Research Article

Three-Dimensional Pseudomanifolds on Eight Vertices

Basudeb Datta ${ }^{1}$ and Nandini Nilakantan ${ }^{2}$
${ }^{1}$ Department of Mathematics, Indian Institute of Science, Bangalore 560 012, India
${ }^{2}$ Department of Mathematics \& Statistics, Indian Institute of Technology, Kanpur 208 016, India
Correspondence should be addressed to Basudeb Datta, dattab@math.iisc.ernet.in

Received 9 April 2008; Revised 11 June 2008; Accepted 25 June 2008
Recommended by Pentti Haukkanen

Abstract

A normal pseudomanifold is a pseudomanifold in which the links of simplices are also pseudomanifolds. So, a normal 2-pseudomanifold triangulates a connected closed 2-manifold. But, normal d-pseudomanifolds form a broader class than triangulations of connected closed d manifolds for $d \geq 3$. Here, we classify all the 8 -vertex neighbourly normal 3-pseudomanifolds. This gives a classification of all the 8 -vertex normal 3-pseudomanifolds. There are 74 such 3pseudomanifolds, 39 of which triangulate the 3-sphere and other 35 are not combinatorial 3manifolds. These 35 triangulate six distinct topological spaces. As a preliminary result, we show that any 8 -vertex 3 -pseudomanifold is equivalent by proper bistellar moves to an 8 vertex neighbourly 3-pseudomanifold. This result is the best possible since there exists a 9 -vertex nonneighbourly 3-pseudomanifold which does not allow any proper bistellar moves.

Copyright © 2008 B. Datta and N. Nilakantan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Recall that a simplicial complex is a collection of nonempty finite sets (sets of vertices) such that every nonempty subset of an element is also an element. For $i \geq 0$, the elements of size $i+1$ are called the i-simplices (or i-faces) of the complex.

A simplicial complex is usually thought of as a prescription for construction of a topological space by pasting geometric simplices. The space thus obtained from a simplicial complex K is called the geometric carrier of K and is denoted by $|K|$. We also say that K triangulates $|K|$. A combinatorial 2-manifold (resp., combinatorial 2-sphere) is a simplicial complex which triangulates a closed surface (resp., the 2 -sphere S^{2}).

For a simplicial complex K, the maximum of k such that K has a k-simplex, is called the dimension of K. A d-dimensional simplicial complex K is called pure if each simplex of K is contained in a d-simplex of K. A d-simplex in a pure d-dimensional simplicial complex is called a facet. A d-dimensional pure simplicial complex K is called a weak pseudomanifold if each $(d-1)$-simplex of K is contained in exactly two facets of K.

With a pure simplicial complex K of dimension $d \geq 1$, we associate a graph $\Lambda(K)$ as follows. The vertices of $\Lambda(K)$ are the facets of K and two vertices of $\Lambda(K)$ are adjacent if the corresponding facets intersect in a ($d-1$)-simplex of K. If $\Lambda(K)$ is connected, then K is called strongly connected. A strongly connected weak pseudomanifold is called a pseudomanifold. Thus, for a d-pseudomanifold $K, \Lambda(K)$ is a connected $(d+1)$-regular graph. This implies that K has no proper subcomplex which is also a d-pseudomanifold; (or else, the facets of such a subcomplex would provide a disconnection of $\Lambda(X))$.

For any set V with $\#(V)=d+2(d \geq 0)$, let K be the simplicial complex whose simplexes are all the nonempty proper subsets of V. Then K is a d-pseudomanifold and triangulates the d-sphere S^{d}. This d-pseudomanifold K is called the standard d-sphere and is denoted by $S_{d+2}^{d}(V)$ (or $\left.S_{d+2}^{d}\right)$. By convention, S_{2}^{0} is the only 0-pseudomanifold.

If σ is a face of a simplicial complex K, then the link of σ in K, denoted by $\mathrm{lk}_{K}(\sigma)$ (or $\operatorname{lk}(\sigma)$), is by definition the simplicial complex whose faces are the faces τ of K such that τ is disjoint from σ and $\sigma \cup \tau$ is a face of K. Clearly, the link of an i face in a weak d-pseudomanifold is a weak ($d-i-1$)-pseudomanifold. For $d \geq 1$, a connected weak d-pseudomanifold is said to be a normal d-pseudomanifold if the links of all the simplices of dimension $\leq d-2$ are connected. Thus, any connected triangulated d manifold (triangulation of a closed d-manifold) is a normal d-pseudomanifold. Clearly, the normal 2-pseudomanifolds are just the connected combinatorial 2-manifolds; but normal d pseudomanifolds form a broader class than connected triangulated d-manifolds for $d \geq 3$.

Observe that if X is a normal pseudomanifold, then X is a pseudomanifold. (If $\Lambda(X)$ is not connected, then, since X is connected, $\Lambda(X)$ has two components G_{1} and G_{2} and two intersecting facets σ_{1}, σ_{2} such that $\sigma_{i} \in G_{i}, i=1,2$. Choose σ_{1}, σ_{2} among all such pairs such that $\operatorname{dim}\left(\sigma_{1} \cap \sigma_{2}\right)$ is maximum. Then $\operatorname{dim}\left(\sigma_{1} \cap \sigma_{2}\right) \leq d-2$ and $\mathrm{lk}_{X}\left(\sigma_{1} \cap \sigma_{2}\right)$ is not connected, a contradiction.) Notice that all the links of positive dimensions (i.e., the links of simplices of dimension $\leq d-2$) in a normal d-pseudomanifold are normal pseudomanifolds. Thus, if K is a normal 3-pseudomanifold, then the link of a vertex in K is a combinatorial 2-manifold. A vertex v of a normal 3-pseudomanifold K is called singular if the link of v in K is not a 2 -sphere. The set of singular vertices is denoted by $\operatorname{SV}(K)$. Clearly, the space $|K| \backslash \mathrm{SV}(K)$ is a pl 3-manifold. If $\mathrm{SV}(K)=\varnothing$ (i.e., the link of each vertex is a 2-sphere), then K is called a combinatorial 3-manifold. A combinatorial 3-sphere is a combinatorial 3-manifold which triangulates the topological 3-sphere S^{3}.

Let M be a weak d-pseudomanifold. If α is a $(d-i)$-face of $M, 0<i \leq d$, such that $\mathrm{lk}_{M}(\alpha)=S_{i+1}^{i-1}(\beta)$ and β is not a face of M (such a face α is said to be a removable face of $M)$, then consider the weak d-pseudomanifold (denoted by $\kappa_{\alpha}(M)$) whose facet-set is $\{\sigma$: σ a facet of $M, \alpha \nsubseteq \sigma\} \cup\{\beta \cup \alpha \backslash\{v\}: v \in \alpha\}$. The operation $\kappa_{\alpha}: M \mapsto \kappa_{\alpha}(M)$ is called a bistellar i-move. For $0<i<d$, a bistellar i-move is called a proper bistellar move. If κ_{α} is a proper bistellar i-move and $\mathrm{lk}_{M}(\alpha)=S_{i+1}^{i-1}(\beta)$, then β is a removable i-face of $\kappa_{\alpha}(M)$ (with $\left.\operatorname{lk}_{\kappa_{\alpha}(M)}(\beta)=S_{d-i+1}^{d-i-1}(\alpha)\right)$ and $\kappa_{\beta}: \kappa_{\alpha}(M) \mapsto M$ is an bistellar $(d-i)$-move. For a vertex u, if $\mathrm{lk}_{M}(u)=S_{d+1}^{d-1}(\beta)$, then the bistellar d-move $\kappa_{\{u\}}: M \mapsto \kappa_{\{u\}}(M)=N$ deletes the vertex u (we also say that N is obtained from M by collapsing the vertex u). The operation $\kappa_{\beta}: N \mapsto M$ is called a bistellar 0-move (we also say that M is obtained from N by starring the vertex u in the facet β of $N)$. The 10-vertex combinatorial 3-manifold A_{10}^{3} in Example 3.15 is not neighbourly and does not allow any bistellar 1-move. In [1], Bagchi and Datta have shown that if the number of vertices in a nonneighbourly combinatorial 3-manifold is at most 9, then the 3-manifold admits a bistellar 1-move. Existence of the 9-vertex 3-pseudomanifold B_{9}^{3} in Example 3.16 shows that Bagchi and Datta's result is not true for 9-vertex 3-pseudomanifolds. Here we prove the following theorem.

Theorem 1.1. If M is an 8-vertex 3-pseudomanifold, then there exists a sequence of bistellar 1-moves $\kappa_{A_{1}}, \ldots, \kappa_{A_{m}}$, for some $m \geq 0$, such that $\kappa_{A_{m}}\left(\cdots\left(\kappa_{A_{1}}(M)\right)\right)$ is a neighbourly 3-pseudomanifold.

In [2], Altshuler has shown that every combinatorial 3-manifold with at most 8 vertices is a combinatorial 3-sphere. In [3], Grünbaum and Sreedharan have shown that there are exactly 37 polytopal 3-spheres on 8 vertices (namely, $S_{8,1}^{3}, \ldots, S_{8,37}^{3}$ in Examples 3.1 and 3.3). They have also constructed the nonpolytopal sphere $S_{8,38}^{3}$. In [4], Barnette proved that there is only one more nonpolytopal 8-vertex 3-sphere (namely, $S_{8,39}^{3}$). In [5], Emch constructed an 8vertex normal 3-pseudomanifold (namely, N_{1} in Example 3.5) as a block design. This is not a combinatorial 3-manifold and its automorphism group is PGL(2,7) (cf. [6]). In [7], Altshuler has constructed another 8-vertex normal 3-pseudomanifold (namely, N_{5} in Example 3.5). In [8], Lutz has shown that there exist exactly three 8-vertex normal 3-pseudomanifolds which are not combinatorial 3-manifolds (namely, N_{1}, N_{5} and N_{6} in Example 3.5) with vertextransitive automorphism groups. Here we prove the following theorem.

Theorem 1.2. Let $S_{8,35}^{3} \ldots, S_{8,38}^{3}, N_{1}, \ldots, N_{15}$ be as in Examples 3.1 and 3.5.
(i) Then $S_{8, i}^{3} \nexists S_{8, j}^{3}, \quad N_{k} \nexists N_{l}$, and $S_{8, m}^{3} \nexists N_{n}$ for $35 \leq i<j \leq 38,1 \leq k<l \leq 15,35 \leq m \leq 38$, and $1 \leq n \leq 15$.
(ii) If M is an 8-vertex neighbourly normal 3-pseudomanifold, then M is isomorphic to one of $S_{8,35}^{3}, \ldots, S_{8,38}^{3}, N_{1}, \ldots, N_{15}$.

Corollary 1.3. There are exactly 39 combinatorial 3-manifolds on 8 vertices, all of which are combinatorial 3-spheres.

Corollary 1.4. There are exactly 35 normal 3-pseudomanifolds on 8 vertices which are not combinatorial 3-manifolds. These are N_{1}, \ldots, N_{35} defined in Examples 3.5 and 3.8.

The topological properties of these normal 3-pseudomanifolds are given in Section 3.

2. Preliminaries

All the simplicial complexes considered in this paper are finite (i.e., with finite vertex-set). The vertex-set of a simplicial complex K is denoted by $V(K)$. We identify the 0 -faces of a complex with the vertices. The 1-faces of a complex K are also called the edges of K.

If K, L are two simplicial complexes, then an isomorphism from K to L is a bijection $\pi: V(K) \rightarrow V(L)$ such that for $\sigma \subseteq V(K), \sigma$ is a face of K if and only if $\pi(\sigma)$ is a face of L. Two complexes K, L are called isomorphic when such an isomorphism exists. We identify two complexes if they are isomorphic. An isomorphism from a complex K to itself is called an automorphism of K. All the automorphisms of K form a group under composition, which is denoted by $\operatorname{Aut}(K)$.

For a face σ in a simplicial complex K, the number of vertices in $\mathrm{lk}_{K}(\sigma)$ is called the degree of σ in K and is denoted by $\operatorname{deg}_{K}(\sigma)$ (or by $\left.\operatorname{deg}(\sigma)\right)$. If every pair of vertices of a simplicial complex K form an edge, then K is called neighbourly. For a simplicial complex K, if $U \subseteq V(K)$, then $K[U]$ denotes the induced complex of K on the vertex-set U.

If the number of i-faces of a d-dimensional simplicial complex K is $f_{i}(K)(0 \leq i \leq d)$, then the number $\chi(K):=\sum_{i=0}^{d}(-1)^{i} f_{i}(K)$ is called the Euler characteristic of K.

Bistellar moves in dimension 3
Figure 1

A graph is a simplicial complex of dimension ≤ 1. A finite 1-pseudomanifold is called a cycle. An n-cycle is a cycle on n vertices and is denoted by C_{n} (or by $C_{n}\left(a_{1}, \ldots, a_{n}\right)$ if the edges are $\left.a_{1} a_{2}, \ldots, a_{n-1} a_{n}, a_{n} a_{1}\right)$.

For a simplicial complex K, the graph consisting of the edges and vertices of K is called the edge-graph of K and is denoted by $\mathrm{EG}(K)$. The complement of $\mathrm{EG}(K)$ is called the nonedge graph of K and is denoted by NEG(K). For a weak 3-pseudomanifold M and an integer $n \geq 3$, we define the graph $G_{n}(M)$ as follows. The vertices of $G_{n}(M)$ are the vertices of M. Two vertices u and v form an edge in $G_{n}(M)$ if $u v$ is an edge of degree n in M. Clearly, if M and N are isomorphic, then $G_{n}(M)$ and $G_{n}(N)$ are isomorphic for each n.

If M is a weak 3-pseudomanifold and $\kappa_{\alpha}: M \mapsto \kappa_{\alpha}(M)=N$ is a bistellar 1-move, then, from the definition, $\left(f_{0}(N), f_{1}(N), f_{2}(N), f_{3}(N)\right)=\left(f_{0}(M), f_{1}(M)+1, f_{2}(M)+2, f_{3}(M)+1\right)$ and $\operatorname{deg}_{N}(v) \geq \operatorname{deg}_{M}(v)$ for any vertex v. If $\kappa_{\alpha}: M \mapsto \kappa_{\alpha}(M)=L$ is a bistellar 3-move, then $\left(f_{0}(L), f_{1}(L), f_{2}(L), f_{3}(L)\right)=\left(f_{0}(M)-1, f_{1}(M)-4, f_{2}(M)-6, f_{3}(M)-3\right)$.

