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This paper treats near-rings of zero-preserving Lipschitz functions on metric spaces that are also
abelian groups, using pointwise addition of functions as addition and composition of functions as
multiplication. We identify a condition on the metric ensuring that the set of all such Lipschitz
functions is a near-ring, and we investigate the complications that arise from the lack of left
distributivity in the resulting right near-ring. We study the behavior of the set of invertible
Lipschitz functions, and we initiate an investigation into the ideal structure of normed near-rings
of Lipschitz functions. Examples are given to illustrate the results and to demonstrate the limits of
the theory.

1. Introduction and Background

Banach spaces and Banach algebras of scalar-valued Lipschitz functions on a metric space
have been studied in some depth by functional analysts for the past half of a century.
The papers of Arens and Eells [1], de Leeuw [2], Sherbert [3, 4], and Johnson [5] contain
some of the important early work on these topics. The book of Weaver [6] provides a
systematic treatment of both the analytic and algebraic results concerning spaces of scalar-
valued Lipschitz functions on a metric space. The Lipschitz functions considered therein are
usually bounded and map a metric space (X, ρ) to a Banach space E (often R or C), so that
addition (and multiplication in case E = R or E = C) of functions is defined. The Lipschitz
number of a function f , denoted ‖f‖L, is used in combination with the infinity norm ‖ · ‖∞
to produce a norm ‖ · ‖ := max(‖ · ‖L, ‖ · ‖∞). If one identifies a distinguished basepoint in X,
then ‖ · ‖L is used as a norm on the set of basepoint preserving Lipschitz functions mapping
(X, ρ) to E.

In this paper, we initiate an analogous study of zero-preserving Lipschitz functions
on a metric space that is also an abelian group, using pointwise addition of functions as
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addition and function composition as multiplication. Our Lipschitz functions, therefore, map
a metric space (X, ρ) to itself and may be regarded as a generalization of the bounded linear
operators that are so important in analysis. Rather than taking X to be a Banach space, we
only require (X,+) to be an abelian group. By restricting the possible metrics ρ on X, we
ensure that the set of zero-preserving Lipschitz functions onX is a near-ring under pointwise
addition of functions and function composition. Near-rings and near-algebras, the nonlinear
counterparts of rings and algebras, respectively, have a rich theory of their own. Basic near-
ring definitions and results can be found in the books of Pilz [7], Clay [8], and Meldrum
[9]; the dissertation of Brown [10] is the seminal work in near-algebras. Closely related to
our present work is the dissertation of Irish [11], which considers near-algebras of Lipschitz
functions on a Banach space.

In the next section, we give the required definitions and elementary results. Next,
we study the behavior of the set of units and also of ideals in normed near-rings of
Lipschitz functions under topological closure. We conclude the paper by investigating the
ideal structure of near-rings of Lipschitz functions.

2. Definitions, Notation, and Elementary Results

We begin this section by recalling the definition of a Lipschitz function.

Definition 2.1 (see [6, 12]). A function f from a metric space (X1, ρ1) to a metric space (X2, ρ2)
is Lipschitz if there exists a constant K ≥ 0 such that for all x, y ∈ X1, ρ2(f(x), f(y)) ≤
Kρ1(x, y). If f : (X1, ρ1) → (X2, ρ2) is Lipschitz, the Lipschitz number of f is defined as

∥
∥f

∥
∥
L := sup

{

ρ2
(

f(x), f
(

y
))

ρ1
(

x, y
) | x, y ∈ X1, x /=y

}

. (2.1)

Remark 2.2. If f is Lipschitz, then ‖f‖L ≥ 0. Also, ‖f‖L = 0 if and only if f is constant.
For Lipschitz functions f : (X1, ρ1) → (X2, ρ2) and g : (X2, ρ2) → (X3, ρ3), we have that
‖g ◦ f‖L ≤ ‖g‖L‖f‖L.

Remark 2.3. It is well-known that a Lipschitz function f : R → R is absolutely continuous
and therefore differentiable almost everywhere (a.e.). Also, the derivative of f is bounded a.e.
in magnitude by the Lipschitz constant, and for a ≤ b, the difference f(b) − f(a) is equal to
the integral of the derivative of f on the interval [a, b]. Conversely, if f : R → R is absolutely
continuous (and thus differentiable a.e.) and if |f ′(x)| ≤ K a.e., then f is Lipschitz with
Lipschitz constant at most K. We will only use these observations in the case where f is a
continuous function from R to R that is everywhere, except possibly for finitely many points,
differentiable; also, the derivative of f will be continuous at all points where it exists. In this
case f is Lipschitz if and only if the set {|f ′(x)| : f is differentiable at x} is bounded and

