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A normal pseudomanifold is a pseudomanifold in which the links of simplices are also
pseudomanifolds. So, a normal 2-pseudomanifold triangulates a connected closed 2-manifold.
But, normal d-pseudomanifolds form a broader class than triangulations of connected closed d-
manifolds for d > 3. Here, we classify all the 8-vertex neighbourly normal 3-pseudomanifolds.
This gives a classification of all the 8-vertex normal 3-pseudomanifolds. There are 74 such 3-
pseudomanifolds, 39 of which triangulate the 3-sphere and other 35 are not combinatorial 3-
manifolds. These 35 triangulate six distinct topological spaces. As a preliminary result, we
show that any 8-vertex 3-pseudomanifold is equivalent by proper bistellar moves to an 8-
vertex neighbourly 3-pseudomanifold. This result is the best possible since there exists a 9-vertex
nonneighbourly 3-pseudomanifold which does not allow any proper bistellar moves.
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1. Introduction

Recall that a simplicial complex is a collection of nonempty finite sets (sets of vertices) such that
every nonempty subset of an element is also an element. For i > 0, the elements of size i + 1
are called the i-simplices (or i-faces) of the complex.

A simplicial complex is usually thought of as a prescription for construction of a
topological space by pasting geometric simplices. The space thus obtained from a simplicial
complex K is called the geometric carrier of K and is denoted by |K|. We also say that K
triangulates |K|. A combinatorial 2-manifold (resp., combinatorial 2-sphere) is a simplicial complex
which triangulates a closed surface (resp., the 2-sphere S?).

For a simplicial complex K, the maximum of k such that K has a k-simplex, is called
the dimension of K. A d-dimensional simplicial complex K is called pure if each simplex of K
is contained in a d-simplex of K. A d-simplex in a pure d-dimensional simplicial complex is
called a facet. A d-dimensional pure simplicial complex K is called a weak pseudomanifold if
each (d — 1)-simplex of K is contained in exactly two facets of K.
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With a pure simplicial complex K of dimension d > 1, we associate a graph A(K) as
follows. The vertices of A(K) are the facets of K and two vertices of A(K) are adjacent if the
corresponding facets intersect in a (d —1)-simplex of K. If A(K) is connected, then K is called
strongly connected. A strongly connected weak pseudomanifold is called a pseudomanifold.
Thus, for a d-pseudomanifold K, A(K) is a connected (d + 1)-regular graph. This implies
that K has no proper subcomplex which is also a d-pseudomanifold; (or else, the facets of
such a subcomplex would provide a disconnection of A(X)).

For any set V with #(V) = d +2 (d > 0), let K be the simplicial complex whose
simplexes are all the nonempty proper subsets of V. Then K is a d-pseudomanifold and
triangulates the d-sphere S°. This d-pseudomanifold K is called the standard d-sphere and
is denoted by S4 (V) (or S4 ). By convention, S) is the only 0-pseudomanifold.

If o is a face of a simplicial complex K, then the link of ¢ in K, denoted by
lkx (o) (or lk(0)), is by definition the simplicial complex whose faces are the faces 7 of
K such that 7 is disjoint from o and ¢ U 7 is a face of K. Clearly, the link of an i-
face in a weak d-pseudomanifold is a weak (d — i — 1)-pseudomanifold. For d > 1, a
connected weak d-pseudomanifold is said to be a normal d-pseudomanifold if the links of
all the simplices of dimension < d — 2 are connected. Thus, any connected triangulated d-
manifold (triangulation of a closed d-manifold) is a normal d-pseudomanifold. Clearly, the
normal 2-pseudomanifolds are just the connected combinatorial 2-manifolds; but normal d-
pseudomanifolds form a broader class than connected triangulated d-manifolds for d > 3.

Observe that if X is a normal pseudomanifold, then X is a pseudomanifold. (If A(X) is
not connected, then, since X is connected, A(X) has two components G; and G, and two
intersecting facets oy, o» such that o; € G;, i = 1,2. Choose o1, 0» among all such pairs
such that dim(oy; N 0y) is maximum. Then dim(o; N 02) < d — 2 and lkx(oy N 07) is not
connected, a contradiction.) Notice that all the links of positive dimensions (i.e., the links of
simplices of dimension < d — 2) in a normal d-pseudomanifold are normal pseudomanifolds.
Thus, if K is a normal 3-pseudomanifold, then the link of a vertex in K is a combinatorial
2-manifold. A vertex v of a normal 3-pseudomanifold K is called singular if the link of v
in K is not a 2-sphere. The set of singular vertices is denoted by SV(K). Clearly, the space
|K| \ SV(K) is a pl 3-manifold. If SV(K) = & (i.e., the link of each vertex is a 2-sphere), then
K is called a combinatorial 3-manifold. A combinatorial 3-sphere is a combinatorial 3-manifold
which triangulates the topological 3-sphere S°.

Let M be a weak d-pseudomanifold. If a is a (d — i)-face of M, 0 < i < d, such that
Ikp(a) = Séj (B) and B is not a face of M (such a face « is said to be a removable face of
M), then consider the weak d-pseudomanifold (denoted by x,(M)) whose facet-set is {o :
oafacetof M, ago} U {pUa)\ {v} : v € a}. The operation x, : M — (M) is called
a bistellar i-move. For 0 < i < d, a bistellar i-move is called a proper bistellar move. If x, is a
proper bistellar i-move and lky(a) = Sﬁj (B), then p is a removable i-face of x,(M) (with
Ik, (v () = S3i3(a)) and xp : ka(M) — M is an bistellar (d — i)-move. For a vertex u, if
lkpr(u) = ng (p), then the bistellar d-move &, : M — &y, (M) = N deletes the vertex u (we
also say that N is obtained from M by collapsing the vertex u). The operation x5 : N — M
is called a bistellar 0-move (we also say that M is obtained from N by starring the vertex
u in the facet § of N). The 10-vertex combinatorial 3-manifold A}, in Example 3.15 is not
neighbourly and does not allow any bistellar 1-move. In [1], Bagchi and Datta have shown
that if the number of vertices in a nonneighbourly combinatorial 3-manifold is at most 9, then
the 3-manifold admits a bistellar 1-move. Existence of the 9-vertex 3-pseudomanifold B; in
Example 3.16 shows that Bagchi and Datta’s result is not true for 9-vertex 3-pseudomanifolds.
Here we prove the following theorem.
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Theorem 1.1. If M is an 8-vertex 3-pseudomanifold, then there exists a sequence of bistellar 1-moves
KAy, ..., Ka,, for some m >0, such that ks, (- - - (ka, (M))) is a neighbourly 3-pseudomanifold.

In [2], Altshuler has shown that every combinatorial 3-manifold with at most 8 vertices
is a combinatorial 3-sphere. In [3], Griinbaum and Sreedharan have shown that there are
exactly 37 polytopal 3-spheres on 8 vertices (namely, Sg/l, cee, 53137 in Examples 3.1 and 3.3).
They have also constructed the nonpolytopal sphere 52,38. In [4], Barnette proved that there is
only one more nonpolytopal 8-vertex 3-sphere (namely, 53/39). In [5], Emch constructed an 8-
vertex normal 3-pseudomanifold (namely, Ny in Example 3.5) as a block design. This is not a
combinatorial 3-manifold and its automorphism group is PGL(2,7) (cf. [6]). In [7], Altshuler
has constructed another 8-vertex normal 3-pseudomanifold (namely, N5 in Example 3.5). In
[8], Lutz has shown that there exist exactly three 8-vertex normal 3-pseudomanifolds which
are not combinatorial 3-manifolds (namely, N;, N5 and Ny in Example 3.5) with vertex-
transitive automorphism groups. Here we prove the following theorem.

Theorem 1.2. Let 53/35, s, 53/38, Ni, ..., Nis be as in Examples 3.1 and 3.5.

(i) Then S #S5 ;, Ni#Ni, and S, #N, for 35 <i<j<38 1<k<I<15 35<m<38,
and1<n <15.

(ii) If M is an 8-vertex neighbourly normal 3-pseudomanifold, then M is isomorphic to one of
5'2,35’ 4 Sggsl Nl/ ceey N15.

Corollary 1.3. There are exactly 39 combinatorial 3-manifolds on 8 wvertices, all of which are
combinatorial 3-spheres.

Corollary 1.4. There are exactly 35 normal 3-pseudomanifolds on 8 wvertices which are not
combinatorial 3-manifolds. These are N1, ..., N5 defined in Examples 3.5 and 3.8.

The topological properties of these normal 3-pseudomanifolds are given in Section 3.

2. Preliminaries

All the simplicial complexes considered in this paper are finite (i.e., with finite vertex-set).
The vertex-set of a simplicial complex K is denoted by V(K). We identify the 0-faces of a
complex with the vertices. The 1-faces of a complex K are also called the edges of K.

