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A normal pseudomanifold is a pseudomanifold in which the links of simplices are also
pseudomanifolds. So, a normal 2-pseudomanifold triangulates a connected closed 2-manifold.
But, normal d-pseudomanifolds form a broader class than triangulations of connected closed d-
manifolds for d ≥ 3. Here, we classify all the 8-vertex neighbourly normal 3-pseudomanifolds.
This gives a classification of all the 8-vertex normal 3-pseudomanifolds. There are 74 such 3-
pseudomanifolds, 39 of which triangulate the 3-sphere and other 35 are not combinatorial 3-
manifolds. These 35 triangulate six distinct topological spaces. As a preliminary result, we
show that any 8-vertex 3-pseudomanifold is equivalent by proper bistellar moves to an 8-
vertex neighbourly 3-pseudomanifold. This result is the best possible since there exists a 9-vertex
nonneighbourly 3-pseudomanifold which does not allow any proper bistellar moves.
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1. Introduction

Recall that a simplicial complex is a collection of nonempty finite sets (sets of vertices) such that
every nonempty subset of an element is also an element. For i ≥ 0, the elements of size i + 1
are called the i-simplices (or i-faces) of the complex.

A simplicial complex is usually thought of as a prescription for construction of a
topological space by pasting geometric simplices. The space thus obtained from a simplicial
complex K is called the geometric carrier of K and is denoted by |K|. We also say that K
triangulates |K|. A combinatorial 2-manifold (resp., combinatorial 2-sphere) is a simplicial complex
which triangulates a closed surface (resp., the 2-sphere S2).

For a simplicial complex K, the maximum of k such that K has a k-simplex, is called
the dimension of K. A d-dimensional simplicial complex K is called pure if each simplex of K
is contained in a d-simplex of K. A d-simplex in a pure d-dimensional simplicial complex is
called a facet. A d-dimensional pure simplicial complex K is called a weak pseudomanifold if
each (d − 1)-simplex of K is contained in exactly two facets of K.
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With a pure simplicial complex K of dimension d ≥ 1, we associate a graph Λ(K) as
follows. The vertices of Λ(K) are the facets of K and two vertices of Λ(K) are adjacent if the
corresponding facets intersect in a (d−1)-simplex of K. If Λ(K) is connected, then K is called
strongly connected. A strongly connected weak pseudomanifold is called a pseudomanifold.
Thus, for a d-pseudomanifold K, Λ(K) is a connected (d + 1)-regular graph. This implies
that K has no proper subcomplex which is also a d-pseudomanifold; (or else, the facets of
such a subcomplex would provide a disconnection of Λ(X)).

For any set V with #(V ) = d + 2 (d ≥ 0), let K be the simplicial complex whose
simplexes are all the nonempty proper subsets of V . Then K is a d-pseudomanifold and
triangulates the d-sphere Sd. This d-pseudomanifold K is called the standard d-sphere and
is denoted by Sdd+2(V ) (or Sdd+2). By convention, S0

2 is the only 0-pseudomanifold.
If σ is a face of a simplicial complex K, then the link of σ in K, denoted by

lkK(σ) (or lk(σ)), is by definition the simplicial complex whose faces are the faces τ of
K such that τ is disjoint from σ and σ ∪ τ is a face of K. Clearly, the link of an i-
face in a weak d-pseudomanifold is a weak (d − i − 1)-pseudomanifold. For d ≥ 1, a
connected weak d-pseudomanifold is said to be a normal d-pseudomanifold if the links of
all the simplices of dimension ≤ d − 2 are connected. Thus, any connected triangulated d-
manifold (triangulation of a closed d-manifold) is a normal d-pseudomanifold. Clearly, the
normal 2-pseudomanifolds are just the connected combinatorial 2-manifolds; but normal d-
pseudomanifolds form a broader class than connected triangulated d-manifolds for d ≥ 3.

Observe that if X is a normal pseudomanifold, then X is a pseudomanifold. (If Λ(X) is
not connected, then, since X is connected, Λ(X) has two components G1 and G2 and two
intersecting facets σ1, σ2 such that σi ∈ Gi, i = 1, 2. Choose σ1, σ2 among all such pairs
such that dim(σ1 ∩ σ2) is maximum. Then dim(σ1 ∩ σ2) ≤ d − 2 and lkX(σ1 ∩ σ2) is not
connected, a contradiction.) Notice that all the links of positive dimensions (i.e., the links of
simplices of dimension ≤ d − 2) in a normal d-pseudomanifold are normal pseudomanifolds.
Thus, if K is a normal 3-pseudomanifold, then the link of a vertex in K is a combinatorial
2-manifold. A vertex v of a normal 3-pseudomanifold K is called singular if the link of v
in K is not a 2-sphere. The set of singular vertices is denoted by SV(K). Clearly, the space
|K| \ SV(K) is a pl 3-manifold. If SV(K) = ∅ (i.e., the link of each vertex is a 2-sphere), then
K is called a combinatorial 3-manifold. A combinatorial 3-sphere is a combinatorial 3-manifold
which triangulates the topological 3-sphere S3.

Let M be a weak d-pseudomanifold. If α is a (d − i)-face of M, 0 < i ≤ d, such that
lkM(α) = Si−1

i+1(β) and β is not a face of M (such a face α is said to be a removable face of
M), then consider the weak d-pseudomanifold (denoted by κα(M)) whose facet-set is {σ :
σ a facet of M, α/⊆σ} ∪ {β ∪ α \ {v} : v ∈ α}. The operation κα : M �→ κα(M) is called
a bistellar i-move. For 0 < i < d, a bistellar i-move is called a proper bistellar move. If κα is a
proper bistellar i-move and lkM(α) = Si−1

i+1(β), then β is a removable i-face of κα(M) (with
lkκα(M)(β) = Sd−i−1

d−i+1(α)) and κβ : κα(M) �→ M is an bistellar (d − i)-move. For a vertex u, if
lkM(u) = Sd−1

d+1(β), then the bistellar d-move κ{u} : M �→ κ{u}(M) =N deletes the vertex u (we
also say that N is obtained from M by collapsing the vertex u). The operation κβ : N �→ M
is called a bistellar 0-move (we also say that M is obtained from N by starring the vertex
u in the facet β of N). The 10-vertex combinatorial 3-manifold A3

10 in Example 3.15 is not
neighbourly and does not allow any bistellar 1-move. In [1], Bagchi and Datta have shown
that if the number of vertices in a nonneighbourly combinatorial 3-manifold is at most 9, then
the 3-manifold admits a bistellar 1-move. Existence of the 9-vertex 3-pseudomanifold B3

9 in
Example 3.16 shows that Bagchi and Datta’s result is not true for 9-vertex 3-pseudomanifolds.
Here we prove the following theorem.
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Theorem 1.1. IfM is an 8-vertex 3-pseudomanifold, then there exists a sequence of bistellar 1-moves
κA1 , . . . , κAm , for somem ≥ 0, such that κAm(· · · (κA1(M))) is a neighbourly 3-pseudomanifold.

In [2], Altshuler has shown that every combinatorial 3-manifold with at most 8 vertices
is a combinatorial 3-sphere. In [3], Grünbaum and Sreedharan have shown that there are
exactly 37 polytopal 3-spheres on 8 vertices (namely, S3

8,1, . . . , S
3
8,37 in Examples 3.1 and 3.3).

They have also constructed the nonpolytopal sphere S3
8,38. In [4], Barnette proved that there is

only one more nonpolytopal 8-vertex 3-sphere (namely, S3
8,39). In [5], Emch constructed an 8-

vertex normal 3-pseudomanifold (namely, N1 in Example 3.5) as a block design. This is not a
combinatorial 3-manifold and its automorphism group is PGL(2, 7) (cf. [6]). In [7], Altshuler
has constructed another 8-vertex normal 3-pseudomanifold (namely, N5 in Example 3.5). In
[8], Lutz has shown that there exist exactly three 8-vertex normal 3-pseudomanifolds which
are not combinatorial 3-manifolds (namely, N1, N5 and N6 in Example 3.5) with vertex-
transitive automorphism groups. Here we prove the following theorem.

Theorem 1.2. Let S3
8,35, . . . , S

3
8,38, N1, . . . ,N15 be as in Examples 3.1 and 3.5.

(i) Then S3
8,i/
∼=S3

8,j , Nk/∼=Nl, and S3
8,m/
∼=Nn for 35 ≤ i < j ≤ 38, 1 ≤ k < l ≤ 15, 35 ≤ m ≤ 38,

and 1 ≤ n ≤ 15.

(ii) IfM is an 8-vertex neighbourly normal 3-pseudomanifold, thenM is isomorphic to one of
S3

8,35, . . . , S
3
8,38, N1, . . . ,N15.

Corollary 1.3. There are exactly 39 combinatorial 3-manifolds on 8 vertices, all of which are
combinatorial 3-spheres.

Corollary 1.4. There are exactly 35 normal 3-pseudomanifolds on 8 vertices which are not
combinatorial 3-manifolds. These areN1, . . . ,N35 defined in Examples 3.5 and 3.8.

The topological properties of these normal 3-pseudomanifolds are given in Section 3.

2. Preliminaries

All the simplicial complexes considered in this paper are finite (i.e., with finite vertex-set).
The vertex-set of a simplicial complex K is denoted by V (K). We identify the 0-faces of a
complex with the vertices. The 1-faces of a complex K are also called the edges of K.

If K, L are two simplicial complexes, then an isomorphism from K to L is a bijection
π : V (K) → V (L) such that for σ ⊆ V (K), σ is a face of K if and only if π(σ) is a face of
L. Two complexes K, L are called isomorphic when such an isomorphism exists. We identify
two complexes if they are isomorphic. An isomorphism from a complex K to itself is called
an automorphism of K. All the automorphisms of K form a group under composition, which
is denoted by Aut(K).

For a face σ in a simplicial complex K, the number of vertices in lkK(σ) is called the
degree of σ in K and is denoted by degK(σ) (or by deg(σ)). If every pair of vertices of a
simplicial complex K form an edge, then K is called neighbourly. For a simplicial complex K,
if U ⊆ V (K), then K[U] denotes the induced complex of K on the vertex-set U.