∥
∥f

∥
∥
L = sup

{∣
∣f ′(x)

∣
∣ : f is differentiable at x

}

. (2.2)

In this restricted case these facts about real-valued Lipschitz functions are elementary
consequences of the definition of Lipschitz functions, the definition of derivatives of real-
valued functions, and the mean value theorem. The interested reader can consult [12] or [6]
for more on Lipschitz functions.
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In what follows, all metric spaces (X, ρ) are also abelian groups under the operation
+, with identity element 0. We exclude the trivial case X = {0}. If the metric ρ satisfies the
condition in the next definition, the pointwise addition of two Lipschitz functions is again a
Lipschitz function.

Definition 2.4. Let K > 0 be a real number. A metric ρ on a metric space X is K-subadditive on
X if

ρ(a + b, c + d)
ρ(a, c) + ρ(b, d)

, (2.3)

for all a, b, c, d ∈ X with ρ(a, c) + ρ(b, d)/= 0, bounded, and

sup
ρ(a,c)+ρ(b,d)/= 0

ρ(a + b, c + d)
ρ(a, c) + ρ(b, d)

= K. (2.4)

Remark 2.5. If ρ is a metric on X and we define the metric ρ on X × X via ρ((a, b), (c, d)) =
ρ(a, c) + ρ(b, d), then K-subadditivity of ρ is equivalent to having the Lipschitz number of
+ : X ×X → X equal to K.

Example 2.6. Let (X, ‖ · ‖) be a normed vector space and let the metric ρ be defined on X by
ρ(x, y) = ‖x − y‖ for all x, y ∈ X. Then ρ is 1-subadditive.

Assume that ρ is a 1-subaddive metric on the abelian group X, and define ‖ · ‖ : X →
R

+ ∪ {0} by ‖x‖ := ρ(x, 0) for all x ∈ X. We will show that ‖ · ‖ satisfies the properties given in
the next definition.

Definition 2.7 (see, e.g., [13]). A function ‖ · ‖ : X → R
+ ∪ {0} is a norm on the abelian group

X if ‖ · ‖ satisfies the following criteria:

(1) ‖x‖ = 0 if and only if x = 0;

(2) ‖x‖ = ‖ − x‖ for all x ∈ X;

(3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X.

Remark 2.8. Let ‖ · ‖ be a norm on an abelian group. Then the function ρ : X ×X → R
+ ∪ {0},

defined by ρ(x, y) := ‖x − y‖ for all x, y ∈ X, is a 1-subadditive metric on X.

Example 2.9. Let X be a multiplicative subgroup of the unit circle in the complex plane, and
take “addition” inX to be complex multiplication (so that 1 ∈ X is the neutral element). If we
denote by ‖z‖ the Euclidean distance between the complex numbers z and 1, ‖ · ‖ is a norm
on the abelian group X.

Next we give some of the elementary properties of K-subadditive metrics.

Proposition 2.10. Assume that ρ is K-subadditive on the metric space X. Then

(1) ρ(x − y, 0) ≤ Kρ(x, y) and ρ(x, y) ≤ Kρ(x − y, 0);

(2) ρ(x, y) ≤ K2ρ(−x,−y) and ρ(−x,−y) ≤ K2ρ(x, y);
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(3) K ≥ 1;

(4) if K = 1, then ρ(x, y) = ρ(x − y, 0) and ρ(x, y) = ρ(−x,−y);
(5) if K = 1, then ‖ · ‖ : X → R

+ ∪ {0}, defined by ‖x‖ := ρ(x, 0) for all x ∈ X, is a norm on
X and ‖x − y‖ = ρ(x, y) for all x, y ∈ X.

Proof. We prove (1) and (2). The other parts follow immediately from the following:
(1)

ρ
(

x − y, 0
)

= ρ
(

x − y, y − y
)

≤ K
(

ρ
(

x, y
)

+ ρ
(−y,−y))

= Kρ
(

x, y
)

,

(2.5)

and

ρ
(

x, y
)

= ρ
((

x − y
)

+ y, 0 + y
)

≤ K
(

ρ
(

x − y, 0
)

+ ρ
(

y, y
))

= Kρ
(

x − y, 0
)

.

(2.6)

(2)

ρ
(

x, y
)

= ρ
(

y, x
)

= ρ
(

x − x + y, x − y + y
)

≤ K
[

ρ
(

x − x, x − y
)

+ ρ
(

y, y
)]

≤ K2[ρ(x, x) + ρ
(−x,−y)]

= K2ρ
(−x,−y).