If K, L are two simplicial complexes, then an isomorphism from K to L is a bijection
a : V(K) — V(L) such that for 0 C V(K), o is a face of K if and only if or(0) is a face of
L. Two complexes K, L are called isomorphic when such an isomorphism exists. We identify
two complexes if they are isomorphic. An isomorphism from a complex K to itself is called
an automorphism of K. All the automorphisms of K form a group under composition, which
is denoted by Aut(K).

For a face o in a simplicial complex K, the number of vertices in lkg (o) is called the
degree of o in K and is denoted by deg, (o) (or by deg(c)). If every pair of vertices of a
simplicial complex K form an edge, then K is called neighbourly. For a simplicial complex K,
if U C V(K), then K[U] denotes the induced complex of K on the vertex-set U.

If the number of i-faces of a d-dimensional simplicial complex K is f;(K) (0 <i < d),
then the number y(K) := 3% ,(~1) fi(K) is called the Euler characteristic of K.
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Figure 1

A graph is a simplicial complex of dimension < 1. A finite 1-pseudomanifold is called
a cycle. An n-cycle is a cycle on n vertices and is denoted by C,, (or by C,(ay, ..., a,) if the
edges are a1ay, ..., Ap-1ay, Ana1).

For a simplicial complex K, the graph consisting of the edges and vertices of K is
called the edge-graph of K and is denoted by EG(K). The complement of EG(K) is called the
nonedge graph of K and is denoted by NEG(K). For a weak 3-pseudomanifold M and an
integer n > 3, we define the graph G,(M) as follows. The vertices of G, (M) are the vertices
of M. Two vertices u and v form an edge in G, (M) if uv is an edge of degree n in M. Clearly,
if M and N are isomorphic, then G,(M) and G, (NN) are isomorphic for each n.

If M is a weak 3-pseudomanifold and «, : M — x,(M) = N is a bistellar 1-move, then,
from the definition, (fo(N), £1(N), f2(N), fs(N)) = (fo(M), fi(M) +1, fo2(M) +2, f5(M) +1)
and deg,;(v) > deg,,(v) for any vertex v. If x, : M — x,(M) = L is a bistellar 3-move, then
(fo(L), (L), fo(L), f5(L) = (fo(M) — 1, f1(M) ~ 4, fo(M) ~ 6, fs(M) - 3),

Consider the binary relation “<” on the set of weak 3-pseudomanifolds as M < N
if there exists a finite sequence of bistellar 1-moves «,, ..., Kg,, for some m > 0, such that
N = x4, (- kg (M)). Clearly, this < is a partial order relation.

Two weak d-pseudomanifolds M and N are bistellar equivalent (denoted by M~N)
if there exists a finite sequence of bistellar operations leading from M to N. If there exists
a finite sequence of proper bistellar operations leading from M to N, then we say M and
N are properly bistellar equivalent and we denote this by M = N. Clearly, “~” and “=” are
equivalence relations on the set of pseudomanifolds. It is easy to see that M~N implies that
|M| and |N| are pl homeomorphic.

For two simplicial complexes X and Y with disjoint vertex sets, the simplicial complex
X*Y:=XUYU{oUT:0€X,T€Y}iscalled the join of X and Y.

Let K be an n-vertex (weak) d-pseudomanifold. If u is a vertex of K and v is not a
vertex of K, then consider the simplicial complex X%,,K on the vertex set V(K) U {v} whose
set of facetsis {ocU {u} : cisa facetof Kand u¢ o} U {T U {v} : Tis a facet of K}. Then X,,K
is a (weak) (d + 1)-pseudomanifold and |X,,K]| is the topological suspension S|K| of |K| (cf.
[9]). It is easy to see that the links of # and v in %, K are isomorphic to K. This X, K is called
the one-point suspension of K.

For two d-pseudomanifolds X and Y, a simplicial map f : X — Y is called a k-fold
branched covering (with discrete branch locus) if |f|||X|\f,1(u) SIX)\ FU) = Y|\ U is a k-
fold covering for some U C V(Y). (We say that X is a branched cover of Y and Y is a branched
quotient of X.) The smallest such U (so that |f1];x)\ f1 ) @ X \ f71(U) — [Y|\ U is a covering)

is called the branch locus. If N is a k-fold branched quotient of M and N is obtained from N
by collapsing a vertex (resp., starring a vertex in a facet), then N is the branched quotient of

M, where M can be obtained from M by collapsing k vertices (resp., starring k vertices in k
facets). For proper bistellar moves we have the following lemma.
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Lemma 2.1. Let M and N be two d-pseudomanifolds and f : M — N be a k-fold branched covering.
For1<1<d-1,ifaisaremovable I-face, then f=*(a) consists of k removable I-faces a1, . . ., ax(say)
and Kp, (- -+ (K, (M))) is a k-fold branched cover of 1, (N).

Proof. Let lkn(a) = S“Ej (B). Since the dimension of a is > 0, f'(a) consists of ki-faces,

ai, ..., ax (say) of M. Let Ikpr(a;) = ngﬁ(ﬁi) and M; := MJ[a; U ;] for 1 < i < k. Since f

is simplicial, f; is not a face of M and hence a; is removable for each i. Since 0 < I < d -1,
it follows that M; is neighbourly. For i #j, if x#y € V(M;) N V(M;), then xy is an edge in
M; N M; and hence the number of edges in f “L(f(x)f(y)) is less than k, a contradiction. So,
#(V(M;) N V(M;)) < 1fori#j. This implies that f; is not a face in x,, (M) and hence a; is
removable in x,, (M) for i # j. The result now follows. O

Remark 3.14 shows that Lemma 2.1 is not true for [ = d — 1 (i.e., for bistellar 1-moves)
in general.

Example 2.2. In Figure 2, we present some weak 2-pseudomanifolds on at most seven vertices.
The degree sequences are presented parenthetically below the figures. Each of Si,...,S9
triangulates the 2-sphere, each of Rj,..., Ry triangulates the real projective plane and T
triangulates the torus. Observe that P;, P, are not pseudomanifolds.

We know that if K is a weak 2-pseudomanifold with at most six vertices, then K is
isomorphic to Sy,...,S54 or Ry (cf. [9]). In [10], we have seen the following.

Proposition 2.3. There are exactly 13 distinct 2-dimensional weak pseudomanifolds on 7 vertices,
namely, 55, ce ,Sg, Rz, N ,R4, T, P1, .. .,P3, and P4.

3. Examples

We identify a weak pseudomanifold with the set of facets in it.

Example 3.1. These four neighbourly 8-vertex combinatorial 3-manifolds were found by

Griinbaum and Sreedharan (in [3], these are denoted by P385, P§6, 13387 and M, resp.). It follows

from Lemma 3.4 that these are combinatorial 3-spheres. It was shown in [3] that the first three
of these are polytopal 3-spheres and the last one is a nonpolytopal sphere:

52135 = {1234,1267,1256,1245,2345,2356, 2367, 3467, 3456, 4567,1238, 1278,2378,
1348, 3478, 1458, 4578, 1568,1678, 5678},

52,36 = {1234,1256,1245,1567,2345,2356,2367,3467,3456,4567,1268, 1678,2678,
1238,2378,1348,3478, 1458,1578, 4578},

52,37 = {1234,1256,1245,1457,2345,2356,2367,3467,3456,4567,1568, 1578, 5678,
1268,2678,1238,2378,1348,1478, 3478},

53,38 = {1234,1237,1267,1347,1567,2345, 2367, 3467,3456,4567,2358, 2368, 3568,
1268,1568, 1248,2458,1478,1578,4578}.

(3.1)

Lemma3.2. S3,# S for 35 <i<j<38.
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P (6.3%) P, (6%.43.3%) P; (6.5°) Py (6°.52.4%)
(d)
Figure 2

Proof. Observe that Gs(S3 45)=Cs(1,2,...,8), G(S336)=(V, {23,34,45,67,78,81}), G4(S3 ;) =
(V,{23,34,56,78,81}), and Ge(S345) = (V,{17,23,58}), where V = {1,...,8}. Since K = L
implies Go(K) = Go(L), S3,#5; s for35<i<j<38. O
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Example 3.3. Some nonneighbourly 8-vertex combinatorial 3-manifolds. It follows from
Lemma 3.4 that these are combinatorial 3-spheres. For 1 < i < 34, the sphere Sg/i is isomorphic
to the polytopal sphere P? in [3] and the sphere 53,39 is isomorphic to the nonpolytopal sphere
found by Barnette in [4]. We consecutively define

5%,39 = K46(Sg,38)’ 53,33 = K27(Sg,37)f 52,32 = K48(Sg,37)r 53,31 = K58 (53,37),
Sg 30 K24<Ss 37)r 52,29 = K27(Sg,31)' Sg 28 K24(58 51)s Sg 27 = K13 (Ss 51)s
5325 K57<SS31) 5324 K48(SS31) 5223 K35(5831) 5326 K46(5827)’
Sg,zz = K24<S§,25)' 53,21 = K68(S§,25)' Sg,zo = K48(S§,25)' 52,19 = K17(S§,25>'
Sg,ls = K27(Sg,25)/ 52,12 = K15(S§,25)f 52,11 = K35(S§,25)/ Sg 17 = K2 (SS 19)7 (32)

S35 = 127 (ST0e) = S2(1,3) + S92,7) + SY(4,6) ¥ SU(5,8), S = 15(S2), '
S3,15 = Kog (523;,18)' 52,14 = K47(S§,20)' Sg,lo = K15(Sg,19)' 52,9 = K35 (523;,19)'

53,8 = K47(Sg,19)r 53,13 = K38(S§,16)’ 53,7 = K24(Sg,8)’ Sg,é = K35(S£3;,8)/

Sgs = Kus(Sgs), Sga=%15(S3g), Sis = Kas(S34),
Sg,z = K4 (53/6), Sg,l = Klﬁ(sg,z;)‘

Lemma 3.4. (a) S3; = 53 ,for1<i,j<39,(b) S3, isacombinatorial 3-sphere for 1 < m < 39,
and (c) SS,k 8,lfor 1< k <1<39.