If the number of i-faces of a d-dimensional simplicial complex K is fi(K) (0 ≤ i ≤ d),
then the number χ(K) :=

∑d
i=0(−1)ifi(K) is called the Euler characteristic of K.
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Figure 1

A graph is a simplicial complex of dimension ≤ 1. A finite 1-pseudomanifold is called
a cycle. An n-cycle is a cycle on n vertices and is denoted by Cn (or by Cn(a1, . . . , an) if the
edges are a1a2, . . . , an−1an, ana1).

For a simplicial complex K, the graph consisting of the edges and vertices of K is
called the edge-graph of K and is denoted by EG(K). The complement of EG(K) is called the
nonedge graph of K and is denoted by NEG(K). For a weak 3-pseudomanifold M and an
integer n ≥ 3, we define the graph Gn(M) as follows. The vertices of Gn(M) are the vertices
of M. Two vertices u and v form an edge in Gn(M) if uv is an edge of degree n in M. Clearly,
if M and N are isomorphic, then Gn(M) and Gn(N) are isomorphic for each n.

IfM is a weak 3-pseudomanifold and κα : M �→ κα(M) =N is a bistellar 1-move, then,
from the definition, (f0(N), f1(N), f2(N), f3(N)) = (f0(M), f1(M) + 1, f2(M) + 2, f3(M) + 1)
and degN(v) ≥ degM(v) for any vertex v. If κα : M �→ κα(M) = L is a bistellar 3-move, then
(f0(L), f1(L), f2(L), f3(L)) = (f0(M) − 1, f1(M) − 4, f2(M) − 6, f3(M) − 3).

Consider the binary relation “≤” on the set of weak 3-pseudomanifolds as M ≤ N
if there exists a finite sequence of bistellar 1-moves κα1 , . . . , καm , for some m ≥ 0, such that
N = καm(· · ·κα1(M)). Clearly, this ≤ is a partial order relation.

Two weak d-pseudomanifolds M and N are bistellar equivalent (denoted by M∼N)
if there exists a finite sequence of bistellar operations leading from M to N. If there exists
a finite sequence of proper bistellar operations leading from M to N, then we say M and
N are properly bistellar equivalent and we denote this by M ≈ N. Clearly, “∼” and “≈” are
equivalence relations on the set of pseudomanifolds. It is easy to see that M∼N implies that
|M| and |N| are pl homeomorphic.

For two simplicial complexes X and Y with disjoint vertex sets, the simplicial complex
X ∗ Y := X ∪ Y ∪ {σ ∪ τ : σ ∈ X, τ ∈ Y} is called the join of X and Y .

Let K be an n-vertex (weak) d-pseudomanifold. If u is a vertex of K and v is not a
vertex of K, then consider the simplicial complex ΣuvK on the vertex set V (K) ∪ {v} whose
set of facets is {σ ∪ {u} : σ is a facet of K and u/∈ σ} ∪ {τ ∪ {v} : τ is a facet of K}. Then ΣuvK
is a (weak) (d + 1)-pseudomanifold and |ΣuvK| is the topological suspension S|K| of |K| (cf.
[9]). It is easy to see that the links of u and v in ΣuvK are isomorphic to K. This ΣuvK is called
the one-point suspension of K.

For two d-pseudomanifolds X and Y , a simplicial map f : X → Y is called a k-fold
branched covering (with discrete branch locus) if |f |||X|\f−1(U) : |X| \ f−1(U) → |Y | \ U is a k-
fold covering for some U ⊆ V (Y ). (We say that X is a branched cover of Y and Y is a branched
quotient of X.) The smallest such U (so that |f |||X|\f−1(U) : |X| \ f−1(U)→ |Y | \U is a covering)

is called the branch locus. If N is a k-fold branched quotient of M and Ñ is obtained from N

by collapsing a vertex (resp., starring a vertex in a facet), then Ñ is the branched quotient of
M̃, where M̃ can be obtained from M by collapsing k vertices (resp., starring k vertices in k
facets). For proper bistellar moves we have the following lemma.
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Lemma 2.1. LetM andN be two d-pseudomanifolds and f : M →N be a k-fold branched covering.
For 1 ≤ l < d−1, if α is a removable l-face, then f−1(α) consists of k removable l-faces α1, . . . , αk(say)
and καk(· · · (κα1(M))) is a k-fold branched cover of κα(N).

Proof. Let lkN(α) = Sd−l−1
d−l+1(β). Since the dimension of α is > 0, f−1(α) consists of kl-faces,

α1, . . . , αk (say) of M. Let lkM(αi) = Sd−l−1
d−l+1(βi) and Mi := M[αi ∪ βi] for 1 ≤ i ≤ k. Since f

is simplicial, βi is not a face of M and hence αi is removable for each i. Since 0 < l < d − 1,
it follows that Mi is neighbourly. For i /= j, if x /=y ∈ V (Mi) ∩ V (Mj), then xy is an edge in
Mi ∩Mj and hence the number of edges in f−1(f(x)f(y)) is less than k, a contradiction. So,
#(V (Mi) ∩ V (Mj)) ≤ 1 for i /= j. This implies that βi is not a face in καj (M) and hence αi is
removable in καj (M) for i /= j. The result now follows.

Remark 3.14 shows that Lemma 2.1 is not true for l = d − 1 (i.e., for bistellar 1-moves)
in general.

Example 2.2. In Figure 2, we present some weak 2-pseudomanifolds on at most seven vertices.
The degree sequences are presented parenthetically below the figures. Each of S1, . . . , S9

triangulates the 2-sphere, each of R1, . . . , R4 triangulates the real projective plane and T
triangulates the torus. Observe that P1, P2 are not pseudomanifolds.

We know that if K is a weak 2-pseudomanifold with at most six vertices, then K is
isomorphic to S1, . . . , S4 or R1 (cf. [9]). In [10], we have seen the following.

Proposition 2.3. There are exactly 13 distinct 2-dimensional weak pseudomanifolds on 7 vertices,
namely, S5, . . . , S9, R2, . . . , R4, T, P1, . . . , P3, and P4.

3. Examples

We identify a weak pseudomanifold with the set of facets in it.

Example 3.1. These four neighbourly 8-vertex combinatorial 3-manifolds were found by
Grünbaum and Sreedharan (in [3], these are denoted by P 8

35, P
8
36, P

8
37 andM, resp.). It follows

from Lemma 3.4 that these are combinatorial 3-spheres. It was shown in [3] that the first three
of these are polytopal 3-spheres and the last one is a nonpolytopal sphere:

S3
8,35 = {1234, 1267, 1256, 1245, 2345, 2356, 2367, 3467, 3456, 4567, 1238, 1278, 2378,

1348, 3478, 1458, 4578, 1568, 1678, 5678},
S3

8,36 = {1234, 1256, 1245, 1567, 2345, 2356, 2367, 3467, 3456, 4567, 1268, 1678, 2678,

1238, 2378, 1348, 3478, 1458, 1578, 4578},
S3

8,37 = {1234, 1256, 1245, 1457, 2345, 2356, 2367, 3467, 3456, 4567, 1568, 1578, 5678,

1268, 2678, 1238, 2378, 1348, 1478, 3478},
S3

8,38 = {1234, 1237, 1267, 1347, 1567, 2345, 2367, 3467, 3456, 4567, 2358, 2368, 3568,

1268, 1568, 1248, 2458, 1478, 1578, 4578}.

(3.1)

Lemma 3.2. S3
8,i /
∼=S3

8,j for 35 ≤ i < j ≤ 38.
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Figure 2

Proof. Observe thatG6(S3
8,35)=C8(1, 2, . . . , 8), G6(S3

8,36)=(V, {23, 34, 45, 67, 78, 81}), G6(S3
8,37) =

(V, {23, 34, 56, 78, 81}), and G6(S3
8,38) = (V, {17, 23, 58}), where V = {1, . . . , 8}. Since K ∼= L

implies G6(K) ∼= G6(L), S3
8,i /
∼=S3

8,j , for 35 ≤ i < j ≤ 38.
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Example 3.3. Some nonneighbourly 8-vertex combinatorial 3-manifolds. It follows from
Lemma 3.4 that these are combinatorial 3-spheres. For 1 ≤ i ≤ 34, the sphere S3

8,i is isomorphic
to the polytopal sphere P 8

i in [3] and the sphere S3
8,39 is isomorphic to the nonpolytopal sphere

found by Barnette in [4]. We consecutively define

S3
8,39 = κ46

(
S3

8,38

)
, S3

8,33 = κ27
(
S3

8,37

)
, S3

8,32 = κ48
(
S3

8,37

)
, S3

8,31 = κ58
(
S3

8,37

)
,

S3
8,30 = κ24

(
S3

8,37

)
, S3

8,29 = κ27
(
S3

8,31

)
, S3

8,28 = κ24
(
S3

8,31

)
, S3

8,27 = κ13
(
S3

8,31

)
,

S3
8,25 = κ57

(
S3

8,31

)
, S3

8,24 = κ48
(
S3

8,31

)
, S3

8,23 = κ35
(
S3

8,31

)
, S3

8,26 = κ46
(
S3

8,27

)
,

S3
8,22 = κ24

(
S3

8,25

)
, S3

8,21 = κ68
(
S3

8,25

)
, S3

8,20 = κ48
(
S3

8,25

)
, S3

8,19 = κ17
(
S3

8,25

)
,

S3
8,18 = κ27

(
S3

8,25

)
, S3

8,12 = κ15
(
S3

8,25

)
, S3

8,11 = κ35
(
S3

8,25

)
, S3

8,17 = κ24
(
S3

8,19

)
,

S3
8,34 = κ27

(
S3

8,26

)
= S0

3(1, 3) ∗ S
0
3(2, 7) ∗ S

0
3(4, 6) ∗ S

0
3(5, 8), S3

8,16 = κ13
(
S3

8,19

)
,

S3
8,15 = κ28

(
S3

8,18

)
, S3

8,14 = κ47
(
S3

8,20

)
, S3

8,10 = κ15
(
S3

8,19

)
, S3

8,9 = κ35
(
S3

8,19

)
,

S3
8,8 = κ47

(
S3

8,19

)
, S3

8,13 = κ38
(
S3

8,16

)
, S3

8,7 = κ24
(
S3

8,8

)
, S3

8,6 = κ35
(
S3

8,8

)
,

S3
8,5 = κ48

(
S3

8,8

)
, S3

8,4 = κ15
(
S3

8,8

)
, S3

8,3 = κ48
(
S3

8,4

)
,

S3
8,2 = κ48

(
S3

8,6

)
, S3

8,1 = κ16
(
S3

8,4

)
.