(2.7)

Thus ρ(x, y) ≤ K2ρ(−x,−y) and therefore also ρ(−x,−y) ≤ K2ρ(x, y).

Remark 2.11. Note that from part (5) of Proposition 2.10 and Remark 2.8 we have that any
1-subadditive metric on an abelian group X is induced by a norm on X and, conversely, any
norm on X induces a 1-subadditive metric.

The following is an example of a metric space with a metric that is not K-subadditive
for any K.

Example 2.12. Consider the metric on R given by ρ(a, b) := |2a − 2b| for a, b ∈ R. Then if ρ is
K-subadditive, we would have that 2n−1 = ρ(n, n − 1) ≤ K for all n ∈ N, which is clearly not
possible.

Notation 2.13. For a metric space (X, ρ), we denote by LX,ρ, or simply LX when there is no
ambiguity about the metric, the set of zero-preserving Lipschitz functions on X.
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Using some of the elementary properties of K-subadditive metrics, we obtain the
following properties for ‖ · ‖L.

Proposition 2.14. Let ρ be a K-subadditive metric on X. Then for all f, g ∈ LX one has

(1) ‖f‖L ≥ 0 and ‖f‖L = 0 if and only if f = 0X ;

(2) ‖ − f‖L ≤ K2‖f‖L;
(3) ‖f ◦ g‖L ≤ ‖f‖L‖g‖L;
(4) ‖f + g‖L ≤ K(‖f‖L + ‖g‖L).

Proof. The result follows from Definitions 2.1 and 2.4 and Proposition 2.10.

We now recall the definition of a near-ring.

Definition 2.15. A triple (N,+, ∗) is called a (right) near-ring if

(1) (N,+) is a (not necessarily abelian) group,

(2) (N, ∗) is a semigroup,

(3) for all a, b, c ∈ N, (a + b) ∗ c = a ∗ c + b ∗ c.
A near-ring (N,+, ∗) is called zero-symmetric if, for all n ∈ N, n ∗ 0N = 0N , where 0N is the
neutral element of (N,+).

If (G,+) is any group, then M(G), the set of all self-maps of G, is a near-ring under
pointwise addition and function composition. The set of all zero-preserving self-maps of G,
M0(G), is a zero-symmetric sub-near-ring of M(G). Further examples of near-rings, along
with many of the basic results of the theory of near-rings, may be found in the books of Clay
[8], Meldrum [9], and Pilz [7].

Following the definition of a normed ring as given in [14], we make the following
analogous definition.

Definition 2.16. A normed near-ring (N, ‖·‖) is a near-ringNwith a function ‖·‖ : N → R
+∪{0},

such that

(1) ‖x‖ = 0 if and only if x = 0;

(2) ‖x‖ = ‖ − x‖ for all x ∈ N;

(3) ‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ N;

(4) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ N.

Proposition 2.17. Assume that ρ is a K-subadditive metric on X. Then

(1) (LX,ρ,+, ◦) (“+” is pointwise addition and “◦” is function composition) is a zero-symmetric
near-ring with identity;

(2) (LX,ρ, ‖ · ‖L) is a normed near-ring if K = 1.

Proof. (1)We show that if f, g ∈ LX , then f ◦ g, f + g,−f ∈ LX . From Remark 2.2, f ◦ g ∈ LX ,
and from Proposition 2.10, we have for x, y ∈ X,

ρ
(−f(x),−f(y)) ≤ K2ρ

(

f(x), f
(

y
))

, (2.8)
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and thus f ∈ LX implies that −f ∈ LX . Also,

ρ
(

f(x) + g(x), f
(

y
)

+ g
(

y
)) ≤ Kρ

(

f(x), f
(

y
))

+Kρ
(

g(x), g
(

y
))

, (2.9)

since ρ is K-subadditive. Thus f, g ∈ LX implies that f + g ∈ LX . Finally, note that since LX

contains only zero-preserving functions, it is a zero-symmetric near-ring.
(2) This result follows from (1) and Proposition 2.14.

In some of our results, we assume that our metric space is a normed vector space over
a field with an absolute value or norm. Recall that an absolute value on a field F is a function
| · | : F → R

+ ∪ {0}, such that

(1) |x| = 0 if and only if x = 0;

(2) |xy| = |x||y| for all x, y ∈ F;

(3) |x + y| ≤ |x| + |y| for all x, y ∈ F.

If X is a normed vector space over a normed field, LX is not only a normed near-ring but
in fact a normed near-algebra. First we recall the definitions of a near-algebra and a normed
near-algebra. We only consider near-algebras with identity.