Proof. For 0 < i < 6, let S; denote the set of S s with i nonedges. Then .3y = {Sg 35 Saser
Sggﬁ’ sgs} ~§1 - 3{ 8303' Sg 313' Sg 323' Sg 337 Sg 591, 52 —3 {S3 8323' S§;24/ 5525' Sg 277 ngsf 8 29} 533 -
{5511/ 812 187 S510- S8 20 S5.217 207 Ss 261, 314 = {558 S59: S510/ S5 140 SS 15 98167 58,17’ Sgauls
35 = | 84’535’526’527’5813} and 8¢ = {53, 55,,535)-

From the proof of Lemma 4.7, 53135 = 53/30 = 53136 = 52/30 = 52/37 = 52,32 = Sg,ag' Thus,
53 = 53 for 35 < i,j < 38. Now, if Sg,i € S, U S3U Sy U S5U S, then, from the definition of
Sg i 53 Sg 5 = Sg 47- This proves part (a).

Smce 58 44 1S @ join of spheres, 58 44 1S @ combinatorial 3-sphere. Clearly, if M =~ N and

M is a combinatorial 3-sphere, then N is so. Part (b) now follows from part (a).

Since the nonedge graphs of the members of S¢ (resp., Ss) are pairwise nonisomor-
phic, the members of S¢ (resp., Ss) are pairwise nonisomorphic.

For sgz, . € 84 (i < j) and NEG(S},) = NEG(S;].) imply (i,7) = (8,9) or (14,15).
Since M £ N 1mp11es Ge(M) = Gg(N) and G6(S 8)¥G6(S§,9), G6(S§,14)¥G6(S§,15), the
members of S, are pairwise nonisomorphic.

For 53 ¢s3 € 83 and NEG(S3 )= NEG(S3 Y imply {i,j} = {11,12} or 18 <i#j < 21.
Let 3, = {S 8,11/ 812} 3, =1{S 8,187 Sglw ngof 821} 25 = | 822}and24 ={ 826} Since the
nonedge graph of a member in 3}; is nomsomorphlc to the nonedge graph of a member of 3;
fori# j, amember of %; is nonisomorphic to a member of 3;. Observe that G¢(S 8, 11) #Gg (58 12)
and for 18 <i<j <21, Gé(Sgri) = G6(S§/].) implies (i, j) = (18,19). Since G3(S3 818) ¥G3(S&19)
the members of 3 are pairwise nonisomorphic.
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Since G3(Sg,i) $_‘G3(S§, j) for Sg,l. #Sg,j € S,, the members of S, are pairwise noniso-
morphic. By the same reasoning, the members of .S; are pairwise nonisomorphic.

By Lemma 3.2, the members of .S are pairwise nonisomorphic. Since a member of .S;
is nonisomorphic to a member of S; for i # j, the above imply part (c). O

Example 3.5. Some 8-vertex neighbourly normal 3-pseudomanifolds:
N = {1248,1268,1348,1378,1568, 1578, 2358, 2378, 2458, 2678, 3468, 3568, 4578, 4678,
1247,1257,1367,1467,2347,2567,3457,3567, 1236, 2346, 1345, 1235, 1456, 2456 },

N> = {1248,2458, 2358, 3568, 3468, 4678,4578,1578,1568, 1268, 2678,
2378,1378,1348,1247,2457,2357,3567,3467,1567,1267,1347} = ZysT,

N3 = {1248,1268,1348,1378,1568, 1578,2358, 2378, 2458, 2678, 3468, 3568,
4578,4678,1234,2347,2456,2467,3456, 3457, 1235, 1256, 1357},

N4 = {1248,1268,1348,1378, 1568, 1578, 2358, 2378, 2458, 2678, 3468,
3568,4578,4678,1245,1256,2356,2367,3467,1347, 1457},

N5 = {1258,1268,1358, 1378, 1468, 1478,2368, 2378, 2458, 2478, 3458, 3468,
1257,1267,1367,1457,2357,2467,3457,3467,2356,2456, 1356, 1456},

N = {1358,1378,1468, 1478, 1568, 2368, 2378, 2458, 2478, 2568, 3458, 3468,
1235,1245,1457,1567,2357,2567,3457,1236,1246,1367,2467,3467},

N7 = {1268,1258,1358,1378, 1478, 1468, 2378, 2368, 2458, 2478, 3468,
3458,1356,1367,2357,2356,3467,3457,1256,1467,2457},

Ng = &34 (k238 (56 (K67 (N7)))), Ny = x235(k67(N7)),
N = k148 (x67(N7)), N1 = x3s8 (56 (N10) ), N1y = k457 (k23 (No)),

N3 = 567 (k23(No)), Ny = x138(x57(N3g)) = ZsRo, Nis = k158 (k23 (No) ).
(3.3)

All the vertices of Ny are singular and their links are isomorphic to the 7-vertex torus T. There
are two singular vertices in N; and their links are isomorphic to T. The singular vertices in
Njare 8, 3,4, 2,5 and their links are isomorphicto T, R», Ry, R3, and Rs, respectively. There
is only one singular vertex in N4 whose link is isomorphic to T. All the vertices of N5 (resp.,
Ng) are singular and their links are isomorphic to Ry (resp., R3). Each of Ny, ..., Ni5 has
exactly two singular vertices and their links are 7-vertex RP?’s. Thus, each N; is a normal
3-pseudomanifold.

It follows from the definition that N; = Nj; for 7 < i, j < 15. Here we prove the
following lemmas.

Lemma 3.6. (a) The geometric carriers of Ni,Nj, N3, N4, N5, and Ny are distinct (non-
homeomorphic), (b) N;# N for1<i<j<7,(c) N5~Ns.

Proof. For a normal 3-pseudomanifold X, let ny(X) denote the number of singular
vertices. Clearly, if M and N are two normal 3-pseudomanifolds with homeomorphic
geometric carriers, then (ns(M),y(M)) = (ns(N), y(N)). Now, (ns(N1), x(N1)) =
(8,8), (n5(N2), x(N2)) = (2,2), (ns(N3),x(N3)) = (5,3), (ns(Ns), x(Ni)) = (1,1), (ns(Ns),
X(Ns)) =(8,4), (ns(N7), x(N7)) = (2,1). This proves part (a).
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Part (b) follows from the fact that Nj; is neighbourly and has no removable edge and,
hence, there is no proper bistellar move from N; for 1 <i < 6.
Let Ni be obtained from Ns by starring a new vertex 0 in the facet 1358. Let

Ni = x0)(kos(r156 (K07 (%03 (035 (K68 (02 (K268 (13 (K135 (K138 (K158 (N3))))))))))))), then Ny is
isomorphic to Ng via the map (2,3)(5, 8). This proves part (c). O

Lemma 3.7. NiZN, for1 <k <I1<15.

Proof. Let ns; be as above. Clearly, if M and N are two isomorphic 3-pseudomanifolds,
then (ns(M), f3(M)) = (ns(N), f3(N)). Now, (n5(N1), f3(N1)) = (8,28), (n5(N2), f3(N2)) =
(2,22), (ns(Ns), f3(N3)) = (5,23), (ns(Na), f3(Ns1)) = (1,21), (ns(Ns), f3(Ns)) =
(ns(Ns), f3(Ng)) = (8,24), and (ns(N;), f3(N;)) = (2,21) for 7 < i < 15. Since the links of
each vertex in N5 is isomorphic to Ry and the links of each vertex in N is isomorphic to Rj,
it follows that N5 # Ng. Thus, N;ZN; for 1<i<6,1<j<15,i#j.