(3.2)

Lemma 3.4. (a) S3
8,i ≈ S

3
8,j , for 1 ≤ i, j ≤ 39, (b) S3

8,m is a combinatorial 3-sphere for 1 ≤ m ≤ 39,
and (c) S3

8,k /
∼=S3

8,l for 1 ≤ k < l ≤ 39.

Proof. For 0 ≤ i ≤ 6, let Si denote the set of S3
8,j ’s with i nonedges. Then S0 = {S3

8,35, S
3
8,36,

S3
8,37, S

3
8,38}, S1 = {S3

8,30, S
3
8,31, S

3
8,32, S

3
8,33, S

3
8,39}, S2 = {S3

8,23, S
3
8,24, S

3
8,25, S

3
8,27, S

3
8,28, S

3
8,29}, S3 =

{S3
8,11, S

3
8,12, S

3
8,18, S

3
8,19, S

3
8,20, S

3
8,21, S

3
8,22, S

3
8,26}, S4 = {S3

8,8, S
3
8,9, S

3
8,10, S

3
8,14, S

3
8,15, S

3
8,16, S

3
8,17, S

3
8,34},

S5 = {S3
8,4, S

3
8,5, S

3
8,6, S

3
8,7, S

3
8,13}, and S6 = {S3

8,1, S
3
8,2, S

3
8,3}.

From the proof of Lemma 4.7, S3
8,35 ≈ S

3
8,30 ≈ S

3
8,36 ≈ S

3
8,30 ≈ S

3
8,37 ≈ S

3
8,32 ≈ S

3
8,38. Thus,

S3
8,i ≈ S

3
8,j for 35 ≤ i, j ≤ 38. Now, if S3

8,i ∈ S2 ∪ S3 ∪ S4 ∪ S5 ∪ S6, then, from the definition of
S3

8,i, S
3
8,i ≈ S

3
8,31 ≈ S

3
8,37. This proves part (a).

Since S3
8,34 is a join of spheres, S3

8,34 is a combinatorial 3-sphere. Clearly, if M ≈ N and
M is a combinatorial 3-sphere, then N is so. Part (b) now follows from part (a).

Since the nonedge graphs of the members of S6 (resp., S5) are pairwise nonisomor-
phic, the members of S6 (resp., S5) are pairwise nonisomorphic.

For S3
8,i, S

3
8,j ∈ S4 (i < j) and NEG(S3

8,i)
∼= NEG(S3

8,j) imply (i, j) = (8, 9) or (14, 15).
Since M ∼= N implies G6(M) ∼= G6(N) and G6(S3

8,8)/
∼=G6(S3

8,9), G6(S3
8,14)/
∼=G6(S3

8,15), the
members of S4 are pairwise nonisomorphic.

For S3
8,i /=S

3
8,j ∈ S3 and NEG(S3

8,i)
∼= NEG(S3

8,j) imply {i, j} = {11, 12} or 18 ≤ i /= j ≤ 21.
Let

∑
1 = {S3

8,11, S
3
8,12},

∑
2 = {S3

8,18, S
3
8,19, S

3
8,20, S

3
8,21},

∑
3 = {S3

8,22} and
∑

4 = {S3
8,26}. Since the

nonedge graph of a member in Σi is nonisomorphic to the nonedge graph of a member of Σj

for i /= j, a member of Σi is nonisomorphic to a member of Σj . Observe thatG6(S3
8,11)/
∼=G6(S3

8,12)
and for 18 ≤ i < j ≤ 21, G6(S3

8,i)
∼= G6(S3

8,j) implies (i, j) = (18, 19). Since G3(S3
8,18)/
∼=G3(S3

8,19),
the members of S3 are pairwise nonisomorphic.
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Since G3(S3
8,i)/
∼=G3(S3

8,j) for S3
8,i /=S

3
8,j ∈ S2, the members of S2 are pairwise noniso-

morphic. By the same reasoning, the members of S1 are pairwise nonisomorphic.
By Lemma 3.2, the members of S0 are pairwise nonisomorphic. Since a member of Si

is nonisomorphic to a member of Sj for i /= j, the above imply part (c).

Example 3.5. Some 8-vertex neighbourly normal 3-pseudomanifolds:

N1 = {1248, 1268, 1348, 1378, 1568, 1578, 2358, 2378, 2458, 2678, 3468, 3568, 4578, 4678,

1247, 1257, 1367, 1467, 2347, 2567, 3457, 3567, 1236, 2346, 1345, 1235, 1456, 2456},

N2 = {1248, 2458, 2358, 3568, 3468, 4678, 4578, 1578, 1568, 1268, 2678,

2378, 1378, 1348, 1247, 2457, 2357, 3567, 3467, 1567, 1267, 1347} = Σ78T,

N3 = {1248, 1268, 1348, 1378, 1568, 1578, 2358, 2378, 2458, 2678, 3468, 3568,

4578, 4678, 1234, 2347, 2456, 2467, 3456, 3457, 1235, 1256, 1357},

N4 = {1248, 1268, 1348, 1378, 1568, 1578, 2358, 2378, 2458, 2678, 3468,

3568, 4578, 4678, 1245, 1256, 2356, 2367, 3467, 1347, 1457},

N5 = {1258, 1268, 1358, 1378, 1468, 1478, 2368, 2378, 2458, 2478, 3458, 3468,

1257, 1267, 1367, 1457, 2357, 2467, 3457, 3467, 2356, 2456, 1356, 1456},

N6 = {1358, 1378, 1468, 1478, 1568, 2368, 2378, 2458, 2478, 2568, 3458, 3468,

1235, 1245, 1457, 1567, 2357, 2567, 3457, 1236, 1246, 1367, 2467, 3467},

N7 = {1268, 1258, 1358, 1378, 1478, 1468, 2378, 2368, 2458, 2478, 3468,

3458, 1356, 1367, 2357, 2356, 3467, 3457, 1256, 1467, 2457},

N8 = κ348
(
κ238

(
κ56

(
κ67

(
N7

))))
, N9 = κ235

(
κ67

(
N7

))
,

N10 = κ148
(
κ67

(
N7

))
, N11 = κ348

(
κ56

(
N10

))
, N12 = κ457

(
κ23

(
N9

))
,

N13 = κ567
(
κ23

(
N9

))
, N14 = κ138

(
κ57

(
N8

)) ∼= Σ78R2, N15 = κ158
(
κ23

(
N9

))
.

(3.3)

All the vertices ofN1 are singular and their links are isomorphic to the 7-vertex torus T . There
are two singular vertices in N2 and their links are isomorphic to T . The singular vertices in
N3 are 8, 3, 4, 2, 5 and their links are isomorphic to T, R2, R2, R3, and R3, respectively. There
is only one singular vertex in N4 whose link is isomorphic to T . All the vertices of N5 (resp.,
N6) are singular and their links are isomorphic to R4 (resp., R3). Each of N7, . . . ,N15 has
exactly two singular vertices and their links are 7-vertex RP 2’s. Thus, each Ni is a normal
3-pseudomanifold.

It follows from the definition that Ni ≈ Nj for 7 ≤ i, j ≤ 15. Here we prove the
following lemmas.

Lemma 3.6. (a) The geometric carriers of N1,N2,N3,N4,N5, and N7 are distinct (non-
homeomorphic), (b) Ni /≈Nj for 1 ≤ i < j ≤ 7, (c) N5∼N6.

Proof. For a normal 3-pseudomanifold X, let ns(X) denote the number of singular
vertices. Clearly, if M and N are two normal 3-pseudomanifolds with homeomorphic
geometric carriers, then (ns(M), χ(M)) = (ns(N), χ(N)). Now, (ns(N1), χ(N1)) =
(8, 8), (ns(N2), χ(N2)) = (2, 2), (ns(N3), χ(N3)) = (5, 3), (ns(N4), χ(N4)) = (1, 1), (ns(N5),
χ(N5)) = (8, 4), (ns(N7), χ(N7)) = (2, 1). This proves part (a).
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Part (b) follows from the fact that Ni is neighbourly and has no removable edge and,
hence, there is no proper bistellar move from Ni for 1 ≤ i ≤ 6.

Let N ′
5 be obtained from N5 by starring a new vertex 0 in the facet 1358. Let

N ′′
5 = κ{0}(κ08(κ156(κ07(κ03(κ035(κ68(κ02(κ268(κ13(κ135(κ138(κ158(N ′

5))))))))))))), then N ′′
5 is

isomorphic to N6 via the map (2, 3)(5, 8). This proves part (c).

Lemma 3.7. Nk/∼=Nl for 1 ≤ k < l ≤ 15.

Proof. Let ns be as above. Clearly, if M and N are two isomorphic 3-pseudomanifolds,
then (ns(M), f3(M)) = (ns(N), f3(N)). Now, (ns(N1), f3(N1)) = (8, 28), (ns(N2), f3(N2)) =
(2, 22), (ns(N3), f3(N3)) = (5, 23), (ns(N4), f3(N4)) = (1, 21), (ns(N5), f3(N5)) =
(ns(N6), f3(N6)) = (8, 24), and (ns(Ni), f3(Ni)) = (2, 21) for 7 ≤ i ≤ 15. Since the links of
each vertex in N5 is isomorphic to R4 and the links of each vertex in N6 is isomorphic to R3,
it follows that N5 /∼=N6. Thus, Ni /∼=Nj for 1 ≤ i ≤ 6, 1 ≤ j ≤ 15, i /= j.