Definition 2.18 (see [7]). A vector space A over a field F together with another binary
operation “·” is a (right) near-algebra over F if (A,+, ·) is a (right) near-ring and for all a, b ∈ A
and all k ∈ F, (ka) · b = k(a · b).

As with near-rings, near-algebras need not be zero-symmetric in general, as seen in
the following example [15].

Example 2.19. Let X be a vector space over a field F. Then M(X), the set of all self-maps of
X, is a near-algebra over F which is not zero-symmetric. Also, if R is any subalgebra of the
F-algebra EndF(X), then the set of all affine transformations arising from elements of R and
X, that is, AFR(X) := {Av | A ∈ R, v ∈ X}, where Av(x) := Ax + v, is a sub-near-algebra of
M(X)which is also not zero-symmetric.

Definition 2.20 (see [11]). A normed near-algebra (A, ‖ · ‖) over a field (F, | · |) with an absolute
value | · | is a near-algebra such that (A, ‖ · ‖) is also a normed vector space over (F, | · |), with
the norm ‖ · ‖ satisfying ‖f · g‖ ≤ ‖f‖‖g‖ for all f, g ∈ A.

Proposition 2.21. Let (X, ‖ · ‖) be a normed vector space over a normed field (F, | · |). Then LX is a
normed near-algebra over F.

Proof. This result follows from Definition 2.1 and Proposition 2.17.

In the remainder of the paper, we use the induced topology obtained from ‖ · ‖L when
making topological statements about LX .

3. Units in LX

We note for the reader that there is some overlap between this section and [11, Chapter 3].
However, our proofs are less involved and our results are more general since in [11] only the
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case where X is a Banach space over R or C is considered. In this section we show that if X
is a complete and connected normed abelian group, then the set of units is an open subset of
LX . Throughout this discussion, the metric on X will be the 1-subadditive metric induced by
the norm on X, as described in Remark 2.11. We start with a technical lemma that is required
for the proof of Lemma 3.2. We denote the identity function in LX by 1X .

Lemma 3.1. Let (X, ‖ · ‖) be a normed abelian group. Also, let f ∈ LX , with ‖f − 1X‖L < 1, and
x, y ∈ X with x /=y. Then

0 < 1 − ∥
∥f − 1X

∥
∥
L ≤

∥
∥f(x) − f

(

y
)∥
∥

∥
∥x − y

∥
∥

≤ 1 +
∥
∥f − 1X

∥
∥
L. (3.1)

Proof. The statement follows from the fact that we have for all x, y ∈ X with x /=y that

∥
∥f − 1X

∥
∥
L ≥

∥
∥
(

f(x) − x
) − (

f
(

y
) − y

)∥
∥

∥
∥x − y

∥
∥

≥
∣
∣
∥
∥f(x) − f

(

y
)∥
∥ − ∥

∥x − y
∥
∥
∣
∣

∥
∥x − y

∥
∥

=

∣
∣
∣
∣
∣

∥
∥f(x) − f

(

y
)∥
∥

∥
∥x − y

∥
∥

− 1

∣
∣
∣
∣
∣
.

(3.2)

The next lemma shows that if f ∈ LX is surjective and “close enough” to 1X , then f is
a unit in LX .

Lemma 3.2. Let (X, ‖ · ‖) be a normed abelian group. Also, let f ∈ LX be such that ‖f − 1X‖L < 1.
Then f is injective and ‖f−1‖L ≤ 1/(1 − ‖f − 1X‖L), where f−1 : f(X) → X.

Proof. From Lemma 3.1 it follows that if x /=y, but f(x) = f(y), then 0 < 1 − ‖f − 1X‖L ≤
‖f(x) − f(y)‖/‖x − y‖ = 0, which is not possible. Thus f must be injective.

Note that

sup

{∥
∥f−1(x) − f−1(y

)∥
∥

∥
∥x − y

∥
∥

: x, y ∈ f(X), x /=y

}

≤ sup

{ ∥
∥x − y

∥
∥

∥
∥f(x) − f

(

y
)∥
∥
: x, y ∈ X, x /=y

}

(3.3)

≤ 1
1 − ∥

∥f − 1X
∥
∥
L

, (3.4)

where (3.3) follows by replacing x and y by f−1(x) and f−1(y), respectively, in sup{‖x −
y‖/‖f(x) − f(y)‖ : x, y ∈ X, x /=y}, and (3.4) follows from Lemma 3.1. Thus f−1 is Lipschitz
with ‖f−1‖L ≤ 1/(1 − ‖f − 1X‖L).