Observe that the singular vertices in N; are 3 and 8 for 7 < i < 15. Moreover, (i)
Ikn;, (3) = kN, (8) = Ry, (ii) Ik, (3) = Ry and lkn;, (8) = R, (iii) 1kn, (3) = Ry and lkn, (8) = Ry,
(iv) Ikny, (3) = 1k, (8) = R3 and degn,, (38) =6, (v) Ikn;,, (3) = Ikny, (8) = Rs and degy;, (38) =
5, (Vl) H(le (3) R, H(le (8) R; and G3(N12) = (V {32 21,17,75,54, 46}) (Vll) lkng (3)
Ry, 1kn,;(8) = Rs and G3(Ny3) = (V,{32,21, 17,75,56,67,64,42}), (viii) lkn,, (3) = lkn,, (8)
R, and degy (38) = 3. (xi) Ikn;5(3) = lkny;(8) = Rp and degy; (38) = 6. These imply that
there is no isomorphism between N; and N for 7 <i < j < 15. This completes the proof. [

I 1mn

Example 3.8. Some 8-vertex nonneighbourly normal 3-pseudomanifolds:

Ny = k67(N7), Ni7 = k24(Ns), Nis = k38 (k56 (k67 (N7))), Nig = k57(Nsg),
Ny = xs6(N1o), Ny =x12(No), Ny =x14(N11), No3 = x23(No),
Ny = x33(N14), Nos = s6(Nis), Na6 = x12(Nis), Ny7 = s6(N17),
Nog = x57(N1sg), Ny = x15(Nis), N3y = k12(N23), N31 = x24(N22),

N3y = %24 (Nog), Na3 = x57(Nos), N34 = x45(Nosg), N35 = x53(N).
(3.4)

Lemma 3.9. (a) N;ZN; for 1 <i<j<35and (b) Ny = N for7 <k, 1 <35.

Proof. For 0 < i < 3, let /l; denote the set of 3-pseudomanifolds defined in Examples 3.5 and
3.8 with i nonedges. Then ./UO = {Nl,. . .,N15}, ,/Ul = {N16,. . .,N24}, ,/Uz = {N25,. . .,N31},
and N3 = { N3, ..., N3s5}. The singular vertices in N; are 3 and 8 for 7 <i < 35.

By Lemma 3.7, the members of /), are pairwise nonisomorphic.

Observe that (i) lkn, (3) = Ry and lkn, (8) = Rj, (ii) lkn,,(3) = lkn,,(8) = Ry, (iii)
Ikn, (3) = 1kn, (8) = R3 and Gg¢(N1g) = (V, {73,31,18,84}), (iv) lkn,, (3) = 1kn,, (8) = R3 and
Gs(N19) = (V, {63,31,18,86}), (v) lkn,, (3) = lkn,, (8) = Rs and G4 (Ny) = (V, {74,28,83,31}),
(vi) lkny (3) = Ry lkny,(8) = Ry and Go(Nm) = (V,[48,83,37,36)), (vii) lkny(3) =
Rz, lszz (8) = R3 and Gé(sz) (V {28 86 63 37 38}) (Vlll) 11(1\[23 (3) R1 and 11(N23 (8) R3,
(ix) 1knp, (3) = Ikn,,(8) = Ri. These imply that there is no isomorphism between any two
members of .

Observe that (i) lkn,(3) = R; and lkn,,(8) = Ry, (ii) lkn,,(3) = lkn,(8) = R3 and
Go(N2s) = (V,{53,38,84)), (iii) Ikn,(3) = lkn,(8) = Ry, Gs(Nx) = (V,{78,81,13,37))
and NEG(Nyy) = {24,56}, (iv) lkn, (3) = lkn, (8) = R3, Ge(Nas) = (V, {18,84,43,31}) and
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NEG(N28) = {75/ 56}/ (V) 1kN29 (3) = Rz and lszg (8) =Ry, (Vl) lsto (3) =Ry and lsto (8) =Rs,
(vii) Ikny, (3) = lkns, (8) = Ro. These imply that there is no isomorphism between any two
members of .

Observe that (i) kn,, (3) = lkn, (8) = Rs, (ii) Ik, (3) = 1kn,, (8) = Ry, (iii) lkn,, (3) =
lknr,, (8) = Ry, (iv) lkn,(3) = Ry and Ik, (8) = Ry. These imply that there is no isomorphism
between any two members of .

Since a member of V; is nonisomorphic to a member of /; for i # j, the above imply
part (a). Part (b) follows from the definition of Ny for 8 < k < 35. O

The 3-dimensional Kummer variety K* is the torus S' x S x S! modulo the involution
o : x — —x. It has 8 singular points corresponding to 8 elements of order 2 in the abelian
group S! x S! x S!. In [11], Kiihnel showed that N triangulates K°. For a topological space
X, C(X) denotes a cone with base X. Let H = D*xS! denote the solid torus. As a consequence
of the above lemmas we get.

Corollary 3.10. All the 8-vertex normal 3-pseudomanifolds triangulate seven distinct topological
spaces, namely, |S3;| = S° for 1 < j < 38, [Ni|, [N2] = S(S' x S'), IN3|, IN4| = HU
(C(0H)), |Ns| = |Ng| = K3, and |N;| = S(RP?) for 7 < i < 35.

Proof. Let K be an 8-vertex normal 3-pseudomanifold. If K is a combinatorial 3-sphere, then
it triangulates the 3-sphere S°.

If K is not a combinatorial 3-sphere, then, by Lemma 3.9(b), |K| is (pl) homeomorphic
to [N1], ..., |Ns|, or [N7|. Since Ny = ST, |N,|is homeomorphic to the suspension S(S' x S?).
In Ny, the facets not containing the vertex 8 form a solid torus whose boundary is the link
of 8. This implies that [N4| = H U (C(0H)). It follows from Lemma 3.6(c) that [N/ is (pl)
homeomorphic to |[N5| = K3. Since N4 is isomorphic to the suspension Sg * Ry, |No4| =
S(RP?). Therefore, by Lemma 3.9(b), |N;| is (pl) homeomorphic to [Nys| = S(RP?) for 7 <i <
35. The result now follows from Lemma 3.6(a). O

A 3-dimensional pseudocomplex K is an ordered pair (A,®), where A is a finite
collection of disjoint tetrahedra and @ is a family of affine isomorphisms between pairs of
2-faces of the tetrahedra in A. Let |K| denote the quotient space obtained from the disjoint
union Lsepo by setting x = ¢(x) for ¢ € @. The quotient of a tetrahedron ¢ € A in |K]
is called a 3-simplex in |K| and is denoted by |o|. Similarly, the quotient of 2-faces, edges,
and vertices of tetrahedra are called 2-simplices, edges, and vertices in |K|, respectively. If |K]|
is homeomorphic to a topological space X, then K is called a pseudotriangulation of X. A 3-
dimensional pseudocomplex K = (A, ®) is said to be reqular if the following hold: (i) each
3-simplex in |K| has four distinct vertices, and (ii) for 2 < i < 3, no two distinct i-simplices in
|K| have the same set of vertices. So, for 2 < i < 3, an i-simplex a in | K| is uniquely determined
by its vertices and denoted by u - - - u;,1, where uy, ..., u;,1 are vertices of a. (But, the edges in
|K| may not form a simple graph.) So, we can identify a regular pseudocomplex K = (A, D)
with X := {|o| : 0 € A}. Simplices and edges in |K| are said to be simplices and edges of X.
Clearly, a pure 3-dimensional simplicial complex is a regular pseudocomplex.

Let /M be a regular pseudotriangulation of X and abcd, abce be two 3-simplices in /.
If ade, bde, cde are not 2-simplices in M, then N := (M \ {abcd, abce}) U {abde, acde, bede)
is also a regular pseudotriangulation of X. We say that U is obtained from _# by the
generalized bistellar 1-move Kgapc. If there is no edge between d and e in M, then «xr is called
a bistellar 1-move. If there exist 3-simplices of the form xyuv, xzuv, yzuv in a regular
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pseudotriangulation 0 of Y and xyz is not a 2-simplex, then Q := (0 \ {xyuv, xzuv, yzuv}) U
{xyzu, xyzv} is also a regular pseudotriangulation of Y. We say that Q is obtained from /) by
the generalized bistellar 2-move kg, where E is the common edge in xyuv, xzuv, and yzuv. If
E is the only edge between u and v in ), then « is called a bistellar 2-move.

Let M be a pseudotriangulation of a closed 3-manifold and N a 3-pseudomanifold.
A simplicial map f : M — N is said to be a k-fold branched covering (with discrete branch
locus) if there exists U C V(N) such that |f|| v p1 ) @ IM]\ F1(U) — |N|\ U is a k-fold
covering. The smallest such U (so that | fl[jp 1) @ M|\ f1(U) — |N|\ U is a covering)
is called the branch locus. It is known that N; can be regarded as a branched quotient of
a regular hyperbolic tessellation (cf. [6]). In [11], Kithnel has shown that N5 is a 2-fold
branched quotient of a pseudotriangulation of the 3-dimensional torus. Here we prove the
following theorem.

Theorem 3.11. (a) Noy is a 2-fold branched quotient of a 14-vertex combinatorial 3-sphere.
(b) For7 <i <35, Njisa?2-fold branched quotient of a 14-vertex reqular pseudotriangulation
of the 3-sphere.