Observe that the singular vertices in Ni are 3 and 8 for 7 ≤ i ≤ 15. Moreover, (i)
lkN7(3) ∼= lkN7(8) ∼= R4, (ii) lkN8(3) ∼= R4 and lkN8(8) ∼= R3, (iii) lkN9(3) ∼= R2 and lkN9(8) ∼= R4,
(iv) lkN10(3) ∼= lkN10(8) ∼= R3 and degN10

(38) = 6, (v) lkN11(3) ∼= lkN11(8) ∼= R3 and degN11
(38) =

5, (vi) lkN12(3) ∼= R2, lkN12(8) ∼= R3 and G3(N12) = (V, {32, 21, 17, 75, 54, 46}), (vii) lkN13(3) ∼=
R2, lkN13(8) ∼= R3 and G3(N13) = (V, {32, 21, 17, 75, 56, 67, 64, 42}), (viii) lkN14(3) ∼= lkN14(8) ∼=
R2 and degN14

(38) = 3. (xi) lkN15(3) ∼= lkN15(8) ∼= R2 and degN15
(38) = 6. These imply that

there is no isomorphism between Ni and Nj for 7 ≤ i < j ≤ 15. This completes the proof.

Example 3.8. Some 8-vertex nonneighbourly normal 3-pseudomanifolds:

N16 = κ67
(
N7

)
, N17 = κ24

(
N8

)
, N18 = κ238

(
κ56

(
κ67

(
N7

)))
, N19 = κ57

(
N8

)
,

N20 = κ56
(
N10

)
, N21 = κ12

(
N9

)
, N22 = κ14

(
N11

)
, N23 = κ23

(
N9

)
,

N24 = κ38
(
N14

)
, N25 = κ56

(
N16

)
, N26 = κ12

(
N16

)
, N27 = κ56

(
N17

)
,

N28 = κ57
(
N18

)
, N29 = κ15

(
N18

)
, N30 = κ12

(
N23

)
, N31 = κ24

(
N22

)
,

N32 = κ24
(
N26

)
, N33 = κ57

(
N25

)
, N34 = κ45

(
N28

)
, N35 = κ58

(
N29

)
.

(3.4)

Lemma 3.9. (a) Ni/∼=Nj for 1 ≤ i < j ≤ 35 and (b) Nk ≈Nl for 7 ≤ k, l ≤ 35.

Proof. For 0 ≤ i ≤ 3, letNi denote the set of 3-pseudomanifolds defined in Examples 3.5 and
3.8 with i nonedges. Then N0 = {N1, . . . ,N15}, N1 = {N16, . . . ,N24}, N2 = {N25, . . . ,N31},
andN3 = {N32, . . . ,N35}. The singular vertices in Ni are 3 and 8 for 7 ≤ i ≤ 35.

By Lemma 3.7, the members ofN0 are pairwise nonisomorphic.
Observe that (i) lkN16(3) ∼= R4 and lkN16(8) ∼= R3, (ii) lkN17(3) ∼= lkN17(8) ∼= R4, (iii)

lkN18(3) ∼= lkN18(8) ∼= R3 and G6(N18) = (V, {73, 31, 18, 84}), (iv) lkN19(3) ∼= lkN19(8) ∼= R3 and
G6(N19) = (V, {63, 31, 18, 86}), (v) lkN20(3) ∼= lkN20(8) ∼= R3 and G6(N20) = (V, {74, 28, 83, 31}),
(vi) lkN21(3) ∼= R2, lkN21(8) ∼= R3 and G6(N21) = (V, {48, 83, 37, 36}), (vii) lkN22(3) ∼=
R2, lkN22(8) ∼= R3 and G6(N22) = (V, {28, 86, 63, 37, 38}), (viii) lkN23(3) ∼= R1 and lkN23(8) ∼= R3,
(ix) lkN24(3) ∼= lkN24(8) ∼= R1. These imply that there is no isomorphism between any two
members ofN1.

Observe that (i) lkN25(3) ∼= R3 and lkN25(8) ∼= R4, (ii) lkN26(3) ∼= lkN26(8) ∼= R3 and
G6(N26) = (V, {53, 38, 84}), (iii) lkN27(3) ∼= lkN27(8) ∼= R3, G6(N27) = (V, {78, 81, 13, 37})
and NEG(N27) = {24, 56}, (iv) lkN28(3) ∼= lkN28(8) ∼= R3, G6(N28) = (V, {18, 84, 43, 31}) and
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NEG(N28) = {75, 56}, (v) lkN29(3) ∼= R3 and lkN29(8) ∼= R2, (vi) lkN30(3) ∼= R1 and lkN30(8) ∼= R3,
(vii) lkN31(3) ∼= lkN31(8) ∼= R2. These imply that there is no isomorphism between any two
members ofN2.

Observe that (i) lkN32(3) ∼= lkN32(8) ∼= R3, (ii) lkN33(3) ∼= lkN33(8) ∼= R4, (iii) lkN34(3) ∼=
lkN34(8) ∼= R2, (iv) lkN35(3) ∼= R2 and lkN35(8) ∼= R1. These imply that there is no isomorphism
between any two members ofN3.

Since a member ofNi is nonisomorphic to a member ofNj for i /= j, the above imply
part (a). Part (b) follows from the definition of Nk for 8 ≤ k ≤ 35.

The 3-dimensional Kummer variety K3 is the torus S1 × S1 × S1 modulo the involution
σ : x �→ −x. It has 8 singular points corresponding to 8 elements of order 2 in the abelian
group S1 × S1 × S1. In [11], Kühnel showed that N5 triangulates K3. For a topological space
X, C(X) denotes a cone with baseX. LetH = D2×S1 denote the solid torus. As a consequence
of the above lemmas we get.

Corollary 3.10. All the 8-vertex normal 3-pseudomanifolds triangulate seven distinct topological
spaces, namely, |S3

8,j | = S3 for 1 ≤ j ≤ 38, |N1|, |N2| = S(S1 × S1), |N3|, |N4| = H ∪
(C(∂H)), |N5| = |N6| = K3, and |Ni| = S(RP 2) for 7 ≤ i ≤ 35.

Proof. Let K be an 8-vertex normal 3-pseudomanifold. If K is a combinatorial 3-sphere, then
it triangulates the 3-sphere S3.

If K is not a combinatorial 3-sphere, then, by Lemma 3.9(b), |K| is (pl) homeomorphic
to |N1|, . . . , |N6|, or |N7|. SinceN2 = Σ78T, |N2| is homeomorphic to the suspension S(S1×S1).
In N4, the facets not containing the vertex 8 form a solid torus whose boundary is the link
of 8. This implies that |N4| = H ∪ (C(∂H)). It follows from Lemma 3.6(c) that |N6| is (pl)
homeomorphic to |N5| = K3. Since N24 is isomorphic to the suspension S0

2 ∗ R1, |N24| =
S(RP 2). Therefore, by Lemma 3.9(b), |Ni| is (pl) homeomorphic to |N24| = S(RP 2) for 7 ≤ i ≤
35. The result now follows from Lemma 3.6(a).

A 3-dimensional pseudocomplex K is an ordered pair (Δ,Φ), where Δ is a finite
collection of disjoint tetrahedra and Φ is a family of affine isomorphisms between pairs of
2-faces of the tetrahedra in Δ. Let |K| denote the quotient space obtained from the disjoint
union �σ∈Δσ by setting x = ϕ(x) for ϕ ∈ Φ. The quotient of a tetrahedron σ ∈ Δ in |K|
is called a 3-simplex in |K| and is denoted by |σ|. Similarly, the quotient of 2-faces, edges,
and vertices of tetrahedra are called 2-simplices, edges, and vertices in |K|, respectively. If |K|
is homeomorphic to a topological space X, then K is called a pseudotriangulation of X. A 3-
dimensional pseudocomplex K = (Δ,Φ) is said to be regular if the following hold: (i) each
3-simplex in |K| has four distinct vertices, and (ii) for 2 ≤ i ≤ 3, no two distinct i-simplices in
|K| have the same set of vertices. So, for 2 ≤ i ≤ 3, an i-simplex α in |K| is uniquely determined
by its vertices and denoted by u1 · · ·ui+1, where u1, . . . , ui+1 are vertices of α. (But, the edges in
|K| may not form a simple graph.) So, we can identify a regular pseudocomplex K = (Δ,Φ)
withK := {|σ| : σ ∈ Δ}. Simplices and edges in |K| are said to be simplices and edges ofK.
Clearly, a pure 3-dimensional simplicial complex is a regular pseudocomplex.

LetM be a regular pseudotriangulation of X and abcd, abce be two 3-simplices inM.
If ade, bde, cde are not 2-simplices inM, thenN := (M\{abcd, abce})∪{abde, acde, bcde}
is also a regular pseudotriangulation of X. We say that N is obtained from M by the
generalized bistellar 1-move κabc. If there is no edge between d and e in M, then κF is called
a bistellar 1-move. If there exist 3-simplices of the form xyuv, xzuv, yzuv in a regular
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pseudotriangulation P of Y and xyz is not a 2-simplex, thenQ := (P\{xyuv, xzuv, yzuv})∪
{xyzu, xyzv} is also a regular pseudotriangulation of Y . We say thatQ is obtained from P by
the generalized bistellar 2-move κE, where E is the common edge in xyuv, xzuv, and yzuv. If
E is the only edge between u and v in P, then κE is called a bistellar 2-move.

Let M be a pseudotriangulation of a closed 3-manifold and N a 3-pseudomanifold.
A simplicial map f : M → N is said to be a k-fold branched covering (with discrete branch
locus) if there exists U ⊆ V (N) such that |f |||M|\f−1(U) : |M| \ f−1(U) → |N| \ U is a k-fold
covering. The smallest such U (so that |f |||M|\f−1(U) : |M| \ f−1(U) → |N| \ U is a covering)
is called the branch locus. It is known that N1 can be regarded as a branched quotient of
a regular hyperbolic tessellation (cf. [6]). In [11], Kühnel has shown that N5 is a 2-fold
branched quotient of a pseudotriangulation of the 3-dimensional torus. Here we prove the
following theorem.

Theorem 3.11. (a)N24 is a 2-fold branched quotient of a 14-vertex combinatorial 3-sphere.
(b) For 7 ≤ i ≤ 35, Ni is a 2-fold branched quotient of a 14-vertex regular pseudotriangulation

of the 3-sphere.