Consider the binary relation " \leq " on the set of weak 3-pseudomanifolds as $M \leq N$ if there exists a finite sequence of bistellar 1-moves $\kappa_{\alpha_{1}}, \ldots, \kappa_{\alpha_{m}}$, for some $m \geq 0$, such that $N=\kappa_{\alpha_{m}}\left(\cdots \kappa_{\alpha_{1}}(M)\right)$. Clearly, this \leq is a partial order relation.

Two weak d-pseudomanifolds M and N are bistellar equivalent (denoted by $M \sim N$) if there exists a finite sequence of bistellar operations leading from M to N. If there exists a finite sequence of proper bistellar operations leading from M to N, then we say M and N are properly bistellar equivalent and we denote this by $M \approx N$. Clearly, " \sim " and " \approx " are equivalence relations on the set of pseudomanifolds. It is easy to see that $M \sim N$ implies that $|M|$ and $|N|$ are pl homeomorphic.

For two simplicial complexes X and Y with disjoint vertex sets, the simplicial complex $X * Y:=X \cup Y \cup\{\sigma \cup \tau: \sigma \in X, \tau \in Y\}$ is called the join of X and Y.

Let K be an n-vertex (weak) d-pseudomanifold. If u is a vertex of K and v is not a vertex of K, then consider the simplicial complex $\Sigma_{u v} K$ on the vertex set $V(K) \cup\{v\}$ whose set of facets is $\{\sigma \cup\{u\}: \sigma$ is a facet of K and $u \notin \sigma\} \cup\{\tau \cup\{v\}: \tau$ is a facet of $K\}$. Then $\Sigma_{u v} K$ is a (weak) $(d+1)$-pseudomanifold and $\left|\Sigma_{u v} K\right|$ is the topological suspension $S|K|$ of $|K|$ (cf. [9]). It is easy to see that the links of u and v in $\Sigma_{u v} K$ are isomorphic to K. This $\Sigma_{u v} K$ is called the one-point suspension of K.

For two d-pseudomanifolds X and Y, a simplicial map $f: X \rightarrow Y$ is called a k-fold branched covering (with discrete branch locus) if $\left|f \|_{|X| \backslash f^{-1}(U)}:|X| \backslash f^{-1}(U) \rightarrow\right| Y \mid \backslash U$ is a k fold covering for some $U \subseteq V(Y)$. (We say that X is a branched cover of Y and Y is a branched quotient of X.) The smallest such U (so that $|f|_{|X| \backslash f^{-1}(U)}:|X| \backslash f^{-1}(U) \rightarrow|Y| \backslash U$ is a covering) is called the branch locus. If N is a k-fold branched quotient of M and \widetilde{N} is obtained from N by collapsing a vertex (resp., starring a vertex in a facet), then \widetilde{N} is the branched quotient of \widetilde{M}, where \widetilde{M} can be obtained from M by collapsing k vertices (resp., starring k vertices in k facets). For proper bistellar moves we have the following lemma.

Lemma 2.1. Let M and N be two d-pseudomanifolds and $f: M \rightarrow N$ be a k-fold branched covering. For $1 \leq l<d-1$, if α is a removable l-face, then $f^{-1}(\alpha)$ consists of k removable l-faces $\alpha_{1}, \ldots, \alpha_{k}($ say $)$ and $\kappa_{\alpha_{k}}\left(\cdots\left(\mathcal{\kappa}_{\alpha_{1}}(M)\right)\right)$ is a k-fold branched cover of $\kappa_{\alpha}(N)$.

Proof. Let $\mathrm{lk}_{N}(\alpha)=S_{d-l+1}^{d-l-1}(\beta)$. Since the dimension of α is $>0, f^{-1}(\alpha)$ consists of $k l$-faces, $\alpha_{1}, \ldots, \alpha_{k}$ (say) of M. Let $\mathrm{lk}_{M}\left(\alpha_{i}\right)=S_{d-l+1}^{d-l-1}\left(\beta_{i}\right)$ and $M_{i}:=M\left[\alpha_{i} \cup \beta_{i}\right]$ for $1 \leq i \leq k$. Since f is simplicial, β_{i} is not a face of M and hence α_{i} is removable for each i. Since $0<l<d-1$, it follows that M_{i} is neighbourly. For $i \neq j$, if $x \neq y \in V\left(M_{i}\right) \cap V\left(M_{j}\right)$, then $x y$ is an edge in $M_{i} \cap M_{j}$ and hence the number of edges in $f^{-1}(f(x) f(y))$ is less than k, a contradiction. So, $\#\left(V\left(M_{i}\right) \cap V\left(M_{j}\right)\right) \leq 1$ for $i \neq j$. This implies that β_{i} is not a face in $\kappa_{\alpha_{j}}(M)$ and hence α_{i} is removable in $\mathcal{\kappa}_{\alpha_{j}}(M)$ for $i \neq j$. The result now follows.

Remark 3.14 shows that Lemma 2.1 is not true for $l=d-1$ (i.e., for bistellar 1-moves) in general.

Example 2.2. In Figure 2, we present some weak 2-pseudomanifolds on at most seven vertices. The degree sequences are presented parenthetically below the figures. Each of S_{1}, \ldots, S_{9} triangulates the 2-sphere, each of R_{1}, \ldots, R_{4} triangulates the real projective plane and T triangulates the torus. Observe that P_{1}, P_{2} are not pseudomanifolds.

We know that if K is a weak 2-pseudomanifold with at most six vertices, then K is isomorphic to S_{1}, \ldots, S_{4} or R_{1} (cf. [9]). In [10], we have seen the following.

Proposition 2.3. There are exactly 13 distinct 2-dimensional weak pseudomanifolds on 7 vertices, namely, $S_{5}, \ldots, S_{9}, R_{2}, \ldots, R_{4}, T, P_{1}, \ldots, P_{3}$, and P_{4}.

3. Examples

We identify a weak pseudomanifold with the set of facets in it.
Example 3.1. These four neighbourly 8-vertex combinatorial 3-manifolds were found by Grünbaum and Sreedharan (in [3], these are denoted by $P_{35}^{8}, P_{36}^{8}, P_{37}^{8}$ and \mathcal{M}, resp.). It follows from Lemma 3.4 that these are combinatorial 3-spheres. It was shown in [3] that the first three of these are polytopal 3-spheres and the last one is a nonpolytopal sphere:

$$
\begin{align*}
S_{8,35}^{3}= & \{1234,1267,1256,1245,2345,2356,2367,3467,3456,4567,1238,1278,2378, \\
& 1348,3478,1458,4578,1568,1678,5678\}, \\
S_{8,36}^{3}= & \{1234,1256,1245,1567,2345,2356,2367,3467,3456,4567,1268,1678,2678, \\
& 1238,2378,1348,3478,1458,1578,4578\}, \\
S_{8,37}^{3}= & \{1234,1256,1245,1457,2345,2356,2367,3467,3456,4567,1568,1578,5678, \tag{3.1}\\
& 1268,2678,1238,2378,1348,1478,3478\}, \\
S_{8,38}^{3}= & \{1234,1237,1267,1347,1567,2345,2367,3467,3456,4567,2358,2368,3568, \\
& 1268,1568,1248,2458,1478,1578,4578\} .
\end{align*}
$$

Lemma 3.2. $S_{8, i}^{3} \neq S_{8, j}^{3}$ for $35 \leq i<j \leq 38$.

Figure 2
Proof. Observe that $G_{6}\left(S_{8,35}^{3}\right)=C_{8}(1,2, \ldots, 8), G_{6}\left(S_{8,36}^{3}\right)=(V,\{23,34,45,67,78,81\}), G_{6}\left(S_{8,37}^{3}\right)=$ $(V,\{23,34,56,78,81\})$, and $G_{6}\left(S_{8,38}^{3}\right)=(V,\{17,23,58\})$, where $V=\{1, \ldots, 8\}$. Since $K \cong L$ implies $G_{6}(K) \cong G_{6}(L), S_{8, i}^{3} \neq S_{8, j}^{3}$, for $35 \leq i<j \leq 38$.

Example 3.3. Some nonneighbourly 8-vertex combinatorial 3-manifolds. It follows from Lemma 3.4 that these are combinatorial 3-spheres. For $1 \leq i \leq 34$, the sphere $S_{8, i}^{3}$ is isomorphic to the polytopal sphere P_{i}^{8} in [3] and the sphere $S_{8,39}^{3}$ is isomorphic to the nonpolytopal sphere found by Barnette in [4]. We consecutively define

$$
\begin{align*}
& S_{8,39}^{3}=\kappa_{46}\left(S_{8,38}^{3}\right), \quad S_{8,33}^{3}=\kappa_{27}\left(S_{8,37}^{3}\right), \quad S_{8,32}^{3}=\kappa_{48}\left(S_{8,37}^{3}\right), \quad S_{8,31}^{3}=\kappa_{58}\left(S_{8,37}^{3}\right), \\
& S_{8,30}^{3}=\kappa_{24}\left(S_{8,37}^{3}\right), \quad S_{8,29}^{3}=\kappa_{27}\left(S_{8,31}^{3}\right), \quad S_{8,28}^{3}=\kappa_{24}\left(S_{8,31}^{3}\right), \quad S_{8,27}^{3}=\kappa_{13}\left(S_{8,31}^{3}\right) \text {, } \\
& S_{8,25}^{3}=\kappa_{57}\left(S_{8,31}^{3}\right), \quad S_{8,24}^{3}=\kappa_{48}\left(S_{8,31}^{3}\right), \quad S_{8,23}^{3}=\kappa_{35}\left(S_{8,31}^{3}\right), \quad S_{8,26}^{3}=\kappa_{46}\left(S_{8,27}^{3}\right), \\
& S_{8,22}^{3}=\kappa_{24}\left(S_{8,25}^{3}\right), \quad S_{8,21}^{3}=\mathcal{K}_{68}\left(S_{8,25}^{3}\right), \quad S_{8,20}^{3}=\kappa_{48}\left(S_{8,25}^{3}\right), \quad S_{8,19}^{3}=\mathcal{\kappa}_{17}\left(S_{8,25}^{3}\right) \text {, } \\
& S_{8,18}^{3}=\kappa_{27}\left(S_{8,25}^{3}\right), \quad S_{8,12}^{3}=\kappa_{15}\left(S_{8,25}^{3}\right), \quad S_{8,11}^{3}=\kappa_{35}\left(S_{8,25}^{3}\right), \quad S_{8,17}^{3}=\kappa_{24}\left(S_{8,19}^{3}\right) \text {, } \tag{3.2}\\
& S_{8,34}^{3}=\kappa_{27}\left(S_{8,26}^{3}\right)=S_{3}^{0}(1,3) * S_{3}^{0}(2,7) * S_{3}^{0}(4,6) * S_{3}^{0}(5,8), \quad S_{8,16}^{3}=\kappa_{13}\left(S_{8,19}^{3}\right), \\
& S_{8,15}^{3}=\kappa_{28}\left(S_{8,18}^{3}\right), \quad S_{8,14}^{3}=\kappa_{47}\left(S_{8,20}^{3}\right), \quad S_{8,10}^{3}=\kappa_{15}\left(S_{8,19}^{3}\right), \quad S_{8,9}^{3}=\kappa_{35}\left(S_{8,19}^{3}\right) \text {, } \\
& S_{8,8}^{3}=\kappa_{47}\left(S_{8,19}^{3}\right), \quad S_{8,13}^{3}=\kappa_{38}\left(S_{8,16}^{3}\right), \quad S_{8,7}^{3}=\kappa_{24}\left(S_{8,8}^{3}\right), \quad S_{8,6}^{3}=\kappa_{35}\left(S_{8,8}^{3}\right), \\
& S_{8,5}^{3}=\kappa_{48}\left(S_{8,8}^{3}\right), \quad S_{8,4}^{3}=\mathcal{\kappa}_{15}\left(S_{8,8}^{3}\right), \quad S_{8,3}^{3}=\kappa_{48}\left(S_{8,4}^{3}\right), \\
& S_{8,2}^{3}=\kappa_{48}\left(S_{8,6}^{3}\right), \quad S_{8,1}^{3}=\mathcal{K}_{16}\left(S_{8,4}^{3}\right) .
\end{align*}
$$

Lemma 3.4. (a) $S_{8, i}^{3} \approx S_{8, j^{\prime}}^{3}$ for $1 \leq i, j \leq 39$, (b) $S_{8, m}^{3}$ is a combinatorial 3-sphere for $1 \leq m \leq 39$, and (c) $S_{8, k}^{3} \not \equiv S_{8, l}^{3}$ for $1 \leq k<l \leq 39$.

Proof. For $0 \leq i \leq 6$, let S_{i} denote the set of $S_{8, j}^{3}$'s with i nonedges. Then $S_{0}=\left\{S_{8,35}^{3}, S_{8,36}^{3}\right.$, $\left.S_{8,37}^{3}, S_{8,38}^{3}\right\}, S_{1}=\left\{S_{8,30}^{3}, S_{8,31}^{3}, S_{8,32}^{3}, S_{8,33}^{3}, S_{8,39}^{3}\right\}, S_{2}=\left\{S_{8,23}^{3}, S_{8,24}^{3}, S_{8,25}^{3}, S_{8,27}^{3}, S_{8,28}^{3}, S_{8,29}^{3}\right\}, S_{3}=$ $\left\{S_{8,11}^{3}, S_{8,12}^{3}, S_{8,18}^{3}, S_{8,19}^{3}, S_{8,20}^{3}, S_{8,21}^{3}, S_{8,22}^{3}, S_{8,26}^{3}\right\}, S_{4}=\left\{S_{8,8}^{3}, S_{8,9}^{3}{ }^{\prime} S_{8,10}^{3}, S_{8,14}^{3}, S_{8,15}^{3}, S_{8,16}^{3}, S_{8,17}^{3}, S_{8,34}^{3}\right\}$, $\mathcal{S}_{5}=\left\{S_{8,4^{\prime}}^{3}, S_{8,5}^{3}, S_{8,6^{\prime}}^{3}, S_{8,7}^{3}, S_{8,13}^{3}\right\}$, and $\mathcal{S}_{6}=\left\{S_{8,1^{\prime}}^{3}, S_{8,2^{\prime}}^{3}, S_{8,3}^{3}\right\}$.