The next two lemmas will be used in the proof of the main result of this section.
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Notation 3.3. For a ∈ X and r ∈ R
+, we denote by Br(a) the set {x ∈ X : ‖x − a‖ < r}. Also, for

A ⊆ X, we denote by A the topological closure of A.

Lemma 3.4. Let (X, ‖ · ‖) be a normed abelian group. Assume f ∈ LX with ‖f − 1X‖L < 1. Then
there is an α ∈ R

+ such that Bαr(f(a)) ⊆ f(Br(a)) for all r ∈ R
+ and a ∈ X.

Proof. If ‖f − 1X‖L = 0, we have that f = 1X, and the result follows trivially. Thus we assume
that 0 < ‖f − 1X‖L < 1. Choose any α with 0 < α < 1 − ‖f − 1X‖L. Suppose that Bαr(f(a)) is
not a subset of f(Br(a)), and let c ∈ Bαr(f(a)) \ f(Br(a)). Also, let d(c, f(Br(a))) := inf{‖c −
x‖ : x ∈ f(Br(a))} > 0. Choose b ∈ Br(a) with ‖c − f(b)‖ < d(c, f(Br(a)))/‖f − 1X‖L. Let
d := b + c − f(b). We show next that

(1) d ∈ Br(a),

and

(2) ‖f(d) − c‖ < d(c, f(Br(a))).

Once we have (1) and (2), we have a contradiction with the definition of d(c, f(Br(a))), and
we thus have that Bαr(f(a)) ⊆ f(Br(a)). The fact that d ∈ Br(a) follows from the following:

‖d − a‖ =
∥
∥
(

f − 1X
)

(a) − (

f − 1X
)

(b) +
(

c − f(a)
)∥
∥

≤ ∥
∥f − 1X

∥
∥
L ‖a − b‖ + ∥

∥f(a) − c
∥
∥

<
∥
∥f − 1X

∥
∥
L r + αr

< r.

(3.5)

The fact that ‖f(d) − c‖ < d(c, f(Br(a))) follows from the following:

∥
∥f(d) − c

∥
∥ =

∥
∥
(

f − 1X
)(

b + c − f(b)
) − (

f − 1X
)

(b)
∥
∥

≤ ∥
∥f − 1X

∥
∥
L

∥
∥b + c − f(b) − b

∥
∥

=
∥
∥f − 1X

∥
∥
L

∥
∥c − f(b)

∥
∥

< d
(

c, f(Br(a))
)

.

(3.6)

Lemma 3.5. Let (X, ‖ · ‖) be a normed abelian group. Assume that X is complete, C is a closed subset
of X, f ∈ LX , and ‖f − 1X‖L < 1. Then f(C) is closed in X.

Proof. Suppose that y ∈ X and ‖f(xn) − y‖ → 0 as n → ∞, where xn ∈ C for all n ∈ N. From
Lemma 3.2 f is injective and f−1 : f(X) → X is Lipschitz. Note that 〈xn : n ∈ N〉 is Cauchy
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since 〈f(xn) : n ∈ N〉 is Cauchy and since we have the following:

‖xn − xm‖ =
∥
∥
∥f−1f(xn) − f−1f(xm)

∥
∥
∥

≤
∥
∥
∥f−1

∥
∥
∥
L

∥
∥f(xn) − f(xm)

∥
∥.

(3.7)

Since X is complete and C is closed, 〈xn : n ∈ N〉 converges to, say, x ∈ C. Thus since f is
continuous, f(x) = y, and we therefore have that f(C) is closed in X.

We introduce the main theorem of this section.

Theorem 3.6. Let X be a complete and connected normed abelian group. Then the set of units is open
in LX .

Proof. In order to obtain the result, we show that if g ∈ LX is a unit, then all f ∈ LX ,
with ‖f − g‖L < 1/‖g−1‖L, are also units. First note that ‖f − g‖L < 1/‖g−1‖L implies that
‖f ◦ g−1 − 1X‖L = ‖(f − g) ◦ g−1‖L ≤ ‖f − g‖L‖g−1‖L < 1. Since f is a unit in LX if and only if
f ◦ g−1 is a unit in LX , it is enough to show that ‖f − 1X‖L < 1 implies that f is a unit in LX .
So assume that ‖f − 1X‖L < 1. From Lemma 3.2, f is injective. Lemma 3.5 implies that f(X) is
closed, thus f(X) = f(X). Also, Lemma 3.4 implies that the set f(X), which is equal to f(X),
is open. Now since X is connected, we have that f(X) both open and closed implies that
f(X) = X and thus that f is surjective. To complete the argument, we recall that Lemma 3.2
implies that f−1 is Lipschitz.

