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Several results concerning ideals of a compact topological semigroup Swith S2 = S can be found in
the literature. In this paper, we further investigate in a compact connected topological semigroup
S how the conditions S2 = S and S2 /=S affect the structure of ideals of S, especially the maximal
ideals.

1. Introduction

First, we list some standard definitions which can be found in [1–3].

Definition 1.1. A topological semigroup is a topological space S together with a continuous
function m : S × S → S such that S is Hausdorff andm is associative.

A subsemigroup of a semigroup S is a nonvoid set A ⊂ S such that A2 ⊂ A, and A is
called a subgroup of S if it is a group with respect tom.

An element e of a topological semigroup S is called an idempotent if e2 = e. Similarly,
an element e of S is called a left identity (right identity) if ea = a (ae = a) for all a ∈ S. An
element of S is called an identity of S if it is both a left and a right identity of S.

The set of all idempotents of S will be denoted by E throughout this paper. For each
e ∈ E, letH(e) be the union of all subgroups of S containing e. It is shown in [3] thatH(e) is
the maximal subgroup of S containing e.

Definition 1.2. A nonempty subset A of a semigroup S is called a left ideal (right ideal) of S if
SA ⊂ A (AS ⊂ A) and an ideal if it is both a left and a right ideal. A left ideal (right ideal,
ideal) is said to be proper if it is not S itself.
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An (left, right) idealM of a semigroup S is calledminimal if it does not properly contain
any (left, right) ideal of S. It follows that there can be at most one minimal ideal of S. If S has
a minimal ideal K, then K is called the kernel of S.

A maximal (left, right) ideal of a semigroup S is a proper (left, right) ideal of S that is
not properly contained in any other (left, right) ideal.

Definition 1.3. Let A be a subset of a topological semigroup S, then J0(A) is defined as
follows:

J0(A) =

⎧
⎨

⎩

∅ if A contains no ideal of S,

∪ {I : Iis an ideal of S and I ⊂ A}.
(1.1)

Theorem 1.4. Let S be a compact connected topological semigroup without zero, and let K be the
kernel of S. Then, either K ∩ E is infinite or K is a topological subgroup of S.

Proof. Since S is a compact topological semigroup,K = ∪{H(e) : e ∈ K ∩E}, andH(e) = eSe
by [3, Theorem1.2.6]. Suppose that K ∩ E is finite and K is not a topological subgroup of S.
Let eK ∈ K ∩E. Then,K \H(eK)/= ∅. Otherwise,K = H(eK) is both the kernel and a maximal
subgroup of S by [3, Theorem 1.3.14], and hence K is topological subgroup of S with the
relative topology, which contradicts our assumption.

Furthermore, since K ∩ E is finite and K \ H(eK) = ∪{H(e) : e ∈ K ∩ E, e /= eK}, it
follows that K \H(eK) and H(eK) form a separation of K. Hence, K is disconnected, which
contradicts [1, Theorem 1.28]. Therefore, we can deduce that either K ∩ E is infinite or K is a
maximal subgroup of S.

2. Maximal Ideals of Compact Connected Topological Semigroups

The following theorem is a summary of the results found in [1]. It lists necessary and
sufficient conditions for S2 = S in a compact topological semigroup S. In this section, we
characterize maximal ideals in a compact connected topological semigroup S with S2 = S
and S2 /=S.

Theorem 2.1. Let S be a compact connected topological semigroup. The following are equivalent:

(a) S2 = S,

(b) E ∩ (S \ I)/= ∅ for each proper ideal I of S,
(c) S = SES.

The following theorem and corollary are results from [3], which are useful for our discussion.

Theorem 2.2. Let S be a compact topological semigroup. Then, any proper (left, right) ideal of S is
contained in a maximal (left, right) ideal of S, and each maximal (left, right) ideal is open.

Corollary 2.3. If S is a compact connected topological semigroup and J a maximal ideal of S, then J
is dense in S.

Theorem 2.4. Suppose that S is a compact topological semigroup and S2 /=S.

(a) For each a ∈ S \ S2, S \ {a} is a maximal ideal of S.