Lemma 3.12. Let M be a regular pseudotriangulation of a 3-manifold and N be a normal 3-
pseudomanifold. Let f : M — N be a k-fold branched covering with at most two vertices in the
branch locus. If k, : N > N is a bistellar 2-move, then there exist k generalized bistellar 2-moves
Keys- -+, Kep SUCH that Ko, (- -+ (1., (M))) is a k-fold branched cover of N.

Proof. Letlkn(e) = S;({x, y,z}). Let f1(e) consist of the edges ey, . . ., ex. Let the end points of
e; be u;, v, the 3-simplices containing e; be u;v;x;y;, wvixizi, uviy;izi, and f(x;) =x, f(y;i) =
Y, f(zi) = zfor 1 <i < k. Since xyz is not a simplex in N, it follows that x;y;z; is not a 2-
simplex in M. Let M; be the pseudocomplex consists of u;v;x;y;, u;v;ix;iz;i, and u;v;y;z;. Since
the number of vertices in the branched locus is at most 2, it follows that the number of vertices
common in M; and M; is at most 2 for i#j. In particular, #({x;, vi, z;} N {x},y;,z;}) < 2.
Therefore, xjy;z; is not a 2-simplex in x,, (M). So, we can perform generalized bistellar 2-
move K,; on ke, (M) = (M \ M;) U {x;yiziui, xiyiz;iv;} for i #j. Clearly, M = Ky (- ey (M))
is a k-fold branched cover of N (via the map f, where f(w) = f(w) forw € V(M) =V(M)
and f(xiyiziui) = xyzu and f(xiyiziv,-) = XYyzv). O

Lemma 3.13. Let M be a regular pseudotriangulation of a 3-manifold and N be a normal 3-
pseudomanifold. Let f : M — N be a k-fold branched covering with at most two vertices in the
branch locus. If kg : N + N is a bistellar 1-move, then there exist k generalized bistellar 1-moves
KE,, ..., KF, such that kg, (- - (g, (M))) is a k-fold branched cover of N.

Proof. Let F = xyz and lky(F) = {u,v}. Let f~}(F) consist of the 2-simplices Fj, ..., Fi. Let
F; = x;jy;z; and the 3-simplices containing F; be x;y;z;u; and x;y;ziv; and f(x;, yi, zi, ui, v;) =
(x,y,z,u,v) for 1 < i < k. Since f is simplicial, it follows that x;u;v;, yiu;v;, and z;u;v;
are not 2-simplices in M. Let M; be pseudocomplex {x;y;z;u;, x;y;z;v;}. Since the number
of vertices in the branched locus is at most 2, it follows that x;u;v;, y;u;v;, and zju;v; are not
2-simplices in k(M) for i # j. Then (by the similar arguments as in the proof of Lemma 3.12)
Kr, (- kp, (M)) is a k-fold branched cover of N. O

Proof of Theorem 3.11. 1f D denotes the boundary of the icosahedron, then there exists a simpli-
cial 2-fold covering f : 9 — R;. Consider the simplicial map f : Sg({ a,b})x0 — Sg({c, d})*Ry
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Table 1: 8-vertex normal 3-pseudomanifolds which are not combinatorial 3-manifolds.

- links of singular Geometric carriers, Homolo

X f-vector X (X SIng , gy
(f1, f2, f3) XX ns(X) vertices (Hi, H, H3)
|N1] is simply connected,

Ny (28,56,28) 8 8 allare T (H,, H, H3) = (0, 78, 7)
N, (28,44,22) 2 2 both are T |N2| = S(St x SY)
N3 (28,46,23) 3 5 T, Ry, Ry, R3, R (H1,Hy, H3) = (0,22 © Z,,0)
Ny (28,42,21) 1 1 T |N4| =HU (C(aH))
N5 (28 48, 24) 4 8 all are Ry |N5| =K3
N ., . ., all are R3 |Ne| = K3
N, (28,42,21) 1 2 both are R; IN7| = S(RP?)
N, 8<i<15 , , ,  botharein {Ry,...,Ry) |Ni| = S(RP?)
Ni/ 16 S i S 24 (27/ 40/ 20) ’” ” ’” ”
N;, 25<i<31 (26,38,19) s 1 P ”
N;, 32<i<35 (25,36,18) 2 2 1 /

[Here K is the 3-dimensional Kummer variety, H = D? x S! is the solid torus, S(Y) is the topological suspension of Y, and
ns(X) is the number of singular vertices in X.]

given by f(a) =c f(b) = d and f(u) = f(u) for u € V(9). Then f is a 2-fold branched
covering with branch locus {c, d}. Since Ny, is isomorphic to the suspension Sg * Ry, it follows
that N4 is a 2-fold branched quotient of the 14-vertex combinatorial 3-sphere Sg({ a,b}) 0
(with branch locus {3,8}). This proves part (a).

The result now follows from Lemmas 3.9(a), 3.12, and 3.13. (In fact, to obtain a 2-
fold branched cover N; 14 of N4 from Rj * Sg, one needs one bistellar 1-move and then one
generalized bistellar 1-move; and all other moves required in the proof are bistellar moves on
regular pseudotriangulations of S°.) O

Remark 3.14. The combinatorial 3-sphere R; * Sg is a 2-fold branched cover of N»s and N4
can be obtained from Ny, by a bistellar 1-move. Now, if f : M — Ny4 is a 2-fold branched
covering and M is a combinatorial 3-manifold, then (since lkn;, (8) is a 7-vertex triangulated
RP?) the link of any vertex in f71(8) is a 14-vertex triangulated S? and hence fo(M) > 14.
(Similarly, for i#24, if N; is a branched quotient of a combinatorial 3-manifold M, then
fo(M) > 14.) So, there does not exist a combinatorial 3-sphere M which is a branched cover
of Ni4 and which can be obtained from R; * S) by proper bistellar moves.

In [7], Altshuler observed that Nj is orientable and |N;| is simply connected. In [8],
Lutz showed that (H;(N7), H2(N1), H3(N1)) = (0,Z%,Z). The normal 3-pseudomanifold
Nj is the only among all the 35 which has singular vertices of different types, namely,
one singular vertex whose link is a triangulated torus and four singular vertices
whose links are triangulated real projective planes. Using polymake [12], we find that
(H1(N3), Hy(N3), H3(N3)) = (0, Z*®Z,,0). We summarized all the findings about N7y, ..., N3s5
in Table 1.

Example 3.15. For d > 2, let

Ki = {vi+vj-1vjs1 - Vipan i+ 1<j<i+d, 1<i<2d+3) (3.5)
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(additions in the suffixes are modulo 24 + 3). It was shown in [13] the following : (i) Kgl 443

is a triangulated d-manifold for all d > 2, (i) K¢, , triangulates %! x S! for d even, and
triangulates the twisted product S4'x_S! (the twisted S¢~!-bundle over S') for d odd. For
d >3, K4, . is the unique nonsimply connected (2d + 3)-vertex triangulated d-manifold (cf.
[14]). The combinatorial 3-manifolds KS was first constructed by Walkup in [15].

From K3, we construct the following 10-vertex combinatorial 3-manifold:

3 ._ (k3
A1o = (Kg \ {0102037)5,02030506,03050607, 03040607, 7147)60708})
U {0ov10203, 09010205, Dov1 0305, VgD2U3V6, Vo V2 U5 V6, VoU3V5V7, VUs V607, (3.6)

V0V3V4V6, V0V3V4V7, V0V VeV, VgV4 V7V, VU6 V7Us } .

[Geometrically, first we remove a pl 3-ball consisting of five 3-simplices from |Kj|. This gives
a pl 3-manifold with boundary and the boundary is a 2-sphere. Then we add a cone with base
this boundary and vertex vy. So, the new polyhedron |A3/| is pl homeomorphic to |K3|. This
implies that the simplicial complex A3 is a combinatorial 3-manifold.]

The only nonedge in A%O is vgv9 and there is no common 2-face in the links of vy and
vg in A3;. So, AJ, does not allow any bistellar 1-move. So, A3 is a 10-vertex nonneighbourly
combinatorial 3-manifold which does not admit any bistellar 1-move.

Similarly, from K‘lll, we construct the following 12-vertex triangulated 4-manifold:

4 ._ 4
Al = (Kn \ {711020371406/0203047}607, 7137)4067177)8,7147)6077187)9,0405070809,05070809010})
U {0001020304, D V102U30Vp, V)01 V204V6, VnTV1030V4 V6, V) V2U30V4V7, VV203V6V7, Vo V2V4V6V7,
V0 U304V6Vg, VU304 V7Ug, VnV3V6 V708, V0U4V6V709, Vg V4 V6V8V9, UVpV4 V708V,

V004050709, V) V4U50U8Vg, VgV, V7U8V9, Vg U50V7U8V10, Vo V50709V10, UgU50U8V9 V10 } .
(3.7)

The only nonedge in A‘l*2 is vovy11 and there is no common 2-face in the links of vy and vy
in A},. So, A}, does not allow any bistellar 1-move. So, A}, is a 12-vertex nonneighbourly
triangulated 4-manifold which does not admit any bistellar 1-move.

