel Journal of Mathematics 138 (2003), 139-156.
[2] J. Bourgain, New Banach space properties of the disc algebra and H^{∞}, Acta Mathematica 152 (1984), no. 1-2, 1-48.
[3] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995.
[4] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Boletín de la Sociedad Matemática São Paulo 8 (1956), 1-79.
[5] B. S. Kašin, Sections of finite dimensional sets closes of smooths functions, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 41 (1977), 334-351.
[6] S. V. Kisliakov, On spaces with "small" annihilators, Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta imeni V. A. Steklova Akademii Nauk SSSR (LOMI) 73 (1978), 91101.
[7] B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L^{p}, Astérisque, no. 11, Société Mathématique de France, Paris, 1974.
[8] L. Mezrag, Comparison of non-commutative 2- and p-summing operators from $B\left(l_{2}\right)$ into OH , Zeitschrift für Analysis und ihre Anwendungen 21 (2002), no. 3, 709-717.
[9] , Factorization of operator valued L_{p} for $0 \leqslant p<1$, Mathematische Nachrichten 266 (2004), no. 1, 60-67.
[10] , On the $L_{1}^{2 n}$-extension properties, Quaestiones Mathematicae 27 (2004), no. 3, 297-309.
[11] G. Pisier, Une nouvelle classe d'espaces de Banach vérifiant le théorème de Grothendieck, Annales de l'Institut Fourier (Grenoble) 28 (1978), no. 1, x, 69-90.
[12] , Counterexamples to a conjecture of Grothendieck, Acta Mathematica 151 (1983), no. 1, 181-208.
[13] , Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conference Series in Mathematics, vol. 60, American Mathematical Society, Rhode Island, 1986, reprinted with corrections 1987.
[14] J. R. Retherford, Hilbert Space: Compact Operators and the Trace Theorem, London Mathematical Society Student Texts, vol. 27, Cambridge University Press, Cambridge, 1993.
[15] G. Schechtman, Special orthogonal splittings of $L_{1}^{2 k}$, Israel Journal of Mathematics 139 (2004), 337-347.
[16] N. Tomczak-Jaegermann, The moduli of smoothness and convexity and the Rademacher averages of trace classes $S_{p}(1 \leqslant p<\infty)$, Studia Mathematica 50 (1974), 163-182.

Lahcène Mezrag: Department of Mathematics, M’sila University, P.O. Box 166, M’sila 28000, Algeria E-mail address: lmezrag@yahoo.fr

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