(b) If S has more than one connected maximal ideal, then, S is connected.
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Proof. (a) Let a ∈ S \ S2. For every x ∈ S \ {a} and y ∈ S, {xy, yx} ⊂ S2 ⊂ S \ {a} implies
that S \ {a} is a proper ideal of S. (b) Let M1 and M2 be two distinct connected maximal
ideals of S. Suppose that S is disconnected. Then, M1 ∪ M2 = S = P ∪ Q such that P ∩
Q = ∅ = P ∩ Q. Since M1 and M2 are connected, M1 ⊂ P and M2 ⊂ P . It follows that
M1 ∩M2 = ∅, and hence M1 ⊂ S \M2 = {a2} and M2 ⊂ S \M1 = {a1}. On the other hand,
since M1 and M2 are ideals, a1a2 = a2a1 = a2 and a1a2 = a2a1 = a1, and hence M1 = {a2} =
{a1} = M2 contradictingM1 andM2 being distinct. Therefore, S is connected, and henceK is
connected.

The following example shows that the condition S having more than one connected
maximal ideal is a necessary condition for Theorem 2.4(b).

Example 2.5. Let S = [0, 1/4] ∪ {1/2} with the usual topology and the usual multiplication.
Then, S2 = [0, 1/8] ∪ {1/4}/=S, K = {0} is connected, M = [0, 1/4] is the only connected
maximal ideal of S, and S is disconnected.

The next theorem is Theorem 2.4.3 of [3], and hence the proof is omitted.

Theorem 2.6. If S is a connected topological semigroup and I an ideal of S, then one and only one
component of I is an ideal of S.

One will call the ideal in Theorem 2.6 the component ideal of I.

Theorem 2.7. Let S be a compact connected topological semigroup andC=
⋃{MC : MCis the ideal

component of a maximal proper ideal M}. Then either C = S or C is the maximal proper connected
ideal of S. Furthermore, if C/=S, then C is the component ideal of a maximal ideal of S.

Proof. For each maximal ideal M of S, let MC be its component ideal. Since K is the kernel
and K ⊂ MC for each MC, C=

⋃{MC : MC is the ideal component of a maximal proper ideal
M} is a connected ideal.

Suppose that there is a connected ideal I such that C ⊂ I � S, then I is
contained in a maximal ideal M of S. Since K ⊂ I ∩ MC, I ∪ MC is a connected ideal
of S and is contained in M, and hence I ∪ MC ⊂ MC ⊂ C, a contradiction. Thus, if
C/=S, then C is the maximal connected proper ideal of S. Furthermore, there exists a
maximal ideal M of S such that C ⊂ M. Let MC be the component ideal of M. Then,
MC = C.

Lemma 2.8. Let S be a compact connected topological semigroup, M a maximal ideal of S, and MC

the component ideal of M. If S2 /=S, thenMC is not closed in S.

Proof. IfMC = M, then the result follows from Theorem 2.4(b).
IfMC � M, thenM = MC∪KM whereKM is the union of all components ofM except

MC. If MC were closed in S, then KM is open in S because KM = M ∩ (S \MC) and M are
both open. Therefore, for a ∈ S \M, S = M = MC ∪ (KM ∪ {a}), and hence S is disconnected,
which is a contradiction.

The next theorem provides a necessary and sufficient condition for a compact
connected topological semigroup S satisfying S2 /=S by means of the component ideals of
its maximal ideals.

Theorem 2.9. Let S be a compact connected topological semigroup. Then, S2 /=S if and only if there
exists a maximal ideal M of S with M = S \ {b}, b ∈ S \ S2 such that S2 ⊂ MC where MC is a
component ideal of M.
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Proof. Suppose that S2 /=S. It follows from Theorem 2.1(a) that there exists a maximal ideal
M of S such that E ∩ (S \M) = ∅. By [3, Theorem 1.3.8], S/M is either the zero semigroup of
order two or else completely 0-simple.

Suppose that S/M is the zero semigroup of order two. Then, S \ M = {b} for some
b ∈ S. If b ∈ S2, then b = xy with x, y ∈ S \ M. It is because if {x, y} ∩ M/= ∅, then b ∈ M
contradicting S \ M = {b}. It follows that x = y = b, and hence b ∈ E. This contradicts
E ∩ (S \M) = ∅. Therefore, b ∈ S \ S2 and S2 ⊂ MC ⊂ M \ {b}. Note that the semigroup S/M
is not completely 0-simple because if S/M were completely 0-simple, then S/M contains a
nonzero primitive idempotent, which contradicts E ∩ (S \M) = ∅.

The converse is obviously true.The next example shows that the component idealMC

of a maximal ideal M can beM itself.