Lemma 3.12. Let M be a regular pseudotriangulation of a 3-manifold and N be a normal 3-
pseudomanifold. Let f : M → N be a k-fold branched covering with at most two vertices in the
branch locus. If κe : N �→ Ñ is a bistellar 2-move, then there exist k generalized bistellar 2-moves
κe1 , . . . , κek such that κek(· · · (κe1(M))) is a k-fold branched cover of Ñ.

Proof. Let lkN(e) = S1
3({x, y, z}). Let f−1(e) consist of the edges e1, . . . , ek. Let the end points of

ei be ui, vi, the 3-simplices containing ei be uivixiyi, uivixizi, uiviyizi, and f(xi) = x, f(yi) =
y, f(zi) = z for 1 ≤ i ≤ k. Since xyz is not a simplex in N, it follows that xiyizi is not a 2-
simplex in M. Let Mi be the pseudocomplex consists of uivixiyi, uivixizi, and uiviyizi. Since
the number of vertices in the branched locus is at most 2, it follows that the number of vertices
common in Mi and Mj is at most 2 for i /= j. In particular, #({xi, yi, zi} ∩ {xj , yj , zj}) ≤ 2.
Therefore, xjyjzj is not a 2-simplex in κei(M). So, we can perform generalized bistellar 2-
move κej on κei(M) = (M \Mi) ∪ {xiyiziui, xiyizivi} for i /= j. Clearly, M̃ := κek(· · ·κe1(M))
is a k-fold branched cover of Ñ (via the map f̃ , where f̃(w) = f(w) for w ∈ V (M̃) = V (M)
and f̃(xiyiziui) = xyzu and f̃(xiyizivi) = xyzv).

Lemma 3.13. Let M be a regular pseudotriangulation of a 3-manifold and N be a normal 3-
pseudomanifold. Let f : M → N be a k-fold branched covering with at most two vertices in the
branch locus. If κF : N �→ Ñ is a bistellar 1-move, then there exist k generalized bistellar 1-moves
κF1 , . . . , κFk such that κFk(· · · (κF1(M))) is a k-fold branched cover of Ñ.

Proof. Let F = xyz and lkN(F) = {u, v}. Let f−1(F) consist of the 2-simplices F1, . . . , Fk. Let
Fi = xiyizi and the 3-simplices containing Fi be xiyiziui and xiyizivi and f(xi, yi, zi, ui, vi) =
(x, y, z, u, v) for 1 ≤ i ≤ k. Since f is simplicial, it follows that xiuivi, yiuivi, and ziuivi
are not 2-simplices in M. Let Mi be pseudocomplex {xiyiziui, xiyizivi}. Since the number
of vertices in the branched locus is at most 2, it follows that xjujvj , yjujvj , and zjujvj are not
2-simplices in κFi(M) for i /= j. Then (by the similar arguments as in the proof of Lemma 3.12)
κFk(· · ·κF1(M)) is a k-fold branched cover of Ñ.

Proof of Theorem 3.11. If I denotes the boundary of the icosahedron, then there exists a simpli-
cial 2-fold covering f : I → R1. Consider the simplicial map f̃ : S0

2({a, b})∗I → S0
2({c, d})∗R1
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Table 1: 8-vertex normal 3-pseudomanifolds which are not combinatorial 3-manifolds.

X
f-vector
(f1, f2, f3)

χ(X) ns(X) links of singular
vertices

Geometric carriers, Homology
(H1,H2,H3)

N1 (28, 56, 28) 8 8 all are T
|N1| is simply connected,(
H1,H2,H3

)
=
(
0,Z8,Z

)

N2 (28, 44, 22) 2 2 both are T
∣
∣N2

∣
∣ = S

(
S1 × S1)

N3 (28, 46, 23) 3 5 T, R2, R2, R3, R3
(
H1,H2,H3

)
=
(
0,Z2 ⊕ Z2, 0

)

N4 (28, 42, 21) 1 1 T
∣
∣N4

∣
∣ = H ∪

(
C(∂H)

)

N5 (28, 48, 24) 4 8 all are R4
∣
∣N5

∣
∣ = K3

N6 ,, ,, ,, all are R3
∣
∣N6

∣
∣ = K3

N7 (28, 42, 21) 1 2 both are R4

∣
∣N7

∣
∣ = S

(
RP 2)

Ni, 8 ≤ i ≤ 15 ,, ,, ,, both are in
{
R1, . . . , R4

} ∣
∣Ni

∣
∣ = S

(
RP 2)

Ni, 16 ≤ i ≤ 24 (27, 40, 20) ,, ,, ,, ,,

Ni, 25 ≤ i ≤ 31 (26, 38, 19) ,, ,, ,, ,,

Ni, 32 ≤ i ≤ 35 (25, 36, 18) ,, ,, ,, ,,
[Here K3 is the 3-dimensional Kummer variety, H = D2 × S1 is the solid torus, S(Y ) is the topological suspension of Y , and
ns(X) is the number of singular vertices in X.]

given by f̃(a) = c, f̃(b) = d and f̃(u) = f(u) for u ∈ V (I). Then f̃ is a 2-fold branched
covering with branch locus {c, d}. SinceN24 is isomorphic to the suspension S0

2∗R1, it follows
that N24 is a 2-fold branched quotient of the 14-vertex combinatorial 3-sphere S0

2({a, b}) ∗ I
(with branch locus {3, 8}). This proves part (a).

The result now follows from Lemmas 3.9(a), 3.12, and 3.13. (In fact, to obtain a 2-
fold branched cover Ñ14 of N14 from R1 ∗ S0

2, one needs one bistellar 1-move and then one
generalized bistellar 1-move; and all other moves required in the proof are bistellar moves on
regular pseudotriangulations of S3.)

Remark 3.14. The combinatorial 3-sphere R1 ∗ S0
2 is a 2-fold branched cover of N24 and N14

can be obtained from N24 by a bistellar 1-move. Now, if f : M → N14 is a 2-fold branched
covering and M is a combinatorial 3-manifold, then (since lkN14(8) is a 7-vertex triangulated
RP 2) the link of any vertex in f−1(8) is a 14-vertex triangulated S2 and hence f0(M) > 14.
(Similarly, for i /= 24, if Ni is a branched quotient of a combinatorial 3-manifold M, then
f0(M) > 14.) So, there does not exist a combinatorial 3-sphere M which is a branched cover
of N14 and which can be obtained from R1 ∗ S0

2 by proper bistellar moves.

In [7], Altshuler observed that N1 is orientable and |N1| is simply connected. In [8],
Lutz showed that (H1(N1),H2(N1),H3(N1)) = (0,Z8,Z). The normal 3-pseudomanifold
N3 is the only among all the 35 which has singular vertices of different types, namely,
one singular vertex whose link is a triangulated torus and four singular vertices
whose links are triangulated real projective planes. Using polymake [12], we find that
(H1(N3),H2(N3),H3(N3)) = (0,Z2⊕Z2, 0). We summarized all the findings aboutN1, . . . ,N35

in Table 1.

Example 3.15. For d ≥ 2, let

Kd
2d+3 =

{
vi · · ·vj−1vj+1 · · ·vi+d+1 : i + 1 ≤ j ≤ i + d, 1 ≤ i ≤ 2d + 3

}
(3.5)



B. Datta and N. Nilakantan 13

(additions in the suffixes are modulo 2d + 3). It was shown in [13] the following : (i) Kd
2d+3

is a triangulated d-manifold for all d ≥ 2, (ii) Kd
2d+3 triangulates Sd−1 × S1 for d even, and

triangulates the twisted product Sd−1×−S1 (the twisted Sd−1-bundle over S1) for d odd. For
d ≥ 3, Kd

2d+3 is the unique nonsimply connected (2d + 3)-vertex triangulated d-manifold (cf.
[14]). The combinatorial 3-manifolds K3

9 was first constructed by Walkup in [15].
From K3

9, we construct the following 10-vertex combinatorial 3-manifold:

A3
10 :=

(
K3

9 \
{
v1v2v3v5, v2v3v5v6, v3v5v6v7, v3v4v6v7, v4v6v7v8

})

∪
{
v0v1v2v3, v0v1v2v5, v0v1v3v5, v0v2v3v6, v0v2v5v6, v0v3v5v7, v0v5v6v7,

v0v3v4v6, v0v3v4v7, v0v4v6v8, v0v4v7v8, v0v6v7v8
}
.

(3.6)

[Geometrically, first we remove a pl 3-ball consisting of five 3-simplices from |K3
9 |. This gives

a pl 3-manifold with boundary and the boundary is a 2-sphere. Then we add a cone with base
this boundary and vertex v0. So, the new polyhedron |A3

10| is pl homeomorphic to |K3
9 |. This

implies that the simplicial complex A3
10 is a combinatorial 3-manifold.]

The only nonedge in A3
10 is v0v9 and there is no common 2-face in the links of v0 and

v9 in A3
10. So, A3

10 does not allow any bistellar 1-move. So, A3
10 is a 10-vertex nonneighbourly

combinatorial 3-manifold which does not admit any bistellar 1-move.
Similarly, from K4

11, we construct the following 12-vertex triangulated 4-manifold:

A4
12 :=

(
K4

11 \
{
v1v2v3v4v6, v2v3v4v6v7, v3v4v6v7v8, v4v6v7v8v9, v4v5v7v8v9, v5v7v8v9v10

})

∪
{
v0v1v2v3v4, v0v1v2v3v6, v0v1v2v4v6, v0v1v3v4v6, v0v2v3v4v7, v0v2v3v6v7, v0v2v4v6v7,

v0v3v4v6v8, v0v3v4v7v8, v0v3v6v7v8, v0v4v6v7v9, v0v4v6v8v9, v0v4v7v8v9,

v0v4v5v7v9, v0v4v5v8v9, v0v4v7v8v9, v0v5v7v8v10, v0v5v7v9v10, v0v5v8v9v10
}
.