From the proof of Lemma 4.7, $S_{8,35}^{3} \approx S_{8,30}^{3} \approx S_{8,36}^{3} \approx S_{8,30}^{3} \approx S_{8,37}^{3} \approx S_{8,32}^{3} \approx S_{8,38}^{3}$. Thus, $S_{8, i}^{3} \approx S_{8, j}^{3}$ for $35 \leq i, j \leq 38$. Now, if $S_{8, i}^{3} \in \mathcal{S}_{2} \cup S_{3} \cup \mathcal{S}_{4} \cup S_{5} \cup S_{6}$, then, from the definition of $S_{8, i}^{3}, S_{8, i}^{3} \approx S_{8,31}^{3} \approx S_{8,37}^{3}$. This proves part (a).

Since $S_{8,34}^{3}$ is a join of spheres, $S_{8,34}^{3}$ is a combinatorial 3-sphere. Clearly, if $M \approx N$ and M is a combinatorial 3-sphere, then N is so. Part (b) now follows from part (a).

Since the nonedge graphs of the members of \boldsymbol{S}_{6} (resp., \mathcal{S}_{5}) are pairwise nonisomorphic, the members of S_{6} (resp., S_{5}) are pairwise nonisomorphic.

For $S_{8, i}^{3}, S_{8, j}^{3} \in S_{4}(i<j)$ and $\operatorname{NEG}\left(S_{8, i}^{3}\right) \cong \operatorname{NEG}\left(S_{8, j}^{3}\right)$ imply $(i, j)=(8,9)$ or $(14,15)$. Since $M \cong N$ implies $G_{6}(M) \cong G_{6}(N)$ and $G_{6}\left(S_{8,8}^{3}\right) \not \equiv G_{6}\left(S_{8,9}^{3}\right), G_{6}\left(S_{8,14}^{3}\right) \not \equiv G_{6}\left(S_{8,15}^{3}\right)$, the members of S_{4} are pairwise nonisomorphic.

For $S_{8, i}^{3} \neq S_{8, j}^{3} \in S_{3}$ and $\operatorname{NEG}\left(S_{8, i}^{3}\right) \cong \operatorname{NEG}\left(S_{8, j}^{3}\right)$ imply $\{i, j\}=\{11,12\}$ or $18 \leq i \neq j \leq 21$. Let $\sum_{1}=\left\{S_{8,11}^{3}, S_{8,12}^{3}\right\}, \Sigma_{2}=\left\{S_{8,18}^{3}, S_{8,19}^{3}, S_{8,20}^{3}, S_{8,21}^{3}\right\}, \Sigma_{3}=\left\{S_{8,22}^{3}\right\}$ and $\sum_{4}=\left\{S_{8,26}^{3}\right\}$. Since the nonedge graph of a member in Σ_{i} is nonisomorphic to the nonedge graph of a member of Σ_{j} for $i \neq j$, a member of Σ_{i} is nonisomorphic to a member of Σ_{j}. Observe that $G_{6}\left(S_{8,11}^{3}\right) \not \equiv G_{6}\left(S_{8,12}^{3}\right)$ and for $18 \leq i<j \leq 21, G_{6}\left(S_{8, i}^{3}\right) \cong G_{6}\left(S_{8, j}^{3}\right)$ implies $(i, j)=(18,19)$. Since $G_{3}\left(S_{8,18}^{3}\right) \not \equiv G_{3}\left(S_{8,19}^{3}\right)$, the members of S_{3} are pairwise nonisomorphic.

Since $G_{3}\left(S_{8, i}^{3}\right) \not \equiv G_{3}\left(S_{8, j}^{3}\right)$ for $S_{8, i}^{3} \neq S_{8, j}^{3} \in \mathcal{S}_{2}$, the members of \mathcal{S}_{2} are pairwise nonisomorphic. By the same reasoning, the members of S_{1} are pairwise nonisomorphic.

By Lemma 3.2, the members of S_{0} are pairwise nonisomorphic. Since a member of S_{i} is nonisomorphic to a member of S_{j} for $i \neq j$, the above imply part (c).

Example 3.5. Some 8-vertex neighbourly normal 3-pseudomanifolds:

$$
\begin{align*}
N_{1}= & \{1248,1268,1348,1378,1568,1578,2358,2378,2458,2678,3468,3568,4578,4678, \\
& 1247,1257,1367,1467,2347,2567,3457,3567,1236,2346,1345,1235,1456,2456\}, \\
N_{2}= & \{1248,2458,2358,3568,3468,4678,4578,1578,1568,1268,2678, \\
& 2378,1378,1348,1247,2457,2357,3567,3467,1567,1267,1347\}=\Sigma_{78} T, \\
N_{3}= & \{1248,1268,1348,1378,1568,1578,2358,2378,2458,2678,3468,3568, \\
& 4578,4678,1234,2347,2456,2467,3456,3457,1235,1256,1357\}, \\
N_{4}= & \{1248,1268,1348,1378,1568,1578,2358,2378,2458,2678,3468, \\
& 3568,4578,4678,1245,1256,2356,2367,3467,1347,1457\}, \\
N_{5}= & \{1258,1268,1358,1378,1468,1478,2368,2378,2458,2478,3458,3468, \\
& 1257,1267,1367,1457,2357,2467,3457,3467,2356,2456,1356,1456\}, \\
N_{6}= & \{1358,1378,1468,1478,1568,2368,2378,2458,2478,2568,3458,3468, \\
& 1235,1245,1457,1567,2357,2567,3457,1236,1246,1367,2467,3467\}, \\
N_{7}= & \{1268,1258,1358,1378,1478,1468,2378,2368,2458,2478,3468, \\
& 3458,1356,1367,2357,2356,3467,3457,1256,1467,2457\}, \\
N_{8}= & \kappa_{348}\left(\kappa_{238}\left(\kappa_{56}\left(\kappa_{67}\left(N_{7}\right)\right)\right)\right), \quad N_{9}=\mathcal{K}_{235}\left(\kappa_{67}\left(N_{7}\right)\right), \\
N_{10}= & \kappa_{148}\left(\kappa_{67}\left(N_{7}\right)\right), \quad N_{11}=\kappa_{348}\left(\kappa_{56}\left(N_{10}\right)\right), \quad N_{12}=\kappa_{457}\left(\kappa_{23}\left(N_{9}\right)\right), \\
N_{13}= & \kappa_{567}\left(\kappa_{23}\left(N_{9}\right)\right), \quad N_{14}=\kappa_{138}\left(\kappa_{57}\left(N_{8}\right)\right) \cong \Sigma_{78} R_{2}, \quad N_{15}=\kappa_{158}\left(\kappa_{23}\left(N_{9}\right)\right) . \tag{3.3}
\end{align*}
$$

All the vertices of N_{1} are singular and their links are isomorphic to the 7 -vertex torus T. There are two singular vertices in N_{2} and their links are isomorphic to T. The singular vertices in N_{3} are $8,3,4,2,5$ and their links are isomorphic to T, R_{2}, R_{2}, R_{3}, and R_{3}, respectively. There is only one singular vertex in N_{4} whose link is isomorphic to T. All the vertices of N_{5} (resp., N_{6}) are singular and their links are isomorphic to R_{4} (resp., R_{3}). Each of N_{7}, \ldots, N_{15} has exactly two singular vertices and their links are 7 -vertex $\mathbb{R} P^{2 \prime}$ s. Thus, each N_{i} is a normal 3-pseudomanifold.

It follows from the definition that $N_{i} \approx N_{j}$ for $7 \leq i, j \leq 15$. Here we prove the following lemmas.

Lemma 3.6. (a) The geometric carriers of $N_{1}, N_{2}, N_{3}, N_{4}, N_{5}$, and N_{7} are distinct (nonhomeomorphic), (b) $N_{i} \not \neq N_{j}$ for $1 \leq i<j \leq 7$, (c) $N_{5} \sim N_{6}$.

Proof. For a normal 3-pseudomanifold X, let $n_{s}(X)$ denote the number of singular vertices. Clearly, if M and N are two normal 3-pseudomanifolds with homeomorphic geometric carriers, then $\left(n_{s}(M), \chi(M)\right)=\left(n_{s}(N), \chi(N)\right)$. Now, $\left(n_{s}\left(N_{1}\right), \chi\left(N_{1}\right)\right)=$ $(8,8),\left(n_{s}\left(N_{2}\right), \chi\left(N_{2}\right)\right)=(2,2),\left(n_{s}\left(N_{3}\right), \chi\left(N_{3}\right)\right)=(5,3),\left(n_{s}\left(N_{4}\right), \chi\left(N_{4}\right)\right)=(1,1),\left(n_{s}\left(N_{5}\right)\right.$, $\left.x\left(N_{5}\right)\right)=(8,4),\left(n_{s}\left(N_{7}\right), x\left(N_{7}\right)\right)=(2,1)$. This proves part (a).

Part (b) follows from the fact that N_{i} is neighbourly and has no removable edge and, hence, there is no proper bistellar move from N_{i} for $1 \leq i \leq 6$.

Let N_{5}^{\prime} be obtained from N_{5} by starring a new vertex 0 in the facet 1358. Let $N_{5}^{\prime \prime}=\mathcal{K}_{\{0\}}\left(\mathcal{K}_{08}\left(\mathcal{K}_{156}\left(\mathcal{K}_{07}\left(\mathcal{K}_{03}\left(\mathcal{K}_{035}\left(\mathcal{K}_{68}\left(\mathcal{K}_{02}\left(\mathcal{K}_{268}\left(\mathcal{K}_{13}\left(\mathcal{K}_{135}\left(\mathcal{K}_{138}\left(\mathcal{K}_{158}\left(N_{5}^{\prime}\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)$, then $N_{5}^{\prime \prime}$ is isomorphic to N_{6} via the map $(2,3)(5,8)$. This proves part (c).

Lemma 3.7. $N_{k} \neq N_{l}$ for $1 \leq k<l \leq 15$.
Proof. Let n_{S} be as above. Clearly, if M and N are two isomorphic 3-pseudomanifolds, then $\left(n_{s}(M), f_{3}(M)\right)=\left(n_{s}(N), f_{3}(N)\right)$. Now, $\left(n_{s}\left(N_{1}\right), f_{3}\left(N_{1}\right)\right)=(8,28),\left(n_{s}\left(N_{2}\right), f_{3}\left(N_{2}\right)\right)=$ $(2,22),\left(n_{s}\left(N_{3}\right), f_{3}\left(N_{3}\right)\right)=(5,23),\left(n_{s}\left(N_{4}\right), f_{3}\left(N_{4}\right)\right)=(1,21),\left(n_{s}\left(N_{5}\right), f_{3}\left(N_{5}\right)\right)=$ $\left(n_{s}\left(N_{6}\right), f_{3}\left(N_{6}\right)\right)=(8,24)$, and $\left(n_{s}\left(N_{i}\right), f_{3}\left(N_{i}\right)\right)=(2,21)$ for $7 \leq i \leq 15$. Since the links of each vertex in N_{5} is isomorphic to R_{4} and the links of each vertex in N_{6} is isomorphic to R_{3}, it follows that $N_{5} \neq N_{6}$. Thus, $N_{i} \not \equiv N_{j}$ for $1 \leq i \leq 6,1 \leq j \leq 15, i \neq j$.

Observe that the singular vertices in N_{i} are 3 and 8 for $7 \leq i \leq 15$. Moreover, (i) $1 \mathrm{k}_{N_{7}}(3) \cong l \mathrm{k}_{N_{7}}(8) \cong R_{4}$, (ii) $l \mathrm{k}_{N_{8}}(3) \cong R_{4}$ and $l \mathrm{k}_{N_{8}}(8) \cong R_{3}$, (iii) $l \mathrm{k}_{N_{9}}(3) \cong R_{2}$ and $l \mathrm{k}_{N_{9}}(8) \cong R_{4}$, (iv) $\mathrm{lk}_{N_{10}}(3) \cong \mathrm{lk}_{N_{10}}(8) \cong R_{3}$ and $\operatorname{deg}_{N_{10}}(38)=6$, (v) $\mathrm{lk}_{N_{11}}(3) \cong \mathrm{lk}_{N_{11}}(8) \cong R_{3}$ and $\operatorname{deg}_{N_{11}}(38)=$ 5 , (vi) $\mathrm{lk}_{N_{12}}(3) \cong R_{2}, \mathrm{lk}_{N_{12}}(8) \cong R_{3}$ and $G_{3}\left(N_{12}\right)=(V,\{32,21,17,75,54,46\})$, (vii) $\mathrm{lk}_{N_{13}}(3) \cong$ $R_{2}, \mathrm{lk}_{N_{13}}(8) \cong R_{3}$ and $G_{3}\left(N_{13}\right)=(V,\{32,21,17,75,56,67,64,42\}),($ viii $) \mathrm{lk}_{N_{14}}(3) \cong 1 \mathrm{k}_{N_{14}}(8) \cong$ R_{2} and $\operatorname{deg}_{N_{14}}(38)=3$. $(\mathrm{xi}) \mathrm{lk}_{N_{15}}(3) \cong \mathrm{lk}_{N_{15}}(8) \cong R_{2}$ and $\operatorname{deg}_{N_{15}}(38)=6$. These imply that there is no isomorphism between N_{i} and N_{j} for $7 \leq i<j \leq 15$. This completes the proof.