Example 2.10. Let S = [0, 1/2] with the usual multiplication and the usual topology. Then,
S is a compact connected topological semigroup, and S2 /=S. Let M = [0, 1/2) and M# =
S \ {5/16}. Then, M and M# are maximal ideals of S, and MC = [0, 1/2) = M and M#

C =
[0, 5/16) � M#.

The next theorem is Theorem 1.40 of [1], and hence the proof is omitted.

Theorem 2.11. Let S be a compact connected topological semigroup. Then, S2 = S if and only if each
dense (left, right) ideal (containing K) is connected.

When S2 = S, it is possible that aS = S for some a ∈ S. Existence of the set P = {α ∈ S : αS =
S} and its relationship to maximal ideals have been discussed in [3]. The following theorem provides a
few additional properties of the set P of a compact topological semigroup S.

Theorem 2.12. Suppose that S is a compact topological semigroup such that aS = S for some a ∈ S.
Let P = {α ∈ S : αS = S}. Then, the following is considered.

(a) P is a right group.

(b) If P /=S, Then S \ P is dense in S or S is disconnected.

(c) J0(S \ {a}) is dense in S for each a ∈ P if S is connected and P /=S.

Proof. (a) According to [3, Theorem 1.4.6], P =
⋃

e∈E∩P H(e), and P is a subtopological
semigroup of S. Then, eS = S for all e ∈ E ∩ P , and hence e is a left identity of S. For each
a ∈ P , a ∈ H(e) for some e ∈ E ∩ P, and hence there exists a−1 ∈ H(e) such that aa−1 = e. For
any x ∈ P , x = (aa−1)x = a(a−1x) ∈ aP . It follows that P = aP for every a ∈ P , and hence P is
right simple since S is compact and P is closed. The result follows from Theorem 1 of [4].

(b) Since P is a nonempty closed subtopological semigroup of S and the kernel K
exists, S \ P is nonempty. In fact, by [3, Theorem 1.4.7], S \ P is the only maximal ideal of S
because S/=P /= ∅. If S \ P /=S, then S\P is both open and closed by the maximality, and hence
S is disconnected.

(c)The result follows immediately from part (b) and the fact that S \ P ⊂ J0(S \ {a})
for every a ∈ P .

The following example shows that the condition S/=P is necessary for Theorem 2.12(b)
and (c).

Example 2.13. Let S = [0, 1]with the usual topology and themultiplication xy = y for x, y ∈ S.
Then, S = P = K.
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Definition 2.14. A topological semigroup S has the left maximal property (right maximal property)
if there exists a maximal left (right) ideal L∗ (R∗) containing every proper left (right) ideal of
S.

In [3], Paalmande Miranda presented several results showing how a compact
connected topological semigroup S with the left or right maximal property is related to the
condition S = aS, where a ∈ S. In the same spirit of these results and Theorem 2.11, the
following theorem characterizes a compact connected topological semigroup satisfying the
maximal property and the condition S = Sa ∪ aS ∪ SaS by means of its maximal ideals.

Theorem 2.15. Let S be a compact connected topological semigroup. Then, the following are
equivalent.

(a) There is an idempotent e such that e ∈ S \M for every maximal idealM of S.

(b) The semigroup S has the maximal property and S = Sa ∪ aS ∪ SaS for some a ∈ S.

Proof. (a) ⇒ (b) Since K ⊂ S \ {e} and I ⊂ J0(S \ {e}) for every proper ideal I of S, S has the
maximal property with the maximal ideal J0(S \ {e}).

Let a ∈ S \ J0(S \ {e}). Then, J0(S \ {e}) is properly contained by the ideal Sa ∪ aS ∪
SaS∪ {a}. Hence, Sa∪ aS∪SaS∪ {a} = S. Since S is connected and Sa, aS, SaS, and {a} are
closed, a ∈ Sa ∪ aS ∪ SaS, and hence, S = Sa ∪ aS ∪ SaS.

(b) ⇒ (a) Suppose that S has the maximal property with the maximal ideal M∗ and
S does not satisfy the condition in part (a). Then, E ⊂ M∗, and hence it follows from
Theorem 2.9 that S2 ⊂ M∗. On the other hand, S = Sa∪aS∪SaS ⊂ S2 ⊂ M∗, which contradicts
M∗ being the maximal ideal of S.

The following corollary to Theorem 1.4.12 of [3] implies that the maximal ideal M in
Theorem 2.9 is not unique.

Corollary 2.16. A necessary and sufficient condition that a compact connected topological semigroup
S has the maximal ideal property is that S has at least one idempotent e with S = SeS and S is not
simple.
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