We conclude this section by giving an example to show that the completeness of X is
an essential hypothesis in the preceding theorem.

Example 3.7. Define fn : Q → Q as follows:

fn(x) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪⎪⎪⎪
⎩

x x < 1 − 1
n
,

x2

2
+
(

1 − 1
n

)

− (1 − 1/n)2

2
x ∈

[

1 − 1
n
, 1
]

,

x − 1
2
+
(

1 − 1
n

)

− (1 − 1/n)2

2
x > 1.

(3.8)

Let fn : R → R be the continuous function such that the restriction of fn to Q is equal to fn. It
follows from Remark 2.3, by calculating piecewise derivatives, that fn : Q → Q is Lipschitz
for n > 1. Let kn be a rational number such that 1−1/n < kn

√
2 < 1. Then fn(kn

√
2) is rational

but not in the range of fn. Therefore fn is not surjective and thus not a unit in LQ for any n.
Next we show that fn converges to 1Q, the identity in LQ, and thus the set of units in LQ is
not open. Let 1R be the identity function on R. We show that fn converges to 1Q, by showing
that ‖fn − 1R‖L converges to 0. From Remark 2.3 we have that it is enough to show that the
absolute value of the derivative of hn = fn − 1R is bounded (where it is defined) by a constant
Mn, where Mn → 0 as n → ∞. This is clearly the case on (−∞, 1 − 1/n) and on (1,∞). But
also on (1 − 1/n, 1) the derivative of hn is x − 1; so on (1 − 1/n, 1) the absolute value of the
derivative of hn is bounded by 1/n. Thus we conclude that the required constants Mn exist.
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4. Continuity of Multiplication and Closure of Ideals

In the first example in this section, we show that if f, g, gn ∈ LX for all n ∈ N with gn → g in
LX as n → ∞, then it is not necessarily the case that f ◦ gn converges to f ◦ g in LX . Since

∥
∥gn ◦ f − g ◦ f∥∥N =

∥
∥(gn − g) ◦ f∥∥N ≤ ∥

∥gn − g
∥
∥
N

∥
∥f

∥
∥
N (4.1)

in any normed (right) near-ring (N, ‖ · ‖N), we have that if f, g, gn ∈ N for all n ∈ N with
gn → g in N as n → ∞, then gn ◦ f converges to g ◦ f . Thus right multiplication is a
continuous function in a normed near-ring, but left multiplication is not. An example, similar
to the next example, but more involved, is given in [11].

Example 4.1. In this example we show that it is not necessarily the case that ‖f ◦ g − f ◦ h‖L ≤
‖f‖L‖g − h‖L for f, g, h ∈ LX , and also it is not the case that if gn converges to g as n
approaches infinity, then f ◦ gn converges to f ◦ g.

Let X = R be endowed with the Euclidean metric d, so that LX is a normed near-
algebra, and define f, g, h : R → R as follows:

f(x) := d(x, [−1, 1]);
g(x) := x;

h(x) := kx, with k > 1 fixed.

(4.2)

From Remark 2.3, ‖f ◦ g − f ◦ h‖L = k, whereas ‖f‖L = 1 and ‖g − h‖L = k − 1.
For each n ∈ N, let gn(x) := (1+ 1/n)x. Then by replacing hwith gn and k by (1+ 1/n),

we obtain that ‖f ◦ g − f ◦ gn‖L = 1 + 1/n, whereas ‖f‖L = 1 and ‖g − gn‖L = 1/n. Thus gn
converges to g, but it is not the case that f ◦ gn converges to f ◦ g.

Notation 4.2. Let I be a nonempty indexing set, and for i ∈ I, let Ai and Bi be nonempty
subsets of X. Define LX(Ai → Bi : i ∈ I) by {f ∈ LX | f(Ai) ⊆ Bi for i ∈ I}. If I is finite, we
will use the notation LX(A1 → B1, . . . , An → Bn).

Remark 4.3. Note that we use the notation LX(S → {0}), instead of the familiar notation
AnnLX (S).

The next proposition shows, for example, that the left ideal, obtained by considering
the set of functions in LX that annihilates a certain subset of X, is closed.

Proposition 4.4. For i ∈ I, let Ai and Bi be nonempty subsets of the normed abelian group (X, ‖ · ‖),
with the Bi’s closed. Then the set LX(Ai → Bi : i ∈ I) is a closed subset of LX .