Example 3.8. Some 8-vertex nonneighbourly normal 3-pseudomanifolds:

$$
\begin{align*}
& N_{16}=\mathcal{K}_{67}\left(N_{7}\right), \quad N_{17}=\mathcal{K}_{24}\left(N_{8}\right), \quad N_{18}=\kappa_{238}\left(\mathcal{K}_{56}\left(\mathcal{K}_{67}\left(N_{7}\right)\right)\right), \quad N_{19}=\mathcal{K}_{57}\left(N_{8}\right), \\
& N_{20}=\kappa_{56}\left(N_{10}\right), \quad N_{21}=\kappa_{12}\left(N_{9}\right), \quad N_{22}=\mathcal{K}_{14}\left(N_{11}\right), \quad N_{23}=\mathcal{\kappa}_{23}\left(N_{9}\right), \\
& N_{24}=\mathcal{K}_{38}\left(N_{14}\right), \quad N_{25}=\mathcal{K}_{56}\left(N_{16}\right), \quad N_{26}=\mathcal{\kappa}_{12}\left(N_{16}\right), \quad N_{27}=\mathcal{K}_{56}\left(N_{17}\right) \text {, } \\
& N_{28}=\kappa_{57}\left(N_{18}\right), \quad N_{29}=\kappa_{15}\left(N_{18}\right), \quad N_{30}=\kappa_{12}\left(N_{23}\right), \quad N_{31}=\kappa_{24}\left(N_{22}\right) \text {, } \\
& N_{32}=\kappa_{24}\left(N_{26}\right), \quad N_{33}=\kappa_{57}\left(N_{25}\right), \quad N_{34}=\kappa_{45}\left(N_{28}\right), \quad N_{35}=\kappa_{58}\left(N_{29}\right) . \tag{3.4}
\end{align*}
$$

Lemma 3.9. (a) $N_{i} \neq N_{j}$ for $1 \leq i<j \leq 35$ and (b) $N_{k} \approx N_{l}$ for $7 \leq k, l \leq 35$.
Proof. For $0 \leq i \leq 3$, let \mathcal{N}_{i} denote the set of 3-pseudomanifolds defined in Examples 3.5 and 3.8 with i nonedges. Then $\mathcal{N}_{0}=\left\{N_{1}, \ldots, N_{15}\right\}, \mathcal{N}_{1}=\left\{N_{16}, \ldots, N_{24}\right\}, \mathcal{N}_{2}=\left\{N_{25}, \ldots, N_{31}\right\}$, and $\Omega_{3}=\left\{N_{32}, \ldots, N_{35}\right\}$. The singular vertices in N_{i} are 3 and 8 for $7 \leq i \leq 35$.

By Lemma 3.7, the members of Λ_{0} are pairwise nonisomorphic.
Observe that (i) $l \mathrm{k}_{N_{16}}(3) \cong R_{4}$ and $\mathrm{lk}_{N_{16}}(8) \cong R_{3}$, (ii) $\mathrm{lk}_{N_{17}}(3) \cong \mathrm{k}_{N_{17}}$ (8) $\cong R_{4}$, (iii) $\mathrm{lk}_{N_{18}}(3) \cong \mathrm{k}_{N_{18}}(8) \cong R_{3}$ and $G_{6}\left(N_{18}\right)=(V,\{73,31,18,84\})$, (iv) $\mathrm{lk}_{N_{19}}(3) \cong \mathrm{lk}_{N_{19}}(8) \cong R_{3}$ and $G_{6}\left(N_{19}\right)=(V,\{63,31,18,86\}),(\mathrm{v}) \mathrm{lk}_{N_{20}}(3) \cong \mathrm{k}_{N_{20}}(8) \cong R_{3}$ and $G_{6}\left(N_{20}\right)=(V,\{74,28,83,31\})$, (vi) $\operatorname{lk}_{N_{21}}(3) \cong R_{2}, \mathrm{lk}_{N_{21}}(8) \cong R_{3}$ and $G_{6}\left(N_{21}\right)=(V,\{48,83,37,36\})$, (vii) $l_{N_{N 22}}(3) \cong$ $R_{2}, \mathrm{lk}_{N_{22}}(8) \cong R_{3}$ and $G_{6}\left(N_{22}\right)=(V,\{28,86,63,37,38\}),($ viii $) \mathrm{lk}_{N_{23}}(3) \cong R_{1}$ and $\mathrm{lk}_{N_{23}}(8) \cong R_{3}$, (ix) $\mathrm{lk}_{N_{24}}(3) \cong l \mathrm{k}_{N_{24}}(8) \cong R_{1}$. These imply that there is no isomorphism between any two members of Ω_{1}.

Observe that (i) $\mathrm{lk}_{N_{25}}(3) \cong R_{3}$ and $\mathrm{lk}_{N_{25}}(8) \cong R_{4}$, (ii) $\mathrm{lk}_{N_{26}}(3) \cong \mathrm{lk}_{N_{26}}(8) \cong R_{3}$ and $G_{6}\left(N_{26}\right)=(V,\{53,38,84\})$, (iii) $l^{2} k_{N_{27}}(3) \cong l k_{N_{27}}(8) \cong R_{3}, G_{6}\left(N_{27}\right)=(V,\{78,81,13,37\})$ and $\operatorname{NEG}\left(N_{27}\right)=\{24,56\}$, (iv) $\mathrm{lk}_{N_{28}}(3) \cong \mathrm{lk}_{N_{28}}(8) \cong R_{3}, G_{6}\left(N_{28}\right)=(V,\{18,84,43,31\})$ and
$\operatorname{NEG}\left(N_{28}\right)=\{75,56\},(\mathrm{v}) \mathrm{lk}_{N_{29}}(3) \cong R_{3}$ and $\mathrm{lk}_{N_{29}}(8) \cong R_{2},(\mathrm{vi}) \mathrm{lk}_{N_{30}}(3) \cong R_{1}$ and $\mathrm{lk}_{N_{30}}(8) \cong R_{3}$, (vii) $\mathrm{lk}_{N_{31}}(3) \cong 1 \mathrm{k}_{N_{31}}(8) \cong R_{2}$. These imply that there is no isomorphism between any two members of Ω_{2}.

Observe that (i) $\mathrm{lk}_{N_{32}}(3) \cong 1 \mathrm{k}_{N_{32}}(8) \cong R_{3}$, (ii) $\mathrm{lk}_{N_{33}}(3) \cong 1 \mathrm{k}_{N_{33}}(8) \cong R_{4}$, (iii) $\mathrm{lk}_{N_{34}}$ (3) \cong $\mathrm{lk}_{N_{34}}(8) \cong R_{2}$, (iv) $\mathrm{l}_{N_{35}}(3) \cong R_{2}$ and $\mathrm{lk}_{N_{35}}(8) \cong R_{1}$. These imply that there is no isomorphism between any two members of Λ_{3}.

Since a member of Ω_{i} is nonisomorphic to a member of Ω_{j} for $i \neq j$, the above imply part (a). Part (b) follows from the definition of N_{k} for $8 \leq k \leq 35$.

The 3-dimensional Kummer variety K^{3} is the torus $S^{1} \times S^{1} \times S^{1}$ modulo the involution $\sigma: x \mapsto-x$. It has 8 singular points corresponding to 8 elements of order 2 in the abelian group $S^{1} \times S^{1} \times S^{1}$. In [11], Kühnel showed that N_{5} triangulates K^{3}. For a topological space $X, C(X)$ denotes a cone with base X. Let $H=D^{2} \times S^{1}$ denote the solid torus. As a consequence of the above lemmas we get.

Corollary 3.10. All the 8-vertex normal 3-pseudomanifolds triangulate seven distinct topological spaces, namely, $\left|S_{8, j}^{3}\right|=S^{3}$ for $1 \leq j \leq 38,\left|N_{1}\right|,\left|N_{2}\right|=S\left(S^{1} \times S^{1}\right),\left|N_{3}\right|,\left|N_{4}\right|=H \cup$ $(C(\partial H)),\left|N_{5}\right|=\left|N_{6}\right|=K^{3}$, and $\left|N_{i}\right|=S\left(\mathbb{R} P^{2}\right)$ for $7 \leq i \leq 35$.

Proof. Let K be an 8-vertex normal 3-pseudomanifold. If K is a combinatorial 3-sphere, then it triangulates the 3-sphere S^{3}.

If K is not a combinatorial 3-sphere, then, by Lemma $3.9(\mathrm{~b}),|K|$ is (pl) homeomorphic to $\left|N_{1}\right|, \ldots,\left|N_{6}\right|$, or $\left|N_{7}\right|$. Since $N_{2}=\Sigma_{78} T,\left|N_{2}\right|$ is homeomorphic to the suspension $S\left(S^{1} \times S^{1}\right)$. In N_{4}, the facets not containing the vertex 8 form a solid torus whose boundary is the link of 8. This implies that $\left|N_{4}\right|=H \cup(C(\partial H))$. It follows from Lemma 3.6(c) that $\left|N_{6}\right|$ is (pl) homeomorphic to $\left|N_{5}\right|=K^{3}$. Since N_{24} is isomorphic to the suspension $S_{2}^{0} * R_{1},\left|N_{24}\right|=$ $S\left(\mathbb{R} P^{2}\right)$. Therefore, by Lemma 3.9(b), $\left|N_{i}\right|$ is (pl) homeomorphic to $\left|N_{24}\right|=S\left(\mathbb{R} P^{2}\right)$ for $7 \leq i \leq$ 35. The result now follows from Lemma 3.6(a).

A 3-dimensional pseudocomplex K is an ordered pair (Δ, Φ), where Δ is a finite collection of disjoint tetrahedra and Φ is a family of affine isomorphisms between pairs of 2-faces of the tetrahedra in Δ. Let $|K|$ denote the quotient space obtained from the disjoint union $\sqcup_{\sigma \in \Delta} \sigma$ by setting $x=\varphi(x)$ for $\varphi \in \Phi$. The quotient of a tetrahedron $\sigma \in \Delta$ in $|K|$ is called a 3-simplex in $|K|$ and is denoted by $|\sigma|$. Similarly, the quotient of 2-faces, edges, and vertices of tetrahedra are called 2-simplices, edges, and vertices in $|K|$, respectively. If $|K|$ is homeomorphic to a topological space X, then K is called a pseudotriangulation of X. A 3dimensional pseudocomplex $K=(\Delta, \Phi)$ is said to be regular if the following hold: (i) each 3-simplex in $|K|$ has four distinct vertices, and (ii) for $2 \leq i \leq 3$, no two distinct i-simplices in $|K|$ have the same set of vertices. So, for $2 \leq i \leq 3$, an i-simplex α in $|K|$ is uniquely determined by its vertices and denoted by $u_{1} \cdots u_{i+1}$, where u_{1}, \ldots, u_{i+1} are vertices of α. (But, the edges in $|K|$ may not form a simple graph.) So, we can identify a regular pseudocomplex $K=(\Delta, \Phi)$ with $\mathcal{K}:=\{|\sigma|: \sigma \in \Delta\}$. Simplices and edges in $|K|$ are said to be simplices and edges of \mathcal{K}. Clearly, a pure 3-dimensional simplicial complex is a regular pseudocomplex.

Let \mathcal{M} be a regular pseudotriangulation of X and abcd, abce be two 3-simplices in \mathcal{M}. If ade, bde, cde are not 2-simplices in \mathcal{M}, then $\mathcal{N}:=(\mathcal{M} \backslash\{a b c d, a b c e\}) \cup\{a b d e, a c d e, b c d e\}$ is also a regular pseudotriangulation of X. We say that \mathcal{N} is obtained from \mathcal{M} by the generalized bistellar 1-move $\kappa_{a b c}$. If there is no edge between d and e in Ω, then κ_{F} is called a bistellar 1-move. If there exist 3-simplices of the form $x y u v, x z u v, y z u v$ in a regular
pseudotriangulation P of Y and $x y z$ is not a 2-simplex, then $Q:=(D \backslash\{x y u v, x z u v, y z u v\}) \cup$ $\{x y z u, x y z v\}$ is also a regular pseudotriangulation of Y. We say that Q is obtained from D by the generalized bistellar 2-move κ_{E}, where E is the common edge in $x y u v, x z u v$, and $y z u v$. If E is the only edge between u and v in D, then κ_{E} is called a bistellar 2-move.

Let M be a pseudotriangulation of a closed 3-manifold and N a 3-pseudomanifold. A simplicial map $f: M \rightarrow N$ is said to be a k-fold branched covering (with discrete branch locus) if there exists $U \subseteq V(N)$ such that $\left|f \|_{|M| \backslash f^{-1}(U)}:|M| \backslash f^{-1}(U) \rightarrow\right| N \mid \backslash U$ is a k-fold covering. The smallest such U (so that $\left|f \|_{|M| \backslash f^{-1}(U)}:|M| \backslash f^{-1}(U) \rightarrow\right| N \mid \backslash U$ is a covering) is called the branch locus. It is known that N_{1} can be regarded as a branched quotient of a regular hyperbolic tessellation (cf. [6]). In [11], Kühnel has shown that N_{5} is a 2 -fold branched quotient of a pseudotriangulation of the 3-dimensional torus. Here we prove the following theorem.

Theorem 3.11. (a) N_{24} is a 2-fold branched quotient of a 14-vertex combinatorial 3-sphere.
(b) For $7 \leq i \leq 35, N_{i}$ is a 2 -fold branched quotient of a 14-vertex regular pseudotriangulation of the 3-sphere.

Lemma 3.12. Let M be a regular pseudotriangulation of a 3-manifold and N be a normal 3pseudomanifold. Let $f: M \rightarrow N$ be a k-fold branched covering with at most two vertices in the branch locus. If $\kappa_{e}: N \mapsto \widetilde{N}$ is a bistellar 2-move, then there exist k generalized bistellar 2-moves $\kappa_{e_{1}}, \ldots, \kappa_{e_{k}}$ such that $\kappa_{e_{k}}\left(\cdots\left(\kappa_{e_{1}}(M)\right)\right)$ is a k-fold branched cover of \widetilde{N}.