By the same way, one can construct a (2d + 4)-vertex nonneighbourly triangulated
d-manifold Ag 444 (from K;’ 4+3) Which does not admit any bistellar 1-move for all d > 3.

Example 3.16. Let N3 be as in Example 3.5. Let M be obtained from N3 by starring two
vertices u# and v in the facets 1248 and 3568, respectively, that is, M = k1248 (k3563 (IN3)). Then
M is a 10-vertex normal 3-pseudomanifold. Let B] be obtained from M by identifying the
vertices u and v. Let the new vertex be 9. Then

B; = (N3 \ {1248,3568}) U {1249, 1289, 1489, 2489, 3569, 3589, 3689, 5689 }. (3.8)

The degree 3 edges in BS are 16, 17, and 67; but none of these edges is removable. So,
no bistellar 2-moves are possible from Bj. The only nonedge in B is 79. Since there is no
common 2-face in the links of 7 and 9, no bistellar 1-move is possible. So, Bg’ is a 9-vertex
nonneighbourly 3-pseudomanifold which does not admit any proper bistellar move.

4. Proofs

For n > 4, by an S2 we mean a combinatorial 2-sphere on n vertices. If ks : M — N is a
bistellar 1-move, then deg,,(v) > deg,,(v) for v € V(M). Here we prove the following.
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Lemma 4.1. Let M be an n-vertex 3-pseudomanifold and u be a vertex of degree 4. If n > 6, then
there exists a bistellar 1-move kg : M +— N such that deg,,(u) = 5.

Proof. Let lkp(u) = Si({a, b,c,d}) and f = abc. Let Ikp(B) = {u, x}. If x = d, then the induced
complex K = M[{u,a,b,c,d}] is a 3-pseudomanifold. Since n > 6, K is a proper subcomplex
of M. This is not possible. So, x #d and hence ux is a nonedge in M. Then «; is a bistellar
1-move. Since ux is an edge in k3(M), kg is a required bistellar 1-move. O

Lemma 4.2. Let M be an n-vertex 3-pseudomanifold and u be a vertex of degree 5. If n > 7, then
there exists a bistellar 1-move kg : M — N such that deg, (1) = 6.

Proof. Since deg,,(u) = 5, the link of u in M is of the form Sg({a,b}) * S;({x, y,z}) for some
vertices a,b, x,y,z of M. If both xyza and xuzb are facets, then the induced subcomplex
MI[{x,y,z,u,a,b}] is a 3-pseudomanifold. This is not possible since n > 7. So, without loss of
generality, assume that xyza is not a facet. Again, if xyab, xzab, and yzab all are facets, then
the induced subcomplex M[{u, x,y, z, a,b}] is a 3-pseudomanifold, which is not possible. So,
assume that xyab is not a facet.

Consider the face f = xya. Suppose lkyp () = {u, w}. From the above, w ¢ {z, b}. So,
uw is a nonedge and hence x; is a required bistellar 1-move. O

Lemma 4.3. Let M be a nonneighbourly 8-vertex 3-pseudomanifold and u be a vertex of degree 6.
If the degree of each vertex is at least 6, then there exists a bistellar 1-move x, : M — N such that
deg, (u) =7.

Proof. Let u be a vertex with deg,,(u) = 6 and uv be a nonedge. Let L = lkys(u).

Claim 1. There exists a 2-face T such that 7 U {u} and 7 U {v} are facets.

First consider the case when there exists a vertex w such that deg;(w) = 5. Let
Ikr (w) (= lkp (uw)) = Cs(1,2,3,4,5).

Let K = lky(w). Since deg(v) = 6, vw is an edge. Thus K contains 7 vertices. If
one of 12v,...,45v,51v is a 2-face, say 12v, then 12wv and 12wu are facets. In this case,
T = 12w serves the purpose. So, assume that 12v, . ..,45v,51v are nonfaces in K. Then there
are at least three 2-faces (not containing u) containing the edges 12,...,45,51 in K. Also,
there are at least three 2-faces containing v in K. So, the number of 2-faces in K is at least
11. This implies that deg, (v) = 3 or 4 and K is a 7-vertex RP? or Py. Since deg, (1) = 5,
it follows that K is isomorphic to Ry, R3, or P4 (defined in Section 2). In each case, (since
deg, (u) = 5, degy(v) = 3 or 4, and uv is a nonedge) there exists an edge a in K such that
aU {u} and a U {v} are 2-faces in K and hence 7 = a U {w} serves the purpose.

Now, assume that L has no vertex of degree 5. Then L must be of the form Sg({al, ax})x*
Sg({bl,bz}) * Sg({cl,cz}). If possible, let a;bjcxv is not a facet for 1 < i, j, k < 2. Consider
the 2-face aibici. There exists a vertex x #u such that a;b;cix is a facet. Assume, without
loss of generality, that aibicia, is a facet. Since deg(c1) > 5 (resp., deg(b1) > 5), ajaxbycq
(resp., ajazbicy) is not a facet. So, the facet (other than aibrciu) containing a;byc; must be
aibycicy. Similarly, the facet (other than aibicou) containing aibic, must be a;bib,c,. Then
aibycico, arbibacy, and abycyu are three facets containing a;bycs, a contradiction. This proves
the claim.

By the claim, there exists a 2-simplex 7 such that lka;(7) = {1, v}. Since uv is a nonedge
of M, x; : M — x;(M) = N is a bistellar 1-move. Since uv is an edge in N, it follows that
deg, (1) =7. O
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Proof of Theorem 1.1. Let M be an 8-vertex 3-pseudomanifold. Then, by Lemma 4.1, there
exist bistellar 1-moves xg4,,...,k4,, for some k > 0, such that the degree of each vertex
in xa, (- (x4, (M)) is at least 5. Therefore, by Lemma 4.2, there exist bistellar 1-moves
KAgas---,Ka, for some | > k, such that the degree of each vertex in x4, (- - - x4, (- - (x4, (M)))
is at least 6. Then, by Lemma 4.3, there exist bistellar 1-moves « 4,,,...,%4,, for some m > I,
such that the degree of each vertex in x4, (- - %a,(- - €4, (- - - (x4, (M)))) is 7. This proves the
theorem. O

Lemma 4.4. Let K be an 8-vertex combinatorial 3-manifold. If K is neighbourly, then K is isomorphic
t0 S35, S3aer S37 07 Sias:

Proof. Since K is a neighbourly combinatorial 3-manifold, by Proposition 2.3, the link of any
vertex is isomorphic to Ss, ..., Sg, or So.

Claim 1. The links of all the vertices cannot be isomorphic to Sy (= Sg * Cs).

Otherwise, let 1k(8) = Sg (6,7) * C5(1,2,...,5). Consider the vertex 2. Since the degree
of 2 is 7, 1267 or 2367 is not a facet. Assume, without loss of generality, that 1267 is not a
facet. Again, if 1236 is a facet, then deglk(z) (6) = 3 and hence 1k(2)£Sq. So, 1236 is not a facet.
Similarly, 1256 is not a facet. Then the facet other than 1268 containing 126 must be 1246.
Similarly, 1247 is a facet. This implies that 1k(2) = 52(6, 7) % C5(1,4,5,3,8). Thus deg(26) = 5.
Similarly, deg(16) = deg(36) = deg(46) = deg(56) = 5. Then, the 7-vertex 2-sphere 1k(6)
contains five vertices of degree 5. This is not possible. This proves the claim.

Case 1. Consider the case when K has a vertex, (say 8) whose link is isomorphic to Sg.
Assume, without loss of generality, that the facets containing the vertex 8 are 1238, 1268,
1348, 1458, 1568, 2348, 2478, 2678, 4578, and 5678. Since deg(3) = 7, 1234¢ K. Hence the facet
other than 1238 containing the face 123 is one of 1235, 1236, or 1237.

If 1236 € K, then, clearly, deg(17) = 3 or 4. If deg(17) = 4, then on completing 1k(1), we
see that 1457, 1567 € K, thereby showing that deg(5) = 5, an impossibility. Hence, deg(17) = 3
and, therefore, 1457 € K. There are two possibilities for the completion of 1k(1). If 1347, 1356,
1357 € K, from the links of 4 and 3, we see that 2346, 2467, 3467,3567 € K. Here, deg(5) = 6.
If 1346,1467,1567 € K, then deg(5) = 5. Thus, 1236 ¢ K.

Case 1.1. 1235 € K. Since deg(l) = 7, either 1345 or 1256 is a facet. In the first
case, 1257,1267,1567 € K. Here, deg(6) = 5, a contradiction. So, 1256 € M and
hence 1347,1357,1457 € K. From the links of the vertices 1,4,7 and 5, we see that
1256,2346,2467,3467,3567,2356 € K. Here, K = Sg@s by the map (1,5,8,6)(2,7)(3,4).