Proof. Let 〈fn : n ∈ N〉 be a sequence in LX(Ai → Bi : i ∈ I), and let f ∈ LX be such
that fn converges f . To show that LX(Ai → Bi : i ∈ I) is closed, we need to show that
f ∈ LX(Ai → Bi : i ∈ I). Let ai ∈ Ai. Then fn(ai) ∈ Bi. Since ‖f(ai) − fn(ai)‖ ≤ ‖f − fn‖L‖ai‖
and ‖f − fn‖L converges to 0, we conclude that fn(ai) converges to f(ai). Since each Bi is
closed, we conclude that f(ai) ∈ Bi, and thus f ∈ LX(Ai → Bi : i ∈ I).



International Journal of Mathematics and Mathematical Sciences 11

Theorem 4.5. The closure of a right ideal of a normed near-ring N is again a right ideal of N.

Proof. Denote the norm on N by ‖ · ‖N . Let I ⊆ N be a right ideal and f, g in I the closure
of I. Assume that 〈fn〉 and 〈gn〉 are sequences in I converging to f and g, respectively.
Then ‖(f − g) − (fn − gn)‖N ≤ ‖f − fn‖N + ‖g − gn‖N , and the right side of this inequality
converges to 0. Thus (f − g) ∈ I. Next let h ∈ N. Then ‖fn ◦ h − f ◦ h‖N = ‖(fn − f) ◦ h‖N ≤
‖fn − f‖N‖h‖N , and again the right side of the inequality converges to 0 as n → ∞. Thus
since fn ◦ h ∈ I for all n ∈ N, we conclude that f ◦ h ∈ I. It follows that I is a right ideal of
N.

Remark 4.6. Recall from the previous section that the set of units is open in LX if X is a
complete, connected, normed abelian group. In such a case, if S is a proper subset of LX

that is closed under either left or right function composition by an arbitrary function in LX ,
then the closure of S will also be a proper subset of LX .

5. Ideals in LX

This section contains some partial results on the ideal structure ofLX . In the first example we
show that ideals in LX are in abundance.

Example 5.1. Let F be a set of functions from R
+
0 to R

+
0 . Denote by IFX the set

{

f ∈ LX : there exists F ∈ F such that
∥
∥f(x)

∥
∥ ≤ F(‖x‖) for x ∈ X

}

. (5.1)

Assume that we have the following conditions on the functions in F:
(i) if F,G ∈ F, then there is an H ∈ F with F(t) +G(t) ≤ H(t) for all t ∈ R

+
0 ;

(ii) if r ∈ R
+
0 and F ∈ F, then rF ∈ F;

(iii) if r ∈ R
+
0 and F ∈ F, then there is a G ∈ F such that F(rt) ≤ G(t) for all t ∈ R

+
0 ;

(iv) the functions in F are nondecreasing.

We assume that X is a normed abelian group and show next (in part) that IFX is an ideal in
LX .

We show that if g ∈ IFX and f, h ∈ LX , then f ◦(g+h)−f ◦h ∈ IFX . The other cases are
handled similarly. Since g ∈ IFX , there exists some G ∈ IFX such that for all x ∈ X, ‖g(x)‖ ≤
G(‖x‖). We need to show that there is anH ∈ IFX, such that ‖(f◦(g+h)−f◦h)(x)‖ ≤ H(‖x‖).
For any x ∈ X we have

∥
∥f ◦ (g(x) + h(x)

) − f ◦ h(x)∥∥ ≤ ∥
∥f

∥
∥
L

∥
∥g(x) + h(x) − h(x)

∥
∥

=
∥
∥f

∥
∥
L

∥
∥g(x)

∥
∥

≤ ∥
∥f

∥
∥
LG(‖x‖).

(5.2)

Thus ‖(f ◦ (g + h) − f ◦ h)(x)‖ ≤ H(‖x‖) for H = ‖f‖LG.

In the next example we consider the set of bounded functions in LX .
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Example 5.2. Let X be a normed abelian group. In this example we consider BLX , the set of
bounded Lipschitz functions inLX . First we show that BLX is a two-sided ideal. If F consists
of all bounded nondecreasing functions from R

+
0 to R

+
0 , then IFX = BLX , and it thus follows

from the previous example that BLX is a two-sided ideal in LX . Next we consider the case
when X = R. We show that BLR is not closed. Define for each n ∈ N the Lipschitz function
fn : R → R as follows:

fn(x) =

⎧

⎪⎪⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪⎪⎪
⎩

0 x ≤ 0,

x x ∈ [0, 1],
√
x x ∈ [

1, n2],

n x > n2.

(5.3)

Let f : R → R be defined as follows:

f(x) =

⎧

⎪⎪⎪
⎨

⎪⎪⎪
⎩

0 x ≤ 0,

x x ∈ [0, 1],
√
x x > 1.