Proof. Let $\mathrm{lk}_{N}(e)=S_{3}^{1}(\{x, y, z\})$. Let $f^{-1}(e)$ consist of the edges e_{1}, \ldots, e_{k}. Let the end points of e_{i} be u_{i}, v_{i}, the 3-simplices containing e_{i} be $u_{i} v_{i} x_{i} y_{i}, u_{i} v_{i} x_{i} z_{i}, u_{i} v_{i} y_{i} z_{i}$, and $f\left(x_{i}\right)=x, f\left(y_{i}\right)=$ $y, f\left(z_{i}\right)=z$ for $1 \leq i \leq k$. Since $x y z$ is not a simplex in N, it follows that $x_{i} y_{i} z_{i}$ is not a 2simplex in M. Let M_{i} be the pseudocomplex consists of $u_{i} v_{i} x_{i} y_{i}, u_{i} v_{i} x_{i} z_{i}$, and $u_{i} v_{i} y_{i} z_{i}$. Since the number of vertices in the branched locus is at most 2 , it follows that the number of vertices common in M_{i} and M_{j} is at most 2 for $i \neq j$. In particular, $\#\left(\left\{x_{i}, y_{i}, z_{i}\right\} \cap\left\{x_{j}, y_{j}, z_{j}\right\}\right) \leq 2$. Therefore, $x_{j} y_{j} z_{j}$ is not a 2 -simplex in $\kappa_{e_{i}}(M)$. So, we can perform generalized bistellar 2move $\kappa_{e_{j}}$ on $\kappa_{e_{i}}(M)=\left(M \backslash M_{i}\right) \cup\left\{x_{i} y_{i} z_{i} u_{i}, x_{i} y_{i} z_{i} v_{i}\right\}$ for $i \neq j$. Clearly, $\widetilde{M}:=\kappa_{e_{k}}\left(\cdots \kappa_{e_{1}}(M)\right)$ is a k-fold branched cover of \widetilde{N} (via the map \tilde{f}, where $\tilde{f}(w)=f(w)$ for $w \in V(\widetilde{M})=V(M)$ and $\tilde{f}\left(x_{i} y_{i} z_{i} u_{i}\right)=x y z u$ and $\left.\tilde{f}\left(x_{i} y_{i} z_{i} v_{i}\right)=x y z v\right)$.

Lemma 3.13. Let M be a regular pseudotriangulation of a 3-manifold and N be a normal 3pseudomanifold. Let $f: M \rightarrow N$ be a k-fold branched covering with at most two vertices in the branch locus. If $\kappa_{F}: N \mapsto \widetilde{N}$ is a bistellar 1-move, then there exist k generalized bistellar 1-moves $\kappa_{F_{1}}, \ldots, \kappa_{F_{k}}$ such that $\kappa_{F_{k}}\left(\cdots\left(\kappa_{F_{1}}(M)\right)\right)$ is a k-fold branched cover of \widetilde{N}.

Proof. Let $F=x y z$ and $\mathrm{lk}_{N}(F)=\{u, v\}$. Let $f^{-1}(F)$ consist of the 2 -simplices F_{1}, \ldots, F_{k}. Let $F_{i}=x_{i} y_{i} z_{i}$ and the 3-simplices containing F_{i} be $x_{i} y_{i} z_{i} u_{i}$ and $x_{i} y_{i} z_{i} v_{i}$ and $f\left(x_{i}, y_{i}, z_{i}, u_{i}, v_{i}\right)=$ (x, y, z, u, v) for $1 \leq i \leq k$. Since f is simplicial, it follows that $x_{i} u_{i} v_{i}, y_{i} u_{i} v_{i}$, and $z_{i} u_{i} v_{i}$ are not 2 -simplices in M. Let M_{i} be pseudocomplex $\left\{x_{i} y_{i} z_{i} u_{i}, x_{i} y_{i} z_{i} v_{i}\right\}$. Since the number of vertices in the branched locus is at most 2 , it follows that $x_{j} u_{j} v_{j}, y_{j} u_{j} v_{j}$, and $z_{j} u_{j} v_{j}$ are not 2-simplices in $\mathcal{K}_{F_{i}}(M)$ for $i \neq j$. Then (by the similar arguments as in the proof of Lemma 3.12) $\kappa_{F_{k}}\left(\cdots \kappa_{F_{1}}(M)\right)$ is a k-fold branched cover of \widetilde{N}.

Proof of Theorem 3.11. If ∂ denotes the boundary of the icosahedron, then there exists a simplicial 2-fold covering $f: \supset \rightarrow R_{1}$. Consider the simplicial map $\tilde{f}: S_{2}^{0}(\{a, b\}) * \supset \rightarrow S_{2}^{0}(\{c, d\}) * R_{1}$

Table 1: 8-vertex normal 3-pseudomanifolds which are not combinatorial 3-manifolds.

X	f-vector $\left(f_{1}, f_{2}, f_{3}\right)$	$X(X)$	$n_{s}(X)$	links of singular vertices	Geometric carriers, Homology $\left(H_{1}, H_{2}, H_{3}\right)$
N_{1}	$(28,56,28)$	8	8	all are T	$\left\|N_{1}\right\|$ is simply connected, $\left(H_{1}, H_{2}, H_{3}\right)=\left(0, \mathbb{Z}^{8}, \mathbb{Z}\right)$
N_{2}	$(28,44,22)$	2	2	both are T	$\left\|N_{2}\right\|=S\left(S^{1} \times S^{1}\right)$
N_{3}	$(28,46,23)$	3	5	$T, R_{2}, R_{2}, R_{3}, R_{3}$	$\left(H_{1}, H_{2}, H_{3}\right)=\left(0, \mathbb{Z}^{2} \oplus \mathbb{Z}_{2}, 0\right)$
N_{4}	$(28,42,21)$	1	1	T	$\left\|N_{4}\right\|=H \cup(C(\partial H))$
N_{5}	$(28,48,24)$	4	8	all are R_{4}	$\left\|N_{5}\right\|=K^{3}$
N_{6}	$\prime \prime$	$\prime \prime$	$\prime \prime$	all are R_{3}	$\left\|N_{6}\right\|=K^{3}$
N_{7}	$(28,42,21)$	1	2	both are R_{4}	$\left\|N_{7}\right\|=S\left(\mathbb{R} P^{2}\right)$
$N_{i}, 8 \leq i \leq 15$	$\prime \prime$	$\prime \prime$	$\prime \prime$	both are in $\left\{R_{1}, \ldots, R_{4}\right\}$	$\left\|N_{i}\right\|=S\left(\mathbb{R} P^{2}\right)$
$N_{i}, 16 \leq i \leq 24$	$(27,40,20)$	$\prime \prime$	$\prime \prime$	$\prime \prime$	$\prime \prime$
$N_{i}, 25 \leq i \leq 31$	$(26,38,19)$	$\prime \prime$	$\prime \prime$	$\prime \prime$	$\prime \prime$
$N_{i}, 32 \leq i \leq 35$	$(25,36,18)$	$\prime \prime$	$\prime \prime$	$\prime \prime$	$\prime \prime$

[Here K^{3} is the 3-dimensional Kummer variety, $H=D^{2} \times S^{1}$ is the solid torus, $S(Y)$ is the topological suspension of Y, and $n_{s}(X)$ is the number of singular vertices in X.]
given by $\tilde{f}(a)=c, \tilde{f}(b)=d$ and $\tilde{f}(u)=f(u)$ for $u \in V(\supset)$. Then \tilde{f} is a 2 -fold branched covering with branch locus $\{c, d\}$. Since N_{24} is isomorphic to the suspension $S_{2}^{0} * R_{1}$, it follows that N_{24} is a 2 -fold branched quotient of the 14-vertex combinatorial 3-sphere $S_{2}^{0}(\{a, b\}) * J$ (with branch locus $\{3,8\}$). This proves part (a).

The result now follows from Lemmas 3.9(a), 3.12, and 3.13. (In fact, to obtain a 2 fold branched cover \widetilde{N}_{14} of N_{14} from $R_{1} * S_{2}^{0}$, one needs one bistellar 1-move and then one generalized bistellar 1-move; and all other moves required in the proof are bistellar moves on regular pseudotriangulations of S^{3}.)

Remark 3.14. The combinatorial 3-sphere $R_{1} * S_{2}^{0}$ is a 2 -fold branched cover of N_{24} and N_{14} can be obtained from N_{24} by a bistellar 1-move. Now, if $f: M \rightarrow N_{14}$ is a 2 -fold branched covering and M is a combinatorial 3-manifold, then (since $\mathrm{lk}_{N_{14}}(8)$ is a 7 -vertex triangulated $\mathbb{R} P^{2}$) the link of any vertex in $f^{-1}(8)$ is a 14 -vertex triangulated S^{2} and hence $f_{0}(M)>14$. (Similarly, for $i \neq 24$, if N_{i} is a branched quotient of a combinatorial 3-manifold M, then $f_{0}(M)>14$.) So, there does not exist a combinatorial 3 -sphere M which is a branched cover of N_{14} and which can be obtained from $R_{1} * S_{2}^{0}$ by proper bistellar moves.

In [7], Altshuler observed that N_{1} is orientable and $\left|N_{1}\right|$ is simply connected. In [8], Lutz showed that $\left(H_{1}\left(N_{1}\right), H_{2}\left(N_{1}\right), H_{3}\left(N_{1}\right)\right)=\left(0, \mathbb{Z}^{8}, \mathbb{Z}\right)$. The normal 3-pseudomanifold N_{3} is the only among all the 35 which has singular vertices of different types, namely, one singular vertex whose link is a triangulated torus and four singular vertices whose links are triangulated real projective planes. Using polymake [12], we find that $\left(H_{1}\left(N_{3}\right), H_{2}\left(N_{3}\right), H_{3}\left(N_{3}\right)\right)=\left(0, \mathbb{Z}^{2} \oplus \mathbb{Z}_{2}, 0\right)$. We summarized all the findings about N_{1}, \ldots, N_{35} in Table 1.

Example 3.15. For $d \geq 2$, let

$$
\begin{equation*}
K_{2 d+3}^{d}=\left\{v_{i} \cdots v_{j-1} v_{j+1} \cdots v_{i+d+1}: i+1 \leq j \leq i+d, 1 \leq i \leq 2 d+3\right\} \tag{3.5}
\end{equation*}
$$

(additions in the suffixes are modulo $2 d+3$). It was shown in [13] the following : (i) $K_{2 d+3}^{d}$ is a triangulated d-manifold for all $d \geq 2$, (ii) $K_{2 d+3}^{d}$ triangulates $S^{d-1} \times S^{1}$ for d even, and triangulates the twisted product $S^{d-1} \times{ }_{-} S^{1}$ (the twisted S^{d-1}-bundle over S^{1}) for d odd. For $d \geq 3, K_{2 d+3}^{d}$ is the unique nonsimply connected $(2 d+3)$-vertex triangulated d-manifold (cf. [14]). The combinatorial 3-manifolds K_{9}^{3} was first constructed by Walkup in [15].

From K_{9}^{3}, we construct the following 10-vertex combinatorial 3-manifold:

$$
\begin{align*}
& A_{10}^{3}:=\left(K_{9}^{3} \backslash\left\{v_{1} v_{2} v_{3} v_{5}, v_{2} v_{3} v_{5} v_{6}, v_{3} v_{5} v_{6} v_{7}, v_{3} v_{4} v_{6} v_{7}, v_{4} v_{6} v_{7} v_{8}\right\}\right) \\
& \cup\left\{v_{0} v_{1} v_{2} v_{3}, v_{0} v_{1} v_{2} v_{5}, v_{0} v_{1} v_{3} v_{5}, v_{0} v_{2} v_{3} v_{6}, v_{0} v_{2} v_{5} v_{6}, v_{0} v_{3} v_{5} v_{7}, v_{0} v_{5} v_{6} v_{7}\right. \tag{3.6}\\
&\left.v_{0} v_{3} v_{4} v_{6}, v_{0} v_{3} v_{4} v_{7}, v_{0} v_{4} v_{6} v_{8}, v_{0} v_{4} v_{7} v_{8}, v_{0} v_{6} v_{7} v_{8}\right\}
\end{align*}
$$

[Geometrically, first we remove a pl 3-ball consisting of five 3-simplices from $\left|K_{9}^{3}\right|$. This gives a pl 3-manifold with boundary and the boundary is a 2-sphere. Then we add a cone with base this boundary and vertex v_{0}. So, the new polyhedron $\left|A_{10}^{3}\right|$ is pl homeomorphic to $\left|K_{9}^{3}\right|$. This implies that the simplicial complex A_{10}^{3} is a combinatorial 3-manifold.]

The only nonedge in A_{10}^{3} is $v_{0} v_{9}$ and there is no common 2-face in the links of v_{0} and v_{9} in A_{10}^{3}. So, A_{10}^{3} does not allow any bistellar 1-move. So, A_{10}^{3} is a 10-vertex nonneighbourly combinatorial 3-manifold which does not admit any bistellar 1-move.

Similarly, from K_{11}^{4}, we construct the following 12-vertex triangulated 4-manifold:

$$
\begin{align*}
A_{12}^{4}:= & \left(K_{11}^{4} \backslash\left\{v_{1} v_{2} v_{3} v_{4} v_{6}, v_{2} v_{3} v_{4} v_{6} v_{7}, v_{3} v_{4} v_{6} v_{7} v_{8}, v_{4} v_{6} v_{7} v_{8} v_{9}, v_{4} v_{5} v_{7} v_{8} v_{9}, v_{5} v_{7} v_{8} v_{9} v_{10}\right\}\right) \\
\cup\{ & \left\{v_{0} v_{1} v_{2} v_{3} v_{4}, v_{0} v_{1} v_{2} v_{3} v_{6}, v_{0} v_{1} v_{2} v_{4} v_{6}, v_{0} v_{1} v_{3} v_{4} v_{6}, v_{0} v_{2} v_{3} v_{4} v_{7}, v_{0} v_{2} v_{3} v_{6} v_{7}, v_{0} v_{2} v_{4} v_{6} v_{7}\right. \\
& v_{0} v_{3} v_{4} v_{6} v_{8}, v_{0} v_{3} v_{4} v_{7} v_{8}, v_{0} v_{3} v_{6} v_{7} v_{8}, v_{0} v_{4} v_{6} v_{7} v_{9}, v_{0} v_{4} v_{6} v_{8} v_{9}, v_{0} v_{4} v_{7} v_{8} v_{9} \\
& \left.v_{0} v_{4} v_{5} v_{7} v_{9}, v_{0} v_{4} v_{5} v_{8} v_{9}, v_{0} v_{4} v_{7} v_{8} v_{9}, v_{0} v_{5} v_{7} v_{8} v_{10}, v_{0} v_{5} v_{7} v_{9} v_{10}, v_{0} v_{5} v_{8} v_{9} v_{10}\right\} \tag{3.7}
\end{align*}
$$

The only nonedge in A_{12}^{4} is $v_{0} v_{11}$ and there is no common 2 -face in the links of v_{0} and v_{11} in A_{12}^{4}. So, A_{12}^{4} does not allow any bistellar 1-move. So, A_{12}^{4} is a 12-vertex nonneighbourly triangulated 4-manifold which does not admit any bistellar 1-move.