(3.7)

The only nonedge in A4
12 is v0v11 and there is no common 2-face in the links of v0 and v11

in A4
12. So, A4

12 does not allow any bistellar 1-move. So, A4
12 is a 12-vertex nonneighbourly

triangulated 4-manifold which does not admit any bistellar 1-move.
By the same way, one can construct a (2d + 4)-vertex nonneighbourly triangulated

d-manifold Ad
2d+4 (from Kd

2d+3) which does not admit any bistellar 1-move for all d ≥ 3.

Example 3.16. Let N3 be as in Example 3.5. Let M be obtained from N3 by starring two
vertices u and v in the facets 1248 and 3568, respectively, that is, M = κ1248(κ3568(N3)). Then
M is a 10-vertex normal 3-pseudomanifold. Let B3

9 be obtained from M by identifying the
vertices u and v. Let the new vertex be 9. Then

B3
9 :=

(
N3 \

{
1248, 3568

})
∪
{

1249, 1289, 1489, 2489, 3569, 3589, 3689, 5689
}
. (3.8)

The degree 3 edges in B3
9 are 16, 17, and 67; but none of these edges is removable. So,

no bistellar 2-moves are possible from B3
9. The only nonedge in B3

9 is 79. Since there is no
common 2-face in the links of 7 and 9, no bistellar 1-move is possible. So, B3

9 is a 9-vertex
nonneighbourly 3-pseudomanifold which does not admit any proper bistellar move.

4. Proofs

For n ≥ 4, by an S2
n we mean a combinatorial 2-sphere on n vertices. If κβ : M �→ N is a

bistellar 1-move, then degN(v) ≥ degM(v) for v ∈ V (M). Here we prove the following.
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Lemma 4.1. Let M be an n-vertex 3-pseudomanifold and u be a vertex of degree 4. If n ≥ 6, then
there exists a bistellar 1-move κβ : M �→N such that degN(u) = 5.

Proof. Let lkM(u) = S2
4({a, b, c, d}) and β = abc. Let lkM(β) = {u, x}. If x = d, then the induced

complex K = M[{u, a, b, c, d}] is a 3-pseudomanifold. Since n ≥ 6, K is a proper subcomplex
of M. This is not possible. So, x /=d and hence ux is a nonedge in M. Then κβ is a bistellar
1-move. Since ux is an edge in κβ(M), κβ is a required bistellar 1-move.

Lemma 4.2. Let M be an n-vertex 3-pseudomanifold and u be a vertex of degree 5. If n ≥ 7, then
there exists a bistellar 1-move κβ : M �→N such that degN(u) = 6.

Proof. Since degM(u) = 5, the link of u in M is of the form S0
2({a, b}) ∗ S

1
3({x, y, z}) for some

vertices a, b, x, y, z of M. If both xyza and xuzb are facets, then the induced subcomplex
M[{x, y, z, u, a, b}] is a 3-pseudomanifold. This is not possible since n ≥ 7. So, without loss of
generality, assume that xyza is not a facet. Again, if xyab, xzab, and yzab all are facets, then
the induced subcomplexM[{u, x, y, z, a, b}] is a 3-pseudomanifold, which is not possible. So,
assume that xyab is not a facet.

Consider the face β = xya. Suppose lkM(β) = {u,w}. From the above, w/∈ {z, b}. So,
uw is a nonedge and hence κβ is a required bistellar 1-move.

Lemma 4.3. Let M be a nonneighbourly 8-vertex 3-pseudomanifold and u be a vertex of degree 6.
If the degree of each vertex is at least 6, then there exists a bistellar 1-move κτ : M �→ N such that
degN(u) = 7.

Proof. Let u be a vertex with degM(u) = 6 and uv be a nonedge. Let L = lkM(u).

Claim 1. There exists a 2-face τ such that τ ∪ {u} and τ ∪ {v} are facets.
First consider the case when there exists a vertex w such that degL(w) = 5. Let

lkL(w)(= lkM(uw)) = C5(1, 2, 3, 4, 5).
Let K = lkM(w). Since deg(v) = 6, vw is an edge. Thus K contains 7 vertices. If

one of 12v, . . . , 45v, 51v is a 2-face, say 12v, then 12wv and 12wu are facets. In this case,
τ = 12w serves the purpose. So, assume that 12v, . . . , 45v, 51v are nonfaces in K. Then there
are at least three 2-faces (not containing u) containing the edges 12, . . . , 45, 51 in K. Also,
there are at least three 2-faces containing v in K. So, the number of 2-faces in K is at least
11. This implies that degK(v) = 3 or 4 and K is a 7-vertex RP 2 or P4. Since degK(u) = 5,
it follows that K is isomorphic to R2, R3, or P4 (defined in Section 2). In each case, (since
degK(u) = 5, degK(v) = 3 or 4, and uv is a nonedge) there exists an edge α in K such that
α ∪ {u} and α ∪ {v} are 2-faces in K and hence τ = α ∪ {w} serves the purpose.

Now, assume that L has no vertex of degree 5. Then Lmust be of the form S0
2({a1, a2})∗

S0
2({b1, b2}) ∗ S0

2({c1, c2}). If possible, let aibjckv is not a facet for 1 ≤ i, j, k ≤ 2. Consider
the 2-face a1b1c1. There exists a vertex x /=u such that a1b1c1x is a facet. Assume, without
loss of generality, that a1b1c1a2 is a facet. Since deg(c1) > 5 (resp., deg(b1) > 5), a1a2b2c1

(resp., a1a2b1c2) is not a facet. So, the facet (other than a1b2c1u) containing a1b2c1 must be
a1b2c1c2. Similarly, the facet (other than a1b1c2u) containing a1b1c2 must be a1b1b2c2. Then
a1b2c1c2, a1b1b2c2, and a1b2c2u are three facets containing a1b2c2, a contradiction. This proves
the claim.

By the claim, there exists a 2-simplex τ such that lkM(τ) = {u, v}. Since uv is a nonedge
of M, κτ : M �→ κτ(M) = N is a bistellar 1-move. Since uv is an edge in N, it follows that
degN(u) = 7.
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Proof of Theorem 1.1. Let M be an 8-vertex 3-pseudomanifold. Then, by Lemma 4.1, there
exist bistellar 1-moves κA1 , . . . , κAk , for some k ≥ 0, such that the degree of each vertex
in κAk(· · · (κA1(M)) is at least 5. Therefore, by Lemma 4.2, there exist bistellar 1-moves
κAk+1 , . . . , κAl , for some l ≥ k, such that the degree of each vertex in κAl(· · ·κAk(· · · (κA1(M)))
is at least 6. Then, by Lemma 4.3, there exist bistellar 1-moves κAl+1 , . . . , κAm , for some m ≥ l,
such that the degree of each vertex in κAm(· · ·κAl(· · ·κAk(· · · (κA1(M)))) is 7. This proves the
theorem.

Lemma 4.4. LetK be an 8-vertex combinatorial 3-manifold. IfK is neighbourly, thenK is isomorphic
to S3

8,35, S
3
8,36, S

3
8,37, or S

3
8,38.

Proof. Since K is a neighbourly combinatorial 3-manifold, by Proposition 2.3, the link of any
vertex is isomorphic to S5, . . . , S8, or S9.

Claim 1. The links of all the vertices cannot be isomorphic to S9 (= S0
2 ∗ C5).

Otherwise, let lk(8) = S0
2(6, 7) ∗ C5(1, 2, . . . , 5). Consider the vertex 2. Since the degree

of 2 is 7, 1267 or 2367 is not a facet. Assume, without loss of generality, that 1267 is not a
facet. Again, if 1236 is a facet, then deglk(2)(6) = 3 and hence lk(2)/∼=S9. So, 1236 is not a facet.
Similarly, 1256 is not a facet. Then the facet other than 1268 containing 126 must be 1246.
Similarly, 1247 is a facet. This implies that lk(2) = S0

2(6, 7) ∗ C5(1, 4, 5, 3, 8). Thus deg(26) = 5.
Similarly, deg(16) = deg(36) = deg(46) = deg(56) = 5. Then, the 7-vertex 2-sphere lk(6)
contains five vertices of degree 5. This is not possible. This proves the claim.

Case 1. Consider the case when K has a vertex, (say 8) whose link is isomorphic to S8.
Assume, without loss of generality, that the facets containing the vertex 8 are 1238, 1268,
1348, 1458, 1568, 2348, 2478, 2678, 4578, and 5678. Since deg(3) = 7, 1234/∈K. Hence the facet
other than 1238 containing the face 123 is one of 1235, 1236, or 1237.

If 1236 ∈ K, then, clearly, deg(17) = 3 or 4. If deg(17) = 4, then on completing lk(1), we
see that 1457, 1567 ∈ K, thereby showing that deg(5) = 5, an impossibility. Hence, deg(17) = 3
and, therefore, 1457 ∈ K. There are two possibilities for the completion of lk(1). If 1347, 1356,
1357 ∈ K, from the links of 4 and 3, we see that 2346, 2467, 3467, 3567 ∈ K. Here, deg(5) = 6.
If 1346, 1467, 1567 ∈ K, then deg(5) = 5. Thus, 1236/∈K.

Case 1.1. 1235 ∈ K. Since deg(1) = 7, either 1345 or 1256 is a facet. In the first
case, 1257, 1267, 1567 ∈ K. Here, deg(6) = 5, a contradiction. So, 1256 ∈ M and
hence 1347, 1357, 1457 ∈ K. From the links of the vertices 1, 4, 7 and 5, we see that
1256, 2346, 2467, 3467, 3567, 2356 ∈ K. Here, K ∼= S3

8,38 by the map (1, 5, 8, 6)(2, 7)(3, 4).

Case 1.2. 1237 ∈ K. By the same argument as in Case 1.1 (replace the vertex 1 by vertex 2),
we get 1267, 2345, 2357, 2457 ∈ K. From lk(1) and lk(7), 1346, 1456, 3456, 1367, 3567 ∈ K. Here,
K ∼= S3

8,38 by the map (1, 7, 8, 6)(2, 5)(3, 4).

Case 2. K has no vertex whose link is isomorphic to S8 but has a vertex whose link is
isomorphic to S6. Using the same method as in Case 1.1, we find that K ∼= S3

8,37.