Case 1.2. 1237 € K. By the same argument as in Case 1.1 (replace the vertex 1 by vertex 2),
we get 1267,2345,2357,2457 € K. From 1k(1) and 1k(7), 1346, 1456, 3456, 1367,3567 € K. Here,
K = S3 ,; by the map (1,7,8,6)(2,5)(3,4).

Case 2. K has no vertex whose link is isomorphic to Sg but has a vertex whose link is
isomorphic to S¢. Using the same method as in Case 1.1, we find that K = 52,37.

Case 3. K has no vertex whose link is isomorphic to Sg or Sg but has a vertex whose link is
isomorphic to S;7. Using the same method as in Case 1.1, we find that K = Sg/%.

Case 4. K has no vertex whose link is isomorphic to S, Sy, or Sg but has a vertex (say 8)
whose link is isomorphic to Ss. The facets through 8 can be assumed to be 1238, 1278, 1348,
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1458, 1568, 1678, 2348, 2458, 2568, and 2678. Clearly, 1234, 1267 ¢ K. If deg(15) = 6, then from
k(1) and 1k(5), we see that 1235, 1345, 2345 € K, thereby showing that deg(3) = 5. Hence
1237 € K. Now, we can assume, without loss of generality, that the facets required to complete
k(1) are 1347, 1457, and 1567. Now, consider 1k(2). If deg(27) = 6, then after completing the
links of 2 and 7, we observe that deg(4) = 6. Hence deg(23) = 6. The links of 2, 7, and 6 show
that 2345, 2356, 2367, 3467, 4567, and 3456 € K. Here, K = 52’35 by the map (2,3,4,5,6,7,8).
This completes the proof. O

Lemma 4.5. Let K be an 8-vertex neighbourly normal 3-pseudomanifold. If K has one vertex whose
link is the 7-vertex torus T, then K is isomorphic to N1, Na, N3, or Ny.

Proof. Let us assume that V(K) = {1,...,8} and the link of the vertex 8 is the 7-vertex torus T.
So, the facets containing 8 are 1248, 1268, 1348, 1378, 1568, 1578, 2358, 2378, 2458, 2678, 3468,
3568, 4578, and 4678. We have the following cases.

Case 1. There is a vertex (other than the vertex 8), say 7, whose link is isomorphic to
T. Then 1k(7) has no vertex of degree 3 and hence 2367,1457,1237,1357 ¢ K. This implies
that the facet (other than 1378) containing 137 is 1367 or 1347. In the first case, 1k(17) =
Ce(5,8,3,6,4,2). Thus, 1367,1467,1247,1257 € K. Then, from the links of 67 and 37, we get
2567,3567,2347,3457 € K. Now, from 1k(34), 1346 ¢ K. Then, from the links of 36,34,23,14,
and 26, we get 1236, 2346, 1345,1235, 1456,2456 € K. Here, K = Nj.

In the second case, 1k(37) = C¢(2,8,1,4,6,5). Thus, 1347,3467,3567,2357 € K. Now,
from the links of 47 and 67, we get 1247,2457,1567,1267 € K. Here, K = N».

Case 2. There is a vertex whose link is a 7-vertex RP2.

Claim 1. There exists a vertex in K whose link is isomorphic to Ro.

If there is vertex whose link is isomorphic to R, then we are done. Otherwise,
since Aut(lk(8)) acts transitively on {1,...,7}, assume that 1k(4) = Rz (resp., Rs). Since
(1,2,5,7,6,3) € Aut(lk(8)), we may assume that the degree 4 vertex (resp., vertices) in 1k(4)
is 1 (resp., are 1, 5, 6). Then, from 1k(4), 1247,1347,2467 € K. This implies that 1k(7) is a
nonsphere and deg(67) = 3. Hence 1k(7) = R,. This proves the claim.

By the claim, we can assume that 1k(4) = R,. Again, we may assume that the vertex
1is of degree 3 in 1k(4). Then, from 1k(4), 1234,2347,2456,2467,3456, 3457 € K. Considering
the links of the edges 36, 26, 27, 25, and 13, we get 1256,1235,1357 € K. Here, K = N.

Case 3. Only singular vertex in K is 8. So, the link of each vertex (other than vertex 8) is an S%
(a 7-vertex 2-sphere). Since 8 is a degree 6 vertex in lk(u), it follows that lk(u) is isomorphic
to one of S5, Sg, or Sy (defined in Example 2.2) for any vertex u # 8. If Ik(1) = Ss, then (since
(3,4,2,6,5,7) € Aut(lk(8))), we may assume that the other degree 6 vertex in lk(1) is 3.
Then, from the links of 1 and 3, 1348, 1234, 1346 are facets containing 134, a contradiction. If
Ik(1) = Se, then (since 1k(18) = C¢(3,4,2,6,5,7)) we may assume that the degree 5 vertices
in 1k(1) are 2, 3, and 5. Then 1k(3) cannot be an S2, a contradiction. So, k(1) = S;. Since
Aut(lk(8)) acts transitively on {1,...,7}, it follows that the link of each vertex is isomorphic
to 57.

Since 1k(18) = C4(3,4,2,6,5,7) and (3,4,2,6,5,7) € Aut(Ik(8)), we may assume that
the degree 5 vertices in 1k(1) are 4 and 5. Since 1k(4) = Sy, it follows that 1456 ¢ K. Then, from
1k(1),1245,1256,1347,1457 € K. Now, from the links of 4 and 5, we get 3467,2356 € K. Then,
from 1k(2),2367 € K. Here K = Njy. This completes the proof. 0
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Figure 3: Hasse diagram of the poset of the 8-vertex combinatorial 3-manifolds (the partial order relation
is as defined in Section 2).

Lemma 4.6. Let K be an 8-vertex neighbourly normal 3-pseudomanifold. If K is not a combinatorial
3-manifold and has no vertex whose link is isomorphic to the 7-vertex torus T then K is isomorphic to
N5, .. .,N14 or N15.

Proof. Let ns; be the number of singular vertices in K. Since K is neighbourly, by
Proposition 2.3, the link of any vertex is either a 7-vertex RP? or a 7-vertex S%. So, the number
of facets through a singular (resp., nonsingular) vertex is 12 (resp., 10). Let f3 be the number
of facets of K. Consider the set S = {(v,0) : 0 is a facet of K and v € ¢ is a vertex }. Then
fax4 = #(S5) = ny x 12 + (8 — ng) x 10 = 80 + 2n,. This implies n; is even. Since K is not
a combinatorial 3-manifold, it follows that n, #0 and hence n; > 2. So, K has at least two
vertices whose links are isomorphic to Ry, Rs, or Ry.

Case 1. There exist (at least) two vertices whose links are isomorphic to R4. Assume that
Ikpr(8) = Ry. Then 1258,1268,1358,1378,1468,1478,2368,2378,2458,2478,3458,3468 € K.
Since (1,3,4)(5,6,7),(1,2)(3,4) € Aut(lk(8)), we may assume that 1k(3) or 1k(7) = Ry.

Case 1.1. 1k(7) = Ry. Since lki(7) (8) = C4(1,3,2,4), it follows that 1, 2, 3, 4 are degree 5 vertices
in 1k(7). Since (3,4)(5,6) € Aut(lk(8)), assume without loss that 136,145 € 1k(7). Then, from
1k(7), we get 1257,1267,1367, 1457, 2357, 2467,3457,3467 € K. This shows that 1k(2) is an RP72.
Since 3457,3458 € K, it follows that 2345 ¢ K. Then, from 1k(2), 2356,2456 € K. Then, from
the links of 3 and 4, 1356, 1456 € K. Here K = Ns.

Case 1.2. 1k(7)#R4. So, 1k(3) = Ry. Since lky3)(8) = C¢(1,7,2,6,4,5), the degree 4 vertices in
1k(3) are either 5, 6,7, or 1,2, 4. In the first case, on completion of 1k(3), we observe that 56, 67,
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57 remain nonedges in K. So, the degree 4 vertices in 1k(3) are 1,2, and 3. Then 1356, 1367,
2356, 2357, 3457, and 3467 are facets. Since 1k(7) # R4 and deg(78) = 4, either 1k(7) = Rz or
1k(7) is an S%. In the former case, 2567 is a facet. This is not possible from 1k(25). So, 1k(7) is
an S%. Then, from 1k(7), 1467,2457 € K. Now, from 1k(1),1256 € K. Here, K = Nj.

Case 2. Exactly one vertex whose link is isomorphic to R4 and there exists a vertex whose link
is isomorphic to R3. Using the same method as in Case 1, we find that K = Nj.

Case 3. Exactly one vertex whose link is isomorphic to Ry, there is no vertex whose link is
isomorphic to R3 and there exists (at least) a vertex whose link is isomorphic to R,. Using the
same method as in Case 1, we find that K = Np.