By the same way, one can construct a $(2 d+4)$-vertex nonneighbourly triangulated d-manifold $A_{2 d+4}^{d}\left(\right.$ from $\left.K_{2 d+3}^{d}\right)$ which does not admit any bistellar 1-move for all $d \geq 3$.

Example 3.16. Let N_{3} be as in Example 3.5. Let M be obtained from N_{3} by starring two vertices u and v in the facets 1248 and 3568, respectively, that is, $M=\kappa_{1248}\left(\mathcal{K}_{3568}\left(N_{3}\right)\right)$. Then M is a 10-vertex normal 3-pseudomanifold. Let B_{9}^{3} be obtained from M by identifying the vertices u and v. Let the new vertex be 9 . Then

$$
\begin{equation*}
B_{9}^{3}:=\left(N_{3} \backslash\{1248,3568\}\right) \cup\{1249,1289,1489,2489,3569,3589,3689,5689\} . \tag{3.8}
\end{equation*}
$$

The degree 3 edges in B_{9}^{3} are 16,17 , and 67 ; but none of these edges is removable. So, no bistellar 2-moves are possible from B_{9}^{3}. The only nonedge in B_{9}^{3} is 79 . Since there is no common 2 -face in the links of 7 and 9 , no bistellar 1-move is possible. So, B_{9}^{3} is a 9 -vertex nonneighbourly 3-pseudomanifold which does not admit any proper bistellar move.

4. Proofs

For $n \geq 4$, by an S_{n}^{2} we mean a combinatorial 2 -sphere on n vertices. If $\kappa_{\beta}: M \mapsto N$ is a bistellar 1-move, then $\operatorname{deg}_{N}(v) \geq \operatorname{deg}_{M}(v)$ for $v \in V(M)$. Here we prove the following.

Lemma 4.1. Let M be an n-vertex 3 -pseudomanifold and u be a vertex of degree 4 . If $n \geq 6$, then there exists a bistellar 1-move $\kappa_{\beta}: M \mapsto N$ such that $\operatorname{deg}_{N}(u)=5$.

Proof. Let $\mathrm{lk}_{M}(u)=S_{4}^{2}(\{a, b, c, d\})$ and $\beta=a b c$. Let $\mathrm{lk}_{M}(\beta)=\{u, x\}$. If $x=d$, then the induced complex $K=M[\{u, a, b, c, d\}]$ is a 3-pseudomanifold. Since $n \geq 6, K$ is a proper subcomplex of M. This is not possible. So, $x \neq d$ and hence $u x$ is a nonedge in M. Then κ_{β} is a bistellar 1 -move. Since $u x$ is an edge in $\kappa_{\beta}(M), \kappa_{\beta}$ is a required bistellar 1-move.

Lemma 4.2. Let M be an n-vertex 3-pseudomanifold and u be a vertex of degree 5 . If $n \geq 7$, then there exists a bistellar 1 -move $\kappa_{\beta}: M \mapsto N$ such that $\operatorname{deg}_{N}(u)=6$.

Proof. Since $\operatorname{deg}_{M}(u)=5$, the link of u in M is of the form $S_{2}^{0}(\{a, b\}) * S_{3}^{1}(\{x, y, z\})$ for some vertices a, b, x, y, z of M. If both $x y z a$ and $x u z b$ are facets, then the induced subcomplex $M[\{x, y, z, u, a, b\}]$ is a 3-pseudomanifold. This is not possible since $n \geq 7$. So, without loss of generality, assume that $x y z a$ is not a facet. Again, if $x y a b, x z a b$, and $y z a b$ all are facets, then the induced subcomplex $M[\{u, x, y, z, a, b\}]$ is a 3-pseudomanifold, which is not possible. So, assume that $x y a b$ is not a facet.

Consider the face $\beta=x y a$. Suppose $\mathrm{lk}_{M}(\beta)=\{u, w\}$. From the above, $w \notin\{z, b\}$. So, $u w$ is a nonedge and hence κ_{β} is a required bistellar 1-move.

Lemma 4.3. Let M be a nonneighbourly 8-vertex 3-pseudomanifold and u be a vertex of degree 6. If the degree of each vertex is at least 6 , then there exists a bistellar 1 -move $\kappa_{\tau}: M \mapsto N$ such that $\operatorname{deg}_{N}(u)=7$.

Proof. Let u be a vertex with $\operatorname{deg}_{M}(u)=6$ and $u v$ be a nonedge. Let $L=\operatorname{lk}_{M}(u)$.
Claim 1. There exists a 2-face τ such that $\tau \cup\{u\}$ and $\tau \cup\{v\}$ are facets.
First consider the case when there exists a vertex w such that $\operatorname{deg}_{L}(w)=5$. Let $\mathrm{lk}_{L}(w)\left(=\mathrm{lk}_{M}(u w)\right)=C_{5}(1,2,3,4,5)$.

Let $K=\operatorname{lk}_{M}(w)$. Since $\operatorname{deg}(v)=6, v w$ is an edge. Thus K contains 7 vertices. If one of $12 v, \ldots, 45 v, 51 v$ is a 2 -face, say $12 v$, then $12 w v$ and $12 w u$ are facets. In this case, $\tau=12 w$ serves the purpose. So, assume that $12 v, \ldots, 45 v, 51 v$ are nonfaces in K. Then there are at least three 2 -faces (not containing u) containing the edges $12, \ldots, 45,51$ in K. Also, there are at least three 2 -faces containing v in K. So, the number of 2-faces in K is at least 11. This implies that $\operatorname{deg}_{K}(v)=3$ or 4 and K is a 7 -vertex $\mathbb{R} P^{2}$ or P_{4}. Since $\operatorname{deg}_{K}(u)=5$, it follows that K is isomorphic to R_{2}, R_{3}, or P_{4} (defined in Section 2). In each case, (since $\operatorname{deg}_{K}(u)=5, \operatorname{deg}_{K}(v)=3$ or 4 , and $u v$ is a nonedge) there exists an edge α in K such that $\alpha \cup\{u\}$ and $\alpha \cup\{v\}$ are 2-faces in K and hence $\tau=\alpha \cup\{w\}$ serves the purpose.

Now, assume that L has no vertex of degree 5 . Then L must be of the form $S_{2}^{0}\left(\left\{a_{1}, a_{2}\right\}\right) *$ $S_{2}^{0}\left(\left\{b_{1}, b_{2}\right\}\right) * S_{2}^{0}\left(\left\{c_{1}, c_{2}\right\}\right)$. If possible, let $a_{i} b_{j} c_{k} v$ is not a facet for $1 \leq i, j, k \leq 2$. Consider the 2 -face $a_{1} b_{1} c_{1}$. There exists a vertex $x \neq u$ such that $a_{1} b_{1} c_{1} x$ is a facet. Assume, without loss of generality, that $a_{1} b_{1} c_{1} a_{2}$ is a facet. Since $\operatorname{deg}\left(c_{1}\right)>5$ (resp., $\operatorname{deg}\left(b_{1}\right)>5$), $a_{1} a_{2} b_{2} c_{1}$ (resp., $a_{1} a_{2} b_{1} c_{2}$) is not a facet. So, the facet (other than $a_{1} b_{2} c_{1} u$) containing $a_{1} b_{2} c_{1}$ must be $a_{1} b_{2} c_{1} c_{2}$. Similarly, the facet (other than $a_{1} b_{1} c_{2} u$) containing $a_{1} b_{1} c_{2}$ must be $a_{1} b_{1} b_{2} c_{2}$. Then $a_{1} b_{2} c_{1} c_{2}, a_{1} b_{1} b_{2} c_{2}$, and $a_{1} b_{2} c_{2} u$ are three facets containing $a_{1} b_{2} c_{2}$, a contradiction. This proves the claim.

By the claim, there exists a 2-simplex τ such that $\operatorname{lk}_{M}(\tau)=\{u, v\}$. Since $u v$ is a nonedge of $M, \mathcal{\kappa}_{\tau}: M \mapsto \mathcal{\kappa}_{\tau}(M)=N$ is a bistellar 1-move. Since $u v$ is an edge in N, it follows that $\operatorname{deg}_{N}(u)=7$.

Proof of Theorem 1.1. Let M be an 8-vertex 3-pseudomanifold. Then, by Lemma 4.1, there exist bistellar 1-moves $\kappa_{A_{1}}, \ldots, \kappa_{A_{k}}$, for some $k \geq 0$, such that the degree of each vertex in $\kappa_{A_{k}}\left(\cdots\left(\kappa_{A_{1}}(M)\right)\right.$ is at least 5. Therefore, by Lemma 4.2, there exist bistellar 1-moves $\kappa_{A_{k+1}}, \ldots, \kappa_{A_{l}}$, for some $l \geq k$, such that the degree of each vertex in $\mathcal{K}_{A_{l}}\left(\cdots \mathcal{\kappa}_{A_{k}}\left(\cdots\left(\mathcal{\kappa}_{A_{1}}(M)\right)\right)\right.$ is at least 6 . Then, by Lemma 4.3, there exist bistellar 1-moves $\mathcal{\kappa}_{A_{l+1}}, \ldots, \kappa_{A_{m}}$, for some $m \geq l$, such that the degree of each vertex in $\kappa_{A_{m}}\left(\cdots \kappa_{A_{l}}\left(\cdots \kappa_{A_{k}}\left(\cdots\left(\mathcal{\kappa}_{A_{1}}(M)\right)\right)\right)\right.$ is 7 . This proves the theorem.

Lemma 4.4. Let K be an 8-vertex combinatorial 3-manifold. If K is neighbourly, then K is isomorphic to $S_{8,35}^{3}, S_{8,36}^{3}, S_{8,37}^{3}$, or $S_{8,38}^{3}$.

Proof. Since K is a neighbourly combinatorial 3-manifold, by Proposition 2.3, the link of any vertex is isomorphic to S_{5}, \ldots, S_{8}, or S_{9}.

Claim 1. The links of all the vertices cannot be isomorphic to $S_{9}\left(=S_{2}^{0} * C_{5}\right)$.
Otherwise, let $\operatorname{lk}(8)=S_{2}^{0}(6,7) * C_{5}(1,2, \ldots, 5)$. Consider the vertex 2 . Since the degree of 2 is 7,1267 or 2367 is not a facet. Assume, without loss of generality, that 1267 is not a facet. Again, if 1236 is a facet, then $\operatorname{deg}_{1 \mathrm{lk}(2)}(6)=3$ and hence $l \mathrm{lk}(2) \neq S_{9}$. So, 1236 is not a facet. Similarly, 1256 is not a facet. Then the facet other than 1268 containing 126 must be 1246. Similarly, 1247 is a facet. This implies that $\operatorname{lk}(2)=S_{2}^{0}(6,7) * C_{5}(1,4,5,3,8)$. Thus deg $(26)=5$. Similarly, $\operatorname{deg}(16)=\operatorname{deg}(36)=\operatorname{deg}(46)=\operatorname{deg}(56)=5$. Then, the 7-vertex 2 -sphere $1 \mathrm{k}(6)$ contains five vertices of degree 5 . This is not possible. This proves the claim.

Case 1. Consider the case when K has a vertex, (say 8) whose link is isomorphic to S_{8}. Assume, without loss of generality, that the facets containing the vertex 8 are 1238, 1268, $1348,1458,1568,2348,2478,2678,4578$, and 5678 . Since $\operatorname{deg}(3)=7,1234 \notin K$. Hence the facet other than 1238 containing the face 123 is one of 1235,1236 , or 1237.

If $1236 \in K$, then, clearly, $\operatorname{deg}(17)=3$ or 4 . If $\operatorname{deg}(17)=4$, then on completing $\operatorname{lk}(1)$, we see that $1457,1567 \in K$, thereby showing that $\operatorname{deg}(5)=5$, an impossibility. Hence, $\operatorname{deg}(17)=3$ and, therefore, $1457 \in K$. There are two possibilities for the completion of $1 \mathrm{k}(1)$. If 1347,1356 , $1357 \in K$, from the links of 4 and 3 , we see that $2346,2467,3467,3567 \in K$. Here, $\operatorname{deg}(5)=6$. If $1346,1467,1567 \in K$, then $\operatorname{deg}(5)=5$. Thus, $1236 \notin K$.

Case 1.1. $1235 \in K$. Since $\operatorname{deg}(1)=7$, either 1345 or 1256 is a facet. In the first case, $1257,1267,1567 \in K$. Here, $\operatorname{deg}(6)=5$, a contradiction. So, $1256 \in M$ and hence $1347,1357,1457 \in K$. From the links of the vertices $1,4,7$ and 5 , we see that $1256,2346,2467,3467,3567,2356 \in K$. Here, $K \cong S_{8,38}^{3}$ by the map $(1,5,8,6)(2,7)(3,4)$.

Case 1.2. $1237 \in K$. By the same argument as in Case 1.1 (replace the vertex 1 by vertex 2), we get $1267,2345,2357,2457 \in K$. From $\operatorname{lk}(1)$ and $\operatorname{lk}(7), 1346,1456,3456,1367,3567 \in K$. Here, $K \cong S_{8,38}^{3}$ by the map $(1,7,8,6)(2,5)(3,4)$.