Case 3. K has no vertex whose link is isomorphic to S8 or S6 but has a vertex whose link is
isomorphic to S7. Using the same method as in Case 1.1, we find that K ∼= S3

8,36.

Case 4. K has no vertex whose link is isomorphic to S6, S7, or S8 but has a vertex (say 8)
whose link is isomorphic to S5. The facets through 8 can be assumed to be 1238, 1278, 1348,
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1458, 1568, 1678, 2348, 2458, 2568, and 2678. Clearly, 1234, 1267/∈K. If deg(15) = 6, then from
lk(1) and lk(5), we see that 1235, 1345, 2345 ∈ K, thereby showing that deg(3) = 5. Hence
1237 ∈ K. Now, we can assume, without loss of generality, that the facets required to complete
lk(1) are 1347, 1457, and 1567. Now, consider lk(2). If deg(27) = 6, then after completing the
links of 2 and 7, we observe that deg(4) = 6. Hence deg(23) = 6. The links of 2, 7, and 6 show
that 2345, 2356, 2367, 3467, 4567, and 3456 ∈ K. Here, K ∼= S3

8,35 by the map (2, 3, 4, 5, 6, 7, 8).
This completes the proof.

Lemma 4.5. Let K be an 8-vertex neighbourly normal 3-pseudomanifold. If K has one vertex whose
link is the 7-vertex torus T , then K is isomorphic toN1, N2, N3, orN4.

Proof. Let us assume that V (K) = {1, . . . , 8} and the link of the vertex 8 is the 7-vertex torus T .
So, the facets containing 8 are 1248, 1268, 1348, 1378, 1568, 1578, 2358, 2378, 2458, 2678, 3468,
3568, 4578, and 4678. We have the following cases.

Case 1. There is a vertex (other than the vertex 8), say 7, whose link is isomorphic to
T . Then lk(7) has no vertex of degree 3 and hence 2367, 1457, 1237, 1357/∈K. This implies
that the facet (other than 1378) containing 137 is 1367 or 1347. In the first case, lk(17) =
C6(5, 8, 3, 6, 4, 2). Thus, 1367, 1467, 1247, 1257 ∈ K. Then, from the links of 67 and 37, we get
2567, 3567, 2347, 3457 ∈ K. Now, from lk(34), 1346/∈K. Then, from the links of 36, 34, 23, 14,
and 26, we get 1236, 2346, 1345, 1235, 1456, 2456 ∈ K. Here, K =N1.

In the second case, lk(37) = C6(2, 8, 1, 4, 6, 5). Thus, 1347, 3467, 3567, 2357 ∈ K. Now,
from the links of 47 and 67, we get 1247, 2457, 1567, 1267 ∈ K. Here, K =N2.

Case 2. There is a vertex whose link is a 7-vertex RP 2.

Claim 1. There exists a vertex in K whose link is isomorphic to R2.
If there is vertex whose link is isomorphic to R2, then we are done. Otherwise,

since Aut(lk(8)) acts transitively on {1, . . . , 7}, assume that lk(4) ∼= R3 (resp., R4). Since
(1, 2, 5, 7, 6, 3) ∈ Aut(lk(8)), we may assume that the degree 4 vertex (resp., vertices) in lk(4)
is 1 (resp., are 1, 5, 6). Then, from lk(4), 1247, 1347, 2467 ∈ K. This implies that lk(7) is a
nonsphere and deg(67) = 3. Hence lk(7) ∼= R2. This proves the claim.

By the claim, we can assume that lk(4) ∼= R2. Again, we may assume that the vertex
1 is of degree 3 in lk(4). Then, from 1k(4), 1234, 2347, 2456, 2467, 3456, 3457 ∈ K. Considering
the links of the edges 36, 26, 27, 25, and 13, we get 1256, 1235, 1357 ∈ K. Here, K =N3.

Case 3. Only singular vertex in K is 8. So, the link of each vertex (other than vertex 8) is an S2
7

(a 7-vertex 2-sphere). Since 8 is a degree 6 vertex in lk(u), it follows that lk(u) is isomorphic
to one of S5, S6, or S7 (defined in Example 2.2) for any vertex u/= 8. If lk(1) ∼= S5, then (since
(3, 4, 2, 6, 5, 7) ∈ Aut(lk(8))), we may assume that the other degree 6 vertex in lk(1) is 3.
Then, from the links of 1 and 3, 1348, 1234, 1346 are facets containing 134, a contradiction. If
lk(1) ∼= S6, then (since lk(18) = C6(3, 4, 2, 6, 5, 7)) we may assume that the degree 5 vertices
in lk(1) are 2, 3, and 5. Then lk(3) cannot be an S2

7, a contradiction. So, lk(1) ∼= S7. Since
Aut(lk(8)) acts transitively on {1, . . . , 7}, it follows that the link of each vertex is isomorphic
to S7.

Since lk(18) = C6(3, 4, 2, 6, 5, 7) and (3, 4, 2, 6, 5, 7) ∈ Aut(lk(8)), we may assume that
the degree 5 vertices in lk(1) are 4 and 5. Since lk(4) ∼= S7, it follows that 1456/∈K. Then, from
lk(1), 1245, 1256, 1347, 1457 ∈ K. Now, from the links of 4 and 5, we get 3467, 2356 ∈ K. Then,
from lk(2), 2367 ∈ K. Here K =N4. This completes the proof.
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Figure 3: Hasse diagram of the poset of the 8-vertex combinatorial 3-manifolds (the partial order relation
is as defined in Section 2).

Lemma 4.6. Let K be an 8-vertex neighbourly normal 3-pseudomanifold. If K is not a combinatorial
3-manifold and has no vertex whose link is isomorphic to the 7-vertex torus T thenK is isomorphic to
N5, . . . ,N14 orN15.

Proof. Let ns be the number of singular vertices in K. Since K is neighbourly, by
Proposition 2.3, the link of any vertex is either a 7-vertex RP 2 or a 7-vertex S2. So, the number
of facets through a singular (resp., nonsingular) vertex is 12 (resp., 10). Let f3 be the number
of facets of K. Consider the set S = {(v, σ) : σ is a facet of K and v ∈ σ is a vertex }. Then
f3 × 4 = #(S) = ns × 12 + (8 − ns) × 10 = 80 + 2ns. This implies ns is even. Since K is not
a combinatorial 3-manifold, it follows that ns /= 0 and hence ns ≥ 2. So, K has at least two
vertices whose links are isomorphic to R2, R3, or R4.

Case 1. There exist (at least) two vertices whose links are isomorphic to R4. Assume that
lkM(8) = R4. Then 1258, 1268, 1358, 1378, 1468, 1478, 2368, 2378, 2458, 2478, 3458, 3468 ∈ K.
Since (1, 3, 4)(5, 6, 7), (1, 2)(3, 4) ∈ Aut(lk(8)), we may assume that lk(3) or lk(7) ∼= R4.

Case 1.1. lk(7) ∼= R4. Since lklk(7)(8) = C4(1, 3, 2, 4), it follows that 1, 2, 3, 4 are degree 5 vertices
in lk(7). Since (3, 4)(5, 6) ∈ Aut(lk(8)), assume without loss that 136, 145 ∈ lk(7). Then, from
lk(7), we get 1257, 1267, 1367, 1457, 2357, 2467, 3457, 3467 ∈ K. This shows that lk(2) is an RP 2

7 .
Since 3457, 3458 ∈ K, it follows that 2345/∈K. Then, from lk(2), 2356, 2456 ∈ K. Then, from
the links of 3 and 4, 1356, 1456 ∈ K. Here K =N5.

Case 1.2. lk(7)/∼=R4. So, lk(3) ∼= R4. Since lklk(3)(8) = C6(1, 7, 2, 6, 4, 5), the degree 4 vertices in
lk(3) are either 5, 6, 7, or 1, 2, 4. In the first case, on completion of lk(3), we observe that 56, 67,
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57 remain nonedges in K. So, the degree 4 vertices in lk(3) are 1, 2, and 3. Then 1356, 1367,
2356, 2357, 3457, and 3467 are facets. Since lk(7)/∼=R4 and deg(78) = 4, either lk(7) ∼= R3 or
lk(7) is an S2

7. In the former case, 2567 is a facet. This is not possible from lk(25). So, lk(7) is
an S2

7. Then, from lk(7), 1467, 2457 ∈ K. Now, from lk(1), 1256 ∈ K. Here, K =N7.

Case 2. Exactly one vertex whose link is isomorphic to R4 and there exists a vertex whose link
is isomorphic to R3. Using the same method as in Case 1, we find that K ∼=N8.

Case 3. Exactly one vertex whose link is isomorphic to R4, there is no vertex whose link is
isomorphic to R3 and there exists (at least) a vertex whose link is isomorphic to R2. Using the
same method as in Case 1, we find that K ∼=N9.

Case 4. There is no vertex whose link is isomorphic toR4 and there exist (at least) two vertices
whose links are isomorphic to R3. Assume that lkK(8) = R4, so that deg(78) = 4. Using the
same method as in Case 1, we get the following: (i) if lkK(7) ∼= R3, then K = N6 and (ii) if
lkK(7)/∼=R3, then K is isomorphic to N10 or N11.

Case 5. There is no vertex whose link is isomorphic to R4, there exists exactly one vertex
whose link is isomorphic to R3 and there exists (at least) a vertex whose link is isomorphic to
R2. Using the same method as in Case 1, we find that K is isomorphic to N12 or N13.

Case 6. There is no vertex whose link is isomorphic to R4 or R3 and there exist (at least) two
vertices whose links are isomorphic to R2. Using the same method as in Case 1, we find that
K is isomorphic to N14 or N15. This completes the proof.

Proof of Theorem 1.2. Since S3
8,m’s are combinatorial 3-manifolds and Nn’s are not combinato-

rial 3-manifolds, S3
8,m/
∼=Nn for 35 ≤ m ≤ 38, 1 ≤ n ≤ 15. Part (a) now follows from Lemmas

3.2, 3.7. Part (b) follows from Lemmas 4.4, 4.5, and 4.6.