(5.4)

Then from Remark 2.3 it follows that ‖f − fn‖L → 0 as n → ∞. Thus we have a sequence of
bounded functions that converges to an unbounded function, which implies that BLR is not
closed in LR.

In the next few results we show that the Betsch-Wielandt density theorem for near-
rings can be applied to LX .

Lemma 5.3. Assume that X is a vector space over a field containing R. Let S ⊆ X with 0 ∈ S. Fix x0

in X, and define d(S, x), for all x ∈ X, by d(S, x) = infs∈S‖s − x‖. Then the function fS,x0 : X → X,

defined by fS,x0(x) := d(S, x)x0 for all x ∈ X, is Lipschitz. Also fS,x0 = fS,x0
, where S is the closure

of S.

Proof. We show that fS,x0 is a Lipschitz function and leave the proof of the equality fS,x0 = fS,x0

to the reader. First note that it is easy to verify that |d(S, x) − d(S, y)| ≤ ‖x − y‖. Thus
∥
∥fS,x0(x) − fS,x0

(

y
)∥
∥ =

∥
∥d(S, x)x0 − d

(

S, y
)

x0
∥
∥

=
∣
∣d(S, x) − d

(

S, y
)∣
∣‖x0‖

≤ ∥
∥x − y

∥
∥‖x0‖,

(5.5)

and fS,x0 is therefore a Lipschitz function.

We will use the next result to conclude that if x, y ∈ X with x /= 0, then there is an
f ∈ LX such that f(x) = y.
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Corollary 5.4. Assume that X is a vector space over a field containing R. Let x, y, z ∈ X with x
nonzero and x /= z. Then there is an f ∈ LX such that f(x) = y and f(z) = 0.

Proof. Note that cf{0,z},y(x) = y and cf{0,z},y(z) = 0 for an appropriate c ∈ F, where f{0,z},y is
as in Lemma 5.3.

Corollary 5.5. Assume that X is a vector space over a field containing R. Then LX is not a
ring.

Proof. Let x ∈ X \ {0} and let S = {0, x}. Let fS,x be as in Lemma 5.3, and denote by 1X the
identity function onX. Now note that we have that fS,x ◦ (1X +1X)(x)/= 0 = fS,x ◦1X(x)+fS,x ◦
1X(x), since (x + x)/∈S.

Corollary 5.6. Assume thatX is a vector space over a field containing R. ThenX is a type-2 primitive
LX-module.

Proof. From Corollary 5.4, LXx = X for all x /= 0. Also, fX = 0 for f ∈ LX implies that f = 0.
Thus X is a 2-primitive LX-module.

Corollary 5.7. Assume thatX is a vector space over a field containingR. Let a1, . . . , an and b1, . . . , bn
be elements in X with distinct and nonzero ai’s. Then there exists an f ∈ LX such that f(ai) = bi for
i = 1, . . . , n.

Proof. Since X is a type-2 primitive LX-module, the Betsch-Wielandt density theorem for
near-rings (see, e.g., [7]) can be applied when LX is not a ring. By the density theorem, if
a1, . . . , an and b1, . . . , bn are in X and the ai’s are distinct and all nonzero, then there exists
f ∈ LX such that f(ai) = bi.

We conclude by exhibiting some of the maximal left ideals in LX . With the exception
of the statement that L({x0} → {0}) is closed, the argument is solely based on the fact that
X is a 2-primitive LX-module.

Theorem 5.8. Assume that X is a vector space over a field containing R. Let x0 ∈ X with x0 /= 0.
Then L({x0} → {0}), often denoted by AnnL({x0}), is a maximal closed left ideal that is not an
ideal.

Proof. From Proposition 4.4 we have that LX({x0} → {0}) is closed. It is easy to verify that
LX({x0} → {0}) is a left ideal. Next we show that it is maximal. Assume that f ∈ LX \
LX({x0} → {0}). Then from Corollary 5.4 we can find a g ∈ LX such that g(f(x0)) = x0. But
then idX = g ◦ f + (idX − g ◦ f) and (idX − g ◦ f) ∈ LX({x0} → {0}), implying that the left
ideal generated by f and LX({x0} → {0}) is all of LX . It follows that LX({x0} → {0}) is a
maximal left ideal.

Finally we show that LX({x0} → {0}) is not an ideal. Let 0, x be two distinct elements
in X, with x /=x0. From Corollary 5.4 we have functions f, g ∈ LX with f(x) = x, f(x0) = 0,
and g(x0) = x. Then it follows that f ∈ LX({x0} → {0}), but f ◦ g /∈LX({x0} → {0}), since
we have f(g(x0)) = x.
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