Case 2. K has no vertex whose link is isomorphic to S_{8} but has a vertex whose link is isomorphic to S_{6}. Using the same method as in Case 1.1, we find that $K \cong S_{8,37}^{3}$.

Case 3. K has no vertex whose link is isomorphic to S_{8} or S_{6} but has a vertex whose link is isomorphic to S_{7}. Using the same method as in Case 1.1, we find that $K \cong S_{8,36}^{3}$.

Case 4. K has no vertex whose link is isomorphic to S_{6}, S_{7}, or S_{8} but has a vertex (say 8) whose link is isomorphic to S_{5}. The facets through 8 can be assumed to be 1238, 1278, 1348,
$1458,1568,1678,2348,2458,2568$, and 2678 . Clearly, $1234,1267 \notin K$. If $\operatorname{deg}(15)=6$, then from $\operatorname{lk}(1)$ and $\operatorname{lk}(5)$, we see that $1235,1345,2345 \in K$, thereby showing that $\operatorname{deg}(3)=5$. Hence $1237 \in K$. Now, we can assume, without loss of generality, that the facets required to complete $\operatorname{lk}(1)$ are 1347,1457 , and 1567 . Now, consider $\operatorname{lk}(2)$. If $\operatorname{deg}(27)=6$, then after completing the links of 2 and 7, we observe that $\operatorname{deg}(4)=6$. Hence $\operatorname{deg}(23)=6$. The links of 2, 7, and 6 show that $2345,2356,2367,3467,4567$, and $3456 \in K$. Here, $K \cong S_{8,35}^{3}$ by the map $(2,3,4,5,6,7,8)$. This completes the proof.

Lemma 4.5. Let K be an 8-vertex neighbourly normal 3-pseudomanifold. If K has one vertex whose link is the 7-vertex torus T, then K is isomorphic to N_{1}, N_{2}, N_{3}, or N_{4}.

Proof. Let us assume that $V(K)=\{1, \ldots, 8\}$ and the link of the vertex 8 is the 7-vertex torus T. So, the facets containing 8 are $1248,1268,1348,1378,1568,1578,2358,2378,2458,2678,3468$, 3568,4578 , and 4678 . We have the following cases.

Case 1. There is a vertex (other than the vertex 8), say 7, whose link is isomorphic to T. Then $\operatorname{lk}(7)$ has no vertex of degree 3 and hence $2367,1457,1237,1357 \notin K$. This implies that the facet (other than 1378) containing 137 is 1367 or 1347. In the first case, $1 \mathrm{k}(17)=$ $C_{6}(5,8,3,6,4,2)$. Thus, $1367,1467,1247,1257 \in K$. Then, from the links of 67 and 37 , we get $2567,3567,2347,3457 \in K$. Now, from $\operatorname{lk}(34), 1346 \notin K$. Then, from the links of $36,34,23,14$, and 26 , we get $1236,2346,1345,1235,1456,2456 \in K$. Here, $K=N_{1}$.

In the second case, $\operatorname{lk}(37)=C_{6}(2,8,1,4,6,5)$. Thus, $1347,3467,3567,2357 \in K$. Now, from the links of 47 and 67 , we get $1247,2457,1567,1267 \in K$. Here, $K=N_{2}$.

Case 2. There is a vertex whose link is a 7 -vertex $\mathbb{R} P^{2}$.
Claim 1. There exists a vertex in K whose link is isomorphic to R_{2}.
If there is vertex whose link is isomorphic to R_{2}, then we are done. Otherwise, since $\operatorname{Aut}(\operatorname{lk}(8))$ acts transitively on $\{1, \ldots, 7\}$, assume that $\operatorname{lk}(4) \cong R_{3}$ (resp., R_{4}). Since $(1,2,5,7,6,3) \in \operatorname{Aut}(\operatorname{lk}(8))$, we may assume that the degree 4 vertex (resp., vertices) in $1 \mathrm{k}(4)$ is 1 (resp., are $1,5,6$). Then, from $\operatorname{lk}(4), 1247,1347,2467 \in K$. This implies that $\operatorname{lk}(7)$ is a nonsphere and $\operatorname{deg}(67)=3$. Hence $\operatorname{lk}(7) \cong R_{2}$. This proves the claim.

By the claim, we can assume that $l \mathrm{k}(4) \cong R_{2}$. Again, we may assume that the vertex 1 is of degree 3 in $\operatorname{lk}(4)$. Then, from $1 k(4), 1234,2347,2456,2467,3456,3457 \in K$. Considering the links of the edges $36,26,27,25$, and 13 , we get $1256,1235,1357 \in K$. Here, $K=N_{3}$.

Case 3. Only singular vertex in K is 8 . So, the link of each vertex (other than vertex 8) is an S_{7}^{2} (a 7-vertex 2 -sphere). Since 8 is a degree 6 vertex in $\operatorname{lk}(u)$, it follows that $1 \mathrm{k}(u)$ is isomorphic to one of S_{5}, S_{6}, or S_{7} (defined in Example 2.2) for any vertex $u \neq 8$. If $1 \mathrm{k}(1) \cong S_{5}$, then (since $(3,4,2,6,5,7) \in \operatorname{Aut}(\operatorname{lk}(8)))$, we may assume that the other degree 6 vertex in $\operatorname{lk}(1)$ is 3 . Then, from the links of 1 and $3,1348,1234,1346$ are facets containing 134, a contradiction. If $\operatorname{lk}(1) \cong S_{6}$, then $\left(\right.$ since $\left.\operatorname{lk}(18)=C_{6}(3,4,2,6,5,7)\right)$ we may assume that the degree 5 vertices in $\operatorname{lk}(1)$ are 2,3 , and 5 . Then $\operatorname{lk}(3)$ cannot be an S_{7}^{2}, a contradiction. So, $1 \mathrm{k}(1) \cong S_{7}$. Since $\operatorname{Aut}(\operatorname{lk}(8))$ acts transitively on $\{1, \ldots, 7\}$, it follows that the link of each vertex is isomorphic to S_{7}.

Since $\operatorname{lk}(18)=C_{6}(3,4,2,6,5,7)$ and $(3,4,2,6,5,7) \in \operatorname{Aut}(\operatorname{lk}(8))$, we may assume that the degree 5 vertices in $1 \mathrm{lk}(1)$ are 4 and 5 . Since $1 \mathrm{k}(4) \cong S_{7}$, it follows that $1456 \notin K$. Then, from $\operatorname{lk}(1), 1245,1256,1347,1457 \in K$. Now, from the links of 4 and 5 , we get $3467,2356 \in K$. Then, from $\operatorname{lk}(2), 2367 \in K$. Here $K=N_{4}$. This completes the proof.

Figure 3: Hasse diagram of the poset of the 8-vertex combinatorial 3-manifolds (the partial order relation is as defined in Section 2).

Lemma 4.6. Let K be an 8-vertex neighbourly normal 3-pseudomanifold. If K is not a combinatorial 3-manifold and has no vertex whose link is isomorphic to the 7-vertex torus T then K is isomorphic to N_{5}, \ldots, N_{14} or N_{15}.

Proof. Let n_{s} be the number of singular vertices in K. Since K is neighbourly, by Proposition 2.3 , the link of any vertex is either a 7 -vertex $\mathbb{R} P^{2}$ or a 7 -vertex S^{2}. So, the number of facets through a singular (resp., nonsingular) vertex is 12 (resp., 10). Let f_{3} be the number of facets of K. Consider the set $S=\{(v, \sigma): \sigma$ is a facet of K and $v \in \sigma$ is a vertex $\}$. Then $f_{3} \times 4=\#(S)=n_{s} \times 12+\left(8-n_{s}\right) \times 10=80+2 n_{s}$. This implies n_{s} is even. Since K is not a combinatorial 3-manifold, it follows that $n_{s} \neq 0$ and hence $n_{s} \geq 2$. So, K has at least two vertices whose links are isomorphic to R_{2}, R_{3}, or R_{4}.

Case 1. There exist (at least) two vertices whose links are isomorphic to R_{4}. Assume that $\mathrm{lk}_{M}(8)=R_{4}$. Then $1258,1268,1358,1378,1468,1478,2368,2378,2458,2478,3458,3468 \in K$. Since $(1,3,4)(5,6,7),(1,2)(3,4) \in \operatorname{Aut}(\operatorname{lk}(8))$, we may assume that $\operatorname{lk}(3)$ or $\operatorname{lk}(7) \cong R_{4}$.

Case 1.1. $\operatorname{lk}(7) \cong R_{4}$. Since $\operatorname{lk}_{\operatorname{lk}(7)}(8)=C_{4}(1,3,2,4)$, it follows that $1,2,3,4$ are degree 5 vertices in $\operatorname{lk}(7)$. Since $(3,4)(5,6) \in \operatorname{Aut}(\mathrm{lk}(8))$, assume without loss that $136,145 \in \operatorname{lk}(7)$. Then, from $\operatorname{lk}(7)$, we get $1257,1267,1367,1457,2357,2467,3457,3467 \in K$. This shows that $\operatorname{lk}(2)$ is an $\mathbb{R} P_{7}^{2}$. Since $3457,3458 \in K$, it follows that $2345 \notin K$. Then, from $\operatorname{lk}(2), 2356,2456 \in K$. Then, from the links of 3 and $4,1356,1456 \in K$. Here $K=N_{5}$.

Case 1.2. $\operatorname{lk}(7) \not \equiv R_{4}$. So, $\operatorname{lk}(3) \cong R_{4}$. Since $\operatorname{lk}_{\operatorname{lk}(3)}(8)=C_{6}(1,7,2,6,4,5)$, the degree 4 vertices in $\operatorname{lk}(3)$ are either $5,6,7$, or $1,2,4$. In the first case, on completion of $l k(3)$, we observe that 56,67 ,

57 remain nonedges in K. So, the degree 4 vertices in $\operatorname{lk}(3)$ are 1,2, and 3. Then 1356, 1367, $2356,2357,3457$, and 3467 are facets. Since $\operatorname{lk}(7) \not \equiv R_{4}$ and $\operatorname{deg}(78)=4$, either $\operatorname{lk}(7) \cong R_{3}$ or $\mathrm{lk}(7)$ is an S_{7}^{2}. In the former case, 2567 is a facet. This is not possible from $\operatorname{lk}(25)$. So, $1 \mathrm{k}(7)$ is an S_{7}^{2}. Then, from $\operatorname{lk}(7), 1467,2457 \in K$. Now, from $\operatorname{lk}(1), 1256 \in K$. Here, $K=N_{7}$.

Case 2. Exactly one vertex whose link is isomorphic to R_{4} and there exists a vertex whose link is isomorphic to R_{3}. Using the same method as in Case 1 , we find that $K \cong N_{8}$.

Case 3. Exactly one vertex whose link is isomorphic to R_{4}, there is no vertex whose link is isomorphic to R_{3} and there exists (at least) a vertex whose link is isomorphic to R_{2}. Using the same method as in Case 1, we find that $K \cong N_{9}$.

Case 4. There is no vertex whose link is isomorphic to R_{4} and there exist (at least) two vertices whose links are isomorphic to R_{3}. Assume that $\mathrm{lk}_{K}(8)=R_{4}$, so that $\operatorname{deg}(78)=4$. Using the same method as in Case 1, we get the following: (i) if $\mathrm{lk}_{K}(7) \cong R_{3}$, then $K=N_{6}$ and (ii) if $\mathrm{lk}_{K}(7) \not \equiv R_{3}$, then K is isomorphic to N_{10} or N_{11}.

Case 5. There is no vertex whose link is isomorphic to R_{4}, there exists exactly one vertex whose link is isomorphic to R_{3} and there exists (at least) a vertex whose link is isomorphic to R_{2}. Using the same method as in Case 1 , we find that K is isomorphic to N_{12} or N_{13}.

Case 6. There is no vertex whose link is isomorphic to R_{4} or R_{3} and there exist (at least) two vertices whose links are isomorphic to R_{2}. Using the same method as in Case 1, we find that K is isomorphic to N_{14} or N_{15}. This completes the proof.

Proof of Theorem 1.2. Since $S_{8, m}^{3}$'s are combinatorial 3-manifolds and N_{n} 's are not combinatorial 3-manifolds, $S_{8, m}^{3} \not \equiv N_{n}$ for $35 \leq m \leq 38,1 \leq n \leq 15$. Part (a) now follows from Lemmas 3.2, 3.7. Part (b) follows from Lemmas 4.4, 4.5, and 4.6.

Lemma 4.7. Let $\mathcal{S}_{0}, \ldots, S_{6}$ be as in the proof of Lemma 3.4. If a combinatorial 3-manifold K is obtained from a member of S_{j} by a bistellar 2-move, then K is isomorphic to a member of \mathcal{S}_{j+1} for $0 \leq j \leq 5$. Moreover, no bistellar 2-move is possible from a member of \mathcal{S}_{6}.

Proof. Recall that $S_{0}=\left\{S_{8,35}^{3}, S_{8,36}^{3}, S_{8,37}^{3}, S_{8,38}^{3}\right\}$. The removable edges in $S_{8,37}^{3}$ are 13, 16, 17, $24,27,35,46,48$, and 58 . Since $(1,4)(2,7)(3,8) \in \operatorname{Aut}\left(S_{8,37}^{3}\right)$, up to isomorphisms, it is sufficient to consider the bistellar 2 -moves $\kappa_{27}, \kappa_{24}, \kappa_{48}, \mathcal{\kappa}_{58}$, and κ_{46} only. Here $S_{8,33}^{3}:=$ $\kappa_{27}\left(S_{8,37}^{3}\right), S_{8,30}^{3}:=\kappa_{24}\left(S_{8,37}^{3}\right), S_{8,32}^{3}:=\kappa_{48}\left(S_{8,37}^{3}\right), S_{8,31}^{3}:=\kappa_{58}\left(S_{8,37}^{3}\right)$, and $\kappa_{46}\left(S_{8,37}^{3}\right) \cong S_{8,31}^{3}$ by the map $(1,4,5)(2,7)(3,6,8)$.