Lemma 4.7. Let S0, . . . ,S6 be as in the proof of Lemma 3.4. If a combinatorial 3-manifold K is
obtained from a member of Sj by a bistellar 2-move, then K is isomorphic to a member of Sj+1 for
0 ≤ j ≤ 5. Moreover, no bistellar 2-move is possible from a member of S6.

Proof. Recall that S0 = {S3
8,35, S

3
8,36, S

3
8,37, S

3
8,38}. The removable edges in S3

8,37 are 13, 16, 17,
24, 27, 35, 46, 48, and 58. Since (1, 4)(2, 7)(3, 8) ∈ Aut(S3

8,37), up to isomorphisms, it is
sufficient to consider the bistellar 2 -moves κ27, κ24, κ48, κ58, and κ46 only. Here S3

8,33 :=
κ27(S3

8,37), S
3
8,30 := κ24(S3

8,37), S
3
8,32 := κ48(S3

8,37), S
3
8,31 := κ58(S3

8,37), and κ46(S3
8,37)

∼= S3
8,31 by

the map (1, 4, 5)(2, 7)(3, 6, 8).
The removable edges in S3

8,38 are 13, 38, 78, 27, 25, 15, and 46. Since (1, 2, 8)
(7, 3, 5), (1, 2)(3, 7)(4, 6) ∈ Aut(S3

8,38), it is sufficient to consider the bistellar 2-moves κ46 and
κ78 only. Here S3

8,39 := κ46(S3
8,36) and κ78(S3

8,38)
∼= S3

8,32 by the map (1, 7, 8, 4, 6)(2, 3).
The removable edges in S3

8,36 are 13, 35, 58, 68, 46, 24, 27, 17. Since (1, 5, 6, 2)(3, 8, 4, 7) is
an automorphism of S3

8,36, it is sufficient to consider the bistellar 2-moves κ58 and κ68 only.
Here κ58(S3

8,36) = S
3
8,31 and κ68(S3

8,36)
∼= S3

8,30 by the map (1, 6, 4, 8, 2, 5, 7, 3).
The removable edges in S3

8,35 are 13, 35, 57, 71, 24, 46, 68, and 82. Since (1, 2, . . . ,
8), (1, 8)(2, 7)(3, 6)(4, 5) ∈ Aut(S3

8,35), it is sufficient to consider the bistellar 2-moves κ68 only.
Here κ68(S3

8,35)
∼= S3

8,30 by the map (1, 7, 3)(2, 8, 4, 5, 6). This proves the result for j = 0.



B. Datta and N. Nilakantan 19

N14N8N12N13N11N15N9N7N10

N24N19N17N18N22N23N21N16N20

N28N27N31N29N30N25N26

N34N35N33N32

Figure 4: Hasse diagram of the poset of all the 3-pseudomanifolds N7, . . . ,N35.

By the same arguments as in the case for j = 0, one proves for the cases for 1 ≤ j ≤ 5.
We summarize these cases in Figure 3 below. Last part follows from the fact that none of
S3

8,1, S
3
8,3, or S3

8,3 has any removable edges.

Lemma 4.8. Let N0, . . . ,N3 be as in the proof of Lemma 3.9. If a 3-pseudomanifold K is obtained
from a member ofNj by a bistellar 2-move, then K is isomorphic to a member ofNj+1 for 0 ≤ j ≤ 2.
Moreover, no bistellar 2-move is possible from a member ofN3.

Proof. Recall thatN0 = {N1, . . . ,N15}. Since there are no degree 3 edges in N1, N2, N5, and
N6, no bistellar 2-moves are possible from N1, N5, N6, or N2. The degree 3 edges in N3

(resp., in N4) are 14, 16, 17, 36, 67 (resp., 13, 35, 57, 72, 24, 46, 61). But, none of these edges is
removable. So, bistellar 2-moves are not possible from N3 or N4.

The removable edges in N7 are 12, 14, 24, 56, 57, and 67. Since (1, 2)(6, 7), (1, 2)(5, 6),
and (1, 5)(2, 6)(3, 8)(4, 7) are automorphisms of N7, it follows that up to isomorphisms, we
only have to consider the bistellar 2-move κ67. Here, N16 = κ67(N7).

The removable edges in N8 are 15, 17, 24, 56, 57, and 67. Since (1, 6)(2, 4), (1, 6)(5, 7),
(2, 4)(5, 7) ∈ Aut(N8), we only consider the bistellar 2-moves κ24, κ56, and κ57. Here, N17 =
κ24(N8), N18 = κ56(N8), and N19 = κ57(N8).

The removable edges in N9 are 12, 23, 24, and 67. Since (1, 4)(6, 7) ∈ Aut(N9), we
consider only κ12, κ23, and κ67. Here, N21 = κ12(N9), N23 = κ23(N9), and κ67(N9) =N16.

The removable edges in N10 are 12, 14, 24, 56, 57, and 67. Since (1, 7)(2, 5)(3, 8)(4, 6),
(1, 4)(6, 7) ∈ Aut(N10), we consider the bistellar 2-moves κ56 and κ57 only. Here, N20 =
κ56(N10) and κ67(N10) =N16.

The removable edges ofN11 are 14, 24, 56, 57, and 67. Since (1, 2)(5, 6)(3, 8) ∈ Aut(N11),
we only consider the bistellar 2-moves κ14, κ56, and κ67. Here, N22 = κ14(N11), κ56(N11) =
N20, and κ67(N11) ∼=N18 (by the map (2, 4)(5, 7)).

The removable edges in N12 are 12, 23, 45, and 57. Here, κ12(N12) ∼= N22 (by the map
(2, 4, 6)), κ23(N12) = N23, κ45(N12) ∼= N21 (by the map (1, 6, 5, 2, 7, 4)(3, 8)), and κ57(N12) ∼=
N18 (by the map (1, 6, 7, 4)).

The removable edges in N13 are 12, 23, 24, 56, 57, and 67. Since (1, 4)(6, 7) ∈ Aut(N13),
we only consider κ12, κ23, κ57, and κ67. Here, κ12(N13) ∼= N22 (by the map (2, 7, 5, 4)),
κ23(N13) =N23, κ57(N13) ∼=N18 (by the map (1, 4)(6, 7)), and κ67(N13) =N16.

The removable edges in N14 are 38, 56, 57, 67. Since (1, 2, 4)(5, 6, 7)(3, 8) ∈ Aut(N14),
we only consider κ38 and κ57. Here, N24 = κ38(N14) and κ57(N14) =N19.

The removable edges in N15 are 15, 23, 24, 58. Since (1, 7)(2, 5)(3, 8)(4, 6) ∈ Aut(N15),
we only consider the bistellar 2-moves κ23 and κ24. Here, κ23(N15) = N23 and κ24(N15) ∼= N21

(by the map (1, 6, 5, 7, 4)). This proves the result for j = 0.
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By the same arguments as in the case for j = 0, one proves the same for other cases
(namely, for j = 1, 2) as well. We summarize these cases in Figure 4 . Last part follows from
the fact that, for Ni ∈ N3, Ni has no removable edge.

Proof of Corollary 1.3. Let S0, . . . ,S6 be as in the proof of Lemma 3.4. Let M be an 8-vertex
combinatorial 3-manifold. Then, by Theorem 1.1, there exist bistellar 1-moves κA1 , . . . , κAm ,
for some m ≥ 0, such that M1 := κAm(· · · (κA1(M))) is a neighbourly 8-vertex 3-
pseudomanifold. Since bistellar moves send a combinatorial 3-manifold to a combinatorial 3-
manifold, M1 is a combinatorial 3-manifold. Then, by Theorem 1.2, M1 ∈ S0. In other words,
M = κe1(· · · (κem(M1))), where M1 ∈ S0 and κem : M1 �→ κem(M1), κei : κei+1(· · · (κem(M1))) �→
κei(· · · (κem(M1))), for 1 ≤ i ≤ m − 1, are bistellar 2-moves. Therefore, by Lemma 4.7,
M ∈ S0 ∪ · · · ∪ S6. The result now follows from Lemma 3.4.

Proof of Corollary 1.4. Let N0, . . . ,N3 be as in the proof of Lemma 3.9. Let M be an 8-vertex
normal 3-pseudomanifold. Then, by Theorem 1.1, there exist bistellar 1-moves κA1 , . . . , κAm ,
for some m ≥ 0, such that M1 := κAm(· · · (κA1(M))) is a neighbourly 3-pseudomanifold.
Since bistellar moves send a normal 3-pseudomanifold to a normal 3-pseudomanifold, M1

is normal. Hence, by Theorem 1.2, M1 ∈ N0. In other words, M = κe1(· · · (κem(M1))), where
M1 ∈ N0 and κem : M1 �→ κem(M1), κei : κei+1(· · · (κem(M1))) �→ κei(· · · (κem(M1))), for 1 ≤ i ≤
m − 1, are bistellar 2-moves. Therefore, by Lemma 4.8, M ∈ N0 ∪ N1 ∪ N2 ∪ N3. The result
now follows from Lemma 3.9.
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Matemática Mexicanae. Tercera Serie, vol. 5, no. 2, pp. 419–426, 1999.

[11] W. Kühnel, “Minimal triangulations of Kummer varieties,” Abhandlungen aus dem Mathematischen
Seminar der Universität Hamburg, vol. 57, pp. 7–20, 1987.



B. Datta and N. Nilakantan 21

[12] E. Gawrilow and M. Joswig, polymake, 1997–2007, version 2.3, http://www.math.tu-berlin.de/
polymake.

[13] W. Kühnel, “Triangulations of manifolds with few vertices,” in Advances in Differential Geometry and
Topology, F. Tricerri, Ed., pp. 59–114, World Scientific, Teaneck, NJ, USA, 1990.

[14] B. Bagchi and B. Datta, “Minimal trialgulations of sphere bundles over the circle,” Journal of
Combinatorial Theory. Series A, vol. 115, no. 5, pp. 737–752, 2008.

[15] D. W. Walkup, “The lower bound conjecture for 3- and 4-manifolds,” Acta Mathematica, vol. 125, no.
1, pp. 75–107, 1970.

http://www.math.tu-berlin.de/polymake
http://www.math.tu-berlin.de/polymake


Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