Case 4. There is no vertex whose link is isomorphic to R4 and there exist (at least) two vertices
whose links are isomorphic to Rs;. Assume that kg (8) = Ry, so that deg(78) = 4. Using the
same method as in Case 1, we get the following: (i) if lkx(7) = R3, then K = Ng and (ii) if
Ikx (7) # R3, then K is isomorphic to Njg or Ni;.

Case 5. There is no vertex whose link is isomorphic to Ry, there exists exactly one vertex
whose link is isomorphic to R; and there exists (at least) a vertex whose link is isomorphic to
R;. Using the same method as in Case 1, we find that K is isomorphic to N1, or Ni3.

Case 6. There is no vertex whose link is isomorphic to R4 or Rz and there exist (at least) two
vertices whose links are isomorphic to R,. Using the same method as in Case 1, we find that
K is isomorphic to N14 or Nys5. This completes the proof. O

Proof of Theorem 1.2. Since S3 ’s are combinatorial 3-manifolds and N,,’s are not combinato-

rial 3-manifolds, 5§,m¥Nn for 35 < m < 38, 1 < n < 15. Part (a) now follows from Lemmas
3.2,3.7. Part (b) follows from Lemmas 4.4, 4.5, and 4.6. O

Lemma 4.7. Let Sy,...,Ss be as in the proof of Lemma 3.4. If a combinatorial 3-manifold K is
obtained from a member of S; by a bistellar 2-move, then K is isomorphic to a member of Sj.1 for
0 < j £ 5. Moreover, no bistellar 2-move is possible from a member of Se.

Proof. Recall that Sy = {52/35, 52/36, 52,37, 52,38}. The removable edges in 52,37 are 13, 16, 17,
24, 27, 35, 46, 48, and 58. Since (1,4)(2,7)(3,8) € Aut(Sgw), up to isomorphisms, it is
sufficient to consider the bistellar 2 -moves xy7, k24, k4, k53, and ke only. Here 52,33 =
K27(Sg,37)/ Sg,so = K24(S§,37)f 53,32 = K48(S§,37)' 53,31 = K58(Sg,37)f and K46(Sg,37) = 53,31 by
the map (1,4,5)(2,7)(3,6,8).

The removable edges in 52,38 are 13, 38, 78, 27, 25, 15, and 46. Since (1,2,8)
(7,3,5),(1,2)(3,7)(4,6) € Aut(Sgss), it is sufficient to consider the bistellar 2-moves x45 and
x7s only. Here 53,39 = K46(S§,36) and K78(S§/38) = 53,32 by the map (1,7,8,4,6)(2,3).

The removable edges in 53,36 are 13, 35,58, 68,46,24,27,17. Since (1,5,6,2)(3,8,4,7) is
an automorphism of 52,36, it is sufficient to consider the bistellar 2-moves «sg and xeg only.
Here K58(Sg,36) = ng and Kﬁg(Sé%) = 52,30 by the map (1,6,4,8,2,5,7,3).

The removable edges in 53,35 are 13,35,57,71,24,46,68, and 82. Since (1,2,...,
8),(1,8)(2,7)(3,6)(4,5) € Aut(Sgl35), it is sufficient to consider the bistellar 2-moves x¢g only.

Here K68(Sgl35) = 5330 by the map (1,7,3)(2,8,4,5,6). This proves the result for j = 0.
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Figure 4: Hasse diagram of the poset of all the 3-pseudomanifolds Ny, ..., N3s.

By the same arguments as in the case for j = 0, one proves for the cases for 1 < j < 5.
We summarize these cases in Figure 3 below. Last part follows from the fact that none of

Sg 1 53/3, or 52,3 has any removable edges. O

Lemma 4.8. Let N, ..., N3 be as in the proof of Lemma 3.9. If a 3-pseudomanifold K is obtained
from a member of N; by a bistellar 2-move, then K is isomorphic to a member of N1 for 0 < j < 2.
Moreover, no bistellar 2-move is possible from a member of N3.

Proof. Recall that /Ny = {Nj,..., Ni5}. Since there are no degree 3 edges in Nj, Ny, N5, and
Ng, no bistellar 2-moves are possible from Nj, N5, Ng, or N,. The degree 3 edges in N3
(resp., in Ny) are 14,16,17,36,67 (resp., 13,35,57,72,24,46,61). But, none of these edges is
removable. So, bistellar 2-moves are not possible from N3 or Nj.

The removable edges in N7 are 12,14,24,56,57, and 67. Since (1,2)(6,7), (1,2)(5,6),
and (1,5)(2,6)(3,8)(4,7) are automorphisms of N7, it follows that up to isomorphisms, we
only have to consider the bistellar 2-move «¢;. Here, N1 = x47(N7).

The removable edges in Ny are 15,17,24,56,57, and 67. Since (1,6)(2,4),(1,6)(5,7),
(2,4)(5,7) € Aut(N3g), we only consider the bistellar 2-moves x4, k56, and xs;. Here, Ni7 =
x24(Ng), Nig = xs56(Ng), and N1g = x57(N3).

The removable edges in Ny are 12,23,24, and 67. Since (1,4)(6,7) € Aut(Ny), we
consider only 12, k23, and xe;. Here, Noj = k12(Ny), Naz = k23(No), and xe7(No) = Nie.

The removable edges in Ny are 12,14,24,56,57, and 67. Since (1,7)(2,5)(3,8)(4,6),
(1,4)(6,7) € Aut(INjyp), we consider the bistellar 2-moves x5, and 57 only. Here, Ny =
xs6(N10) and xg7(N19) = Nie.

The removable edges of Ny; are 14,24, 56,57, and 67. Since (1,2)(5,6)(3,8) € Aut(N11),
we only consider the bistellar 2-moves 14, k56, and «g;. Here, No» = x14(N11), %s56(N11) =
Nzo, and K67(N11) = ng (by the map (2, 4) (5, 7))

The removable edges in Ny, are 12, 23, 45, and 57. Here, x12(N12) = Ny (by the map
(2,4, 6)), K23(N12) = N23, K45(N12) = N21 (by the map (1,6,5,2, 7,4)(3,8)), and K57(N12) =
Nig (by the map (1,6,7,4)).

The removable edges in N3 are 12,23,24,56,57, and 67. Since (1,4)(6,7) € Aut(N13),
we only consider xip, k3, k57, and g;. Here, k12(N13) = Ny (by the map (2,7,5,4)),
#23(N13) = Nos, %57(N13) = Nig (by the map (1,4)(6,7)), and xe7(N13) = Nie.

The removable edges in N4 are 38,56,57,67. Since (1,2,4)(5,6,7)(3,8) € Aut(N14),
we only consider x33 and xs;. Here, Nog = x33(N14) and x57(N14) = Nig.

The removable edges in N5 are 15,23,24,58. Since (1,7)(2,5)(3,8)(4,6) € Aut(Nis),
we only consider the bistellar 2-moves ;3 and 4. Here, x23(IN15) = No3 and x4 (Ni5) = Ny
(by the map (1,6,5,7,4)). This proves the result for j =0
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By the same arguments as in the case for j = 0, one proves the same for other cases
(namely, for j = 1,2) as well. We summarize these cases in Figure 4 . Last part follows from
the fact that, for N; € A3, N; has no removable edge. O

Proof of Corollary 1.3. Let Sy, ..., S be as in the proof of Lemma 3.4. Let M be an 8-vertex
combinatorial 3-manifold. Then, by Theorem 1.1, there exist bistellar 1-moves x4,,...,ka4,,
for some m > 0, such that M; = xa,(---(ks,(M))) is a neighbourly 8-vertex 3-
pseudomanifold. Since bistellar moves send a combinatorial 3-manifold to a combinatorial 3-
manifold, M; is a combinatorial 3-manifold. Then, by Theorem 1.2, M; € Sy. In other words,
M =1, (- (x, (M1))), where M1 € Sp and «,, : My — k., (M), K¢, : Ke,,, (- -+ (Ke, (M7))) —
Ke, (- (K, (M1))), for 1 < i < m — 1, are bistellar 2-moves. Therefore, by Lemma 4.7,
M € SyU---U S The result now follows from Lemma 3.4. O

Proof of Corollary 1.4. Let N, ..., N3 be as in the proof of Lemma 3.9. Let M be an 8-vertex
normal 3-pseudomanifold. Then, by Theorem 1.1, there exist bistellar 1-moves k4,,...,%a,,,
for some m > 0, such that M; := xa,(--- (x4, (M))) is a neighbourly 3-pseudomanifold.

Since bistellar moves send a normal 3-pseudomanifold to a normal 3-pseudomanifold, M;
is normal. Hence, by Theorem 1.2, M; € . In other words, M = «,, (- - - (x,, (M1))), where
My € Np and ., : My = K, (M1), Ke, @ Ke,, (- (Ke,, (M1))) = Ke, (- - (¢, (M1))), for 1 <i <
m — 1, are bistellar 2-moves. Therefore, by Lemma 4.8, M € Ny U Ny U N, U N3. The result
now follows from Lemma 3.9. O
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