The removable edges in $S_{8,38}^{3}$ are $13,38,78,27,25,15$, and 46 . Since $(1,2,8)$ $(7,3,5),(1,2)(3,7)(4,6) \in \operatorname{Aut}\left(S_{8,38}^{3}\right)$, it is sufficient to consider the bistellar 2-moves κ_{46} and κ_{78} only. Here $S_{8,39}^{3}:=\kappa_{46}\left(S_{8,36}^{3}\right)$ and $\kappa_{78}\left(S_{8,38}^{3}\right) \cong S_{8,32}^{3}$ by the map $(1,7,8,4,6)(2,3)$.

The removable edges in $S_{8,36}^{3}$ are $13,35,58,68,46,24,27,17$. Since $(1,5,6,2)(3,8,4,7)$ is an automorphism of $S_{8,36}^{3}$, it is sufficient to consider the bistellar 2-moves κ_{58} and \mathcal{K}_{68} only. Here $\mathcal{\kappa}_{58}\left(S_{8,36}^{3}\right)=S_{8,31}^{3}$ and $\kappa_{68}\left(S_{8,36}^{3}\right) \cong S_{8,30}^{3}$ by the map (1,6,4, $\left., 2,5,7,3\right)$.

The removable edges in $S_{8,35}^{3}$ are $13,35,57,71,24,46,68$, and 82 . Since $(1,2, \ldots$, $8),(1,8)(2,7)(3,6)(4,5) \in \operatorname{Aut}\left(S_{8,35}^{3}\right)$, it is sufficient to consider the bistellar 2-moves \mathcal{K}_{68} only. Here $\mathcal{K}_{68}\left(S_{8,35}^{3}\right) \cong S_{8,30}^{3}$ by the map $(1,7,3)(2,8,4,5,6)$. This proves the result for $j=0$.

Figure 4: Hasse diagram of the poset of all the 3-pseudomanifolds N_{7}, \ldots, N_{35}.

By the same arguments as in the case for $j=0$, one proves for the cases for $1 \leq j \leq 5$. We summarize these cases in Figure 3 below. Last part follows from the fact that none of $S_{8,1}^{3}, S_{8,3}^{3}$, or $S_{8,3}^{3}$ has any removable edges.

Lemma 4.8. Let $\Omega_{0}, \ldots, \Omega_{3}$ be as in the proof of Lemma 3.9. If a 3-pseudomanifold K is obtained from a member of Ω_{j} by a bistellar 2-move, then K is isomorphic to a member of \mathcal{N}_{j+1} for $0 \leq j \leq 2$. Moreover, no bistellar 2-move is possible from a member of Ω_{3}.

Proof. Recall that $N_{0}=\left\{N_{1}, \ldots, N_{15}\right\}$. Since there are no degree 3 edges in N_{1}, N_{2}, N_{5}, and N_{6}, no bistellar 2-moves are possible from N_{1}, N_{5}, N_{6}, or N_{2}. The degree 3 edges in N_{3} (resp., in N_{4}) are $14,16,17,36,67$ (resp., $13,35,57,72,24,46,61$). But, none of these edges is removable. So, bistellar 2-moves are not possible from N_{3} or N_{4}.

The removable edges in N_{7} are $12,14,24,56,57$, and 67 . Since $(1,2)(6,7),(1,2)(5,6)$, and $(1,5)(2,6)(3,8)(4,7)$ are automorphisms of N_{7}, it follows that up to isomorphisms, we only have to consider the bistellar 2-move κ_{67}. Here, $N_{16}=\kappa_{67}\left(N_{7}\right)$.

The removable edges in N_{8} are $15,17,24,56,57$, and 67 . Since $(1,6)(2,4),(1,6)(5,7)$, $(2,4)(5,7) \in \operatorname{Aut}\left(N_{8}\right)$, we only consider the bistellar 2 -moves $\mathcal{K}_{24}, \mathcal{K}_{56}$, and \mathcal{K}_{57}. Here, $N_{17}=$ $\mathcal{K}_{24}\left(N_{8}\right), N_{18}=\mathcal{K}_{56}\left(N_{8}\right)$, and $N_{19}=\mathcal{K}_{57}\left(N_{8}\right)$.

The removable edges in N_{9} are $12,23,24$, and 67 . Since $(1,4)(6,7) \in \operatorname{Aut}\left(N_{9}\right)$, we consider only $\mathcal{\kappa}_{12}, \mathcal{\kappa}_{23}$, and $\mathcal{\kappa}_{67}$. Here, $N_{21}=\mathcal{\kappa}_{12}\left(N_{9}\right), N_{23}=\mathcal{\kappa}_{23}\left(N_{9}\right)$, and $\mathcal{\kappa}_{67}\left(N_{9}\right)=N_{16}$.

The removable edges in N_{10} are $12,14,24,56,57$, and 67 . Since $(1,7)(2,5)(3,8)(4,6)$, $(1,4)(6,7) \in \operatorname{Aut}\left(N_{10}\right)$, we consider the bistellar 2-moves $\mathcal{\kappa}_{56}$ and \mathcal{K}_{57} only. Here, $N_{20}=$ $\kappa_{56}\left(N_{10}\right)$ and $\mathcal{K}_{67}\left(N_{10}\right)=N_{16}$.

The removable edges of N_{11} are $14,24,56,57$, and 67 . Since $(1,2)(5,6)(3,8) \in \operatorname{Aut}\left(N_{11}\right)$, we only consider the bistellar 2 -moves $\kappa_{14}, \mathcal{\kappa}_{56}$, and κ_{67}. Here, $N_{22}=\kappa_{14}\left(N_{11}\right), \kappa_{56}\left(N_{11}\right)=$ N_{20}, and $\kappa_{67}\left(N_{11}\right) \cong N_{18}$ (by the map $(2,4)(5,7)$).

The removable edges in N_{12} are $12,23,45$, and 57 . Here, $\kappa_{12}\left(N_{12}\right) \cong N_{22}$ (by the map $(2,4,6)), \kappa_{23}\left(N_{12}\right)=N_{23}, \kappa_{45}\left(N_{12}\right) \cong N_{21}$ (by the map $(1,6,5,2,7,4)(3,8)$), and $\kappa_{57}\left(N_{12}\right) \cong$ N_{18} (by the map $(1,6,7,4)$).

The removable edges in N_{13} are $12,23,24,56,57$, and 67 . Since $(1,4)(6,7) \in \operatorname{Aut}\left(N_{13}\right)$, we only consider $\mathcal{\kappa}_{12}, \mathcal{\kappa}_{23}, \mathcal{K}_{57}$, and κ_{67}. Here, $\mathcal{\kappa}_{12}\left(N_{13}\right) \cong N_{22}$ (by the map $(2,7,5,4)$), $\kappa_{23}\left(N_{13}\right)=N_{23}, \kappa_{57}\left(N_{13}\right) \cong N_{18}$ (by the map $\left.(1,4)(6,7)\right)$, and $\kappa_{67}\left(N_{13}\right)=N_{16}$.

The removable edges in N_{14} are $38,56,57,67$. Since $(1,2,4)(5,6,7)(3,8) \in \operatorname{Aut}\left(N_{14}\right)$, we only consider \mathcal{K}_{38} and $\mathcal{\kappa}_{57}$. Here, $N_{24}=\kappa_{38}\left(N_{14}\right)$ and $\mathcal{\kappa}_{57}\left(N_{14}\right)=N_{19}$.

The removable edges in N_{15} are $15,23,24,58$. Since $(1,7)(2,5)(3,8)(4,6) \in \operatorname{Aut}\left(N_{15}\right)$, we only consider the bistellar 2-moves κ_{23} and κ_{24}. Here, $\kappa_{23}\left(N_{15}\right)=N_{23}$ and $\kappa_{24}\left(N_{15}\right) \cong N_{21}$ (by the map (1,6,5,7,4)). This proves the result for $j=0$.

By the same arguments as in the case for $j=0$, one proves the same for other cases (namely, for $j=1,2$) as well. We summarize these cases in Figure 4 . Last part follows from the fact that, for $N_{i} \in \Omega_{3}, N_{i}$ has no removable edge.

Proof of Corollary 1.3. Let $\mathcal{S}_{0}, \ldots, \mathcal{S}_{6}$ be as in the proof of Lemma 3.4. Let M be an 8 -vertex combinatorial 3-manifold. Then, by Theorem 1.1, there exist bistellar 1-moves $\kappa_{A_{1}}, \ldots, \kappa_{A_{m}}$, for some $m \geq 0$, such that $M_{1}:=\kappa_{A_{m}}\left(\cdots\left(\kappa_{A_{1}}(M)\right)\right.$) is a neighbourly 8-vertex 3pseudomanifold. Since bistellar moves send a combinatorial 3-manifold to a combinatorial 3manifold, M_{1} is a combinatorial 3-manifold. Then, by Theorem 1.2, $M_{1} \in S_{0}$. In other words, $M=\kappa_{e_{1}}\left(\cdots\left(\kappa_{e_{m}}\left(M_{1}\right)\right)\right.$, where $M_{1} \in \mathcal{S}_{0}$ and $\kappa_{e_{m}}: M_{1} \mapsto \kappa_{e_{m}}\left(M_{1}\right), \kappa_{e_{i}}: \kappa_{e_{i+1}}\left(\cdots\left(\kappa_{e_{m}}\left(M_{1}\right)\right)\right) \mapsto$ $\kappa_{e_{i}}\left(\cdots\left(\kappa_{e_{m}}\left(M_{1}\right)\right)\right)$, for $1 \leq i \leq m-1$, are bistellar 2-moves. Therefore, by Lemma 4.7, $M \in \mathcal{S}_{0} \cup \cdots \cup \mathcal{S}_{6}$. The result now follows from Lemma 3.4.

Proof of Corollary 1.4. Let $\Omega_{0}, \ldots, \Omega_{3}$ be as in the proof of Lemma 3.9. Let M be an 8 -vertex normal 3-pseudomanifold. Then, by Theorem 1.1, there exist bistellar 1-moves $\kappa_{A_{1}}, \ldots, \kappa_{A_{m}}$, for some $m \geq 0$, such that $M_{1}:=\kappa_{A_{m}}\left(\cdots\left(\kappa_{A_{1}}(M)\right)\right)$ is a neighbourly 3-pseudomanifold. Since bistellar moves send a normal 3-pseudomanifold to a normal 3-pseudomanifold, M_{1} is normal. Hence, by Theorem 1.2, $M_{1} \in \mathcal{N}_{0}$. In other words, $M=\kappa_{e_{1}}\left(\cdots\left(\kappa_{e_{m}}\left(M_{1}\right)\right)\right)$, where $M_{1} \in \mathcal{N}_{0}$ and $\kappa_{e_{m}}: M_{1} \mapsto \kappa_{e_{m}}\left(M_{1}\right), \kappa_{e_{i}}: \kappa_{e_{i+1}}\left(\cdots\left(\kappa_{e_{m}}\left(M_{1}\right)\right)\right) \mapsto \kappa_{e_{i}}\left(\cdots\left(\kappa_{e_{m}}\left(M_{1}\right)\right)\right)$, for $1 \leq i \leq$ $m-1$, are bistellar 2-moves. Therefore, by Lemma 4.8, $M \in \mathcal{N}_{0} \cup \mathcal{N}_{1} \cup \mathcal{N}_{2} \cup \mathcal{N}_{3}$. The result now follows from Lemma 3.9.

Acknowledgments

The authors thank the anonymous referees for many useful comments which helped to improve the presentation of this paper. The first author was partially supported by DST (Grant no. SR/S4/MS-272/05) and by UGC-SAP/DSA-IV.

References

[1] B. Bagchi and B. Datta, "Uniqueness of walkup's 9-vertex 3-dimensional Klein bottle," Discrete Mathematics. In press.
[2] A. Altshuler, "Combinatorial 3-manifolds with few vertices," Journal of Combinatorial Theory. Series A, vol. 16, no. 2, pp. 165-173, 1974.
[3] B. Grünbaum and V. P. Sreedharan, "An enumeration of simplicial 4-polytopes with 8 vertices," Journal of Combinatorial Theory, vol. 2, pp. 437-465, 1967.
[4] D. Barnette, "The triangulations of the 3-sphere with up to 8 vertices," Journal of Combinatorial Theory. Series A, vol. 14, no. 1, pp. 37-52, 1973.
[5] A. Emch, "Triple and multiple systems, their geometric configurations and groups," Transactions of the American Mathematical Society, vol. 31, no. 1, pp. 25-42, 1929.
[6] W. Kühnel, "Topological aspects of twofold triple systems," Expositiones Mathematicae, vol. 16, no. 4, pp. 289-332, 1998.
[7] A. Altshuler, "3-pseudomanifolds with preassigned links," Transactions of the American Mathematical Society, vol. 241, pp. 213-237, 1978.
[8] F. H. Lutz, Triangulated Manifolds with Few Vertices and Vertex-Transitive Group Actions, Berichte aus der Mathematik, Shaker, Aachen, Germany, 1999, Dissertation, Technischen Universität Berlin.
[9] B. Bagchi and B. Datta, "A structure theorem for pseudomanifolds," Discrete Mathematics, vol. 188, no. 1-3, pp. 41-60, 1998.
[10] B. Datta, "Two-dimensional weak pseudomanifolds on seven vertices," Boletín de la Sociedad Matemática Mexicanae. Tercera Serie, vol. 5, no. 2, pp. 419-426, 1999.
[11] W. Kühnel, "Minimal triangulations of Kummer varieties," Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 57, pp. 7-20, 1987.
[12] E. Gawrilow and M. Joswig, polymake, 1997-2007, version 2.3, http://www.math.tu-berlin.de/ polymake.
[13] W. Kühnel, "Triangulations of manifolds with few vertices," in Advances in Differential Geometry and Topology, F. Tricerri, Ed., pp. 59-114, World Scientific, Teaneck, NJ, USA, 1990.
[14] B. Bagchi and B. Datta, "Minimal trialgulations of sphere bundles over the circle," Journal of Combinatorial Theory. Series A, vol. 115, no. 5, pp. 737-752, 2008.
[15] D. W. Walkup, "The lower bound conjecture for 3- and 4-manifolds," Acta Mathematica, vol. 125, no. 1, pp. 75-107, 1970.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

