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We construct 2-functors from a 2-category categorifying quantum sln to 2-categories categorifying
the irreducible representation of highest weight 2ωk .

1. Introduction

Khovanov and Lauda introduced a 2-category whose Grothendieck group is Uq(sln) [1].
This work generalizes earlier work by Lauda for the Uq(sl2) case [2]. Rouquier has
independently produced a 2-category with similar generators and relations [3]. There have
been several examples of categorifications of representations of Uq(sln) arising in various
contexts. Khovanov and Lauda conjectured that their 2-category acts on various known
categorifications via a 2-functor. For example, in their work they construct such a 2-functor to
a category of graded modules over the cohomology of partial flag varieties. This 2-category
categorifies the irreducible representation of Uq(sln) of highest weight nω1 where ω1 is the
first fundamental weight.

In this paper we construct this action for the categorification constructed by Huerfano
and Khovanov in [4]. They categorify the irreducible representation V2ωk of highest weight
2ωk, by a modification of a diagram algebra introduced in [5]. The objects of 2-category
HKk,n are categories Cλ which are module categories over the modified Khovanov algebra.
We explicitly construct natural transformations between the functors in [4] and show that
they satisfy the relations in the Khovanov-Lauda 2-category giving the following theorem.
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Theorem 1.1. Over a field of characteristic two, there exists a 2-functor Ωk,n :KL → HKk,n.

The Huerfano-Khovanov categorification is based on categories used for the categori-
fication of Uq(sl2)-tangle invariants. This hints that a categorification of V2ωk may also be
obtained on maximal parabolic subcategories of certain blocks of category O(gl2k). More
specifically, we construct a 2-category Pk,n whose objects are full subcategories ZP(k,k)

μ (gl2k)

of graded category ZO(k,k)
μ (gl2k) whose set of objects are those modules which have projective

presentations by projective-injective objects. The 1-morphisms of Pk,n are certain projective
functors. We explicitly construct the 2-morphisms as natural transformations between the
projective functors by the Soergel functor V. We then prove the following.

Theorem 1.2. There is a 2-functorΠk,n :KL → Pk,n.

It should be possible to categorify VNωk for N ≥ 1 using categories which appear
in various knot homologies. For N ≥ 2, the module categories Cλ in the Huerfano-
Khovanov construction should be replaced by suitable categories of matrix factorization
based on Khovanov-Rozansky link homology. The categories of matrix factorizations must
be generalized from those used in [6]. Khovanov and Rozansky suggest that the categories
of matrix factorizations should be taken over tensor products of polynomial rings invariant
under the symmetric group. These categories were studied in depth by Yonezawa and Wu
[7, 8]. In fact, the isomorphisms of functors categorifying the Uq(sln) relations were defined
implicitly in [8]. To check that there is a 2-representation of the Khovanov-Lauda 2-category,
these isomorphisms would need to be made more explicit. The category O approach should
be modified as well. Now the objects of the 2-category should be subcategories of parabolic
subcategories corresponding to the composition Nk = k + · · · + k of blocks of Oλ(gl(Nk)),
and the stabilizer of the dominant integral weight μ is taken to be Sλ1 × · · · × Sλn where each
λi ∈ {0, 1, . . . ,N}; compare, for example, Section 5 below. Note that a categorification of Vλ
for arbitrary dominant integral λ, hence in particular of VNωk , is constructed in [9] using
cyclotomic quotients of Khovanov-Lauda-Rouquier algebras.

While this paper was in preparation, two very relevant papers appeared. In [10],
Brundan and Stroppel also defined the appropriate natural transformations and checked
relations between them to establish a version of the first theorem above, but for Rouquier’s
2-category from [3] rather than the Khovanov-Lauda 2-category. One of the advantages of
their result is that they are able to work over an arbitrary field, while we work over a field
of characteristic 2 in constructing the 2-functor to HKk,n. It is not immediately clear to us
how to use their sign conventions to get an action of the full Khovanov-Lauda 2-category
in characteristic zero, because they seem to lead to inconsistencies between Propositions 4.7,
4.8, 4.10, and 4.16. Additionally, Brundan and Stroppel categorify V2ωk using graded category
O. More precisely, they first categorify the classical limit of V2ωk at q = 1 using a certain
parabolic category O, without mentioning gradings. Then they establish an equivalence
between this category and the (ungraded) diagrammatic category. Finally, they observe that
both categories are Koszul (by [11] and [12], respectively) so, exploiting unicity of Koszul
gradings, their categorification at q = 1 can be lifted to a categorification of the module
V2ωk itself in terms of graded category O. Our construction on the graded category O side
is more explicit, relying heavily on the Soergel functor, the Koszul grading that O inherits
from geometry, and explicit calculations on the cohomology of flag varieties made in [1].
In the other relevant paper, M. Mackaay [13] constructs an action of the Khovanov-Lauda
2-category on a category of foams which is the basis of an sl3-knot homology.
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2. The Quantum Group Uq(sln)

2.1. Root Data

Let sln = sln(C) denote the Lie algebra of traceless n × n-matrices with standard triangular
decomposition sln = n− ⊕h⊕n+. Let Δ ⊂ h∗ be the root system of type An−1 with simple system
Π = {αi | i = 1, . . . , n − 1}. Let (·, ·) denote the symmetric bilinear form on h∗ satisfying

(
αi, αj

)
= aij , (2.1)

where A = (aij)1≤i,j<n is the Cartan matrix of type An−1:

aij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 if j = i,

−1 if
∣
∣j − i

∣
∣ = 1,

0 if
∣∣i − j

∣∣ > 1.

(2.2)

Let Δ+ be the set of simple roots relative to Π. Let ω1, . . . , ωn−1 ∈ h∗ be the elements satisfying
(ωi, αj) = δij , and let

Q =
n−1⊕

i=1

Zαi, Q+ =
n−1⊕

i=1

Z≥0αi, P =
n−1⊕

i=1

Zωi, P+ =
n−1⊕

i=1

Z≥0ωi (2.3)

denote the root lattice, positive root lattice, weight lattice, and dominant weight lattice,
respectively.

Set I = {1, . . . , n − 1,−1, . . . ,−n + 1}, I+ = {1, . . . , n − 1}, and I− = −I+. Define α−i = −αi,
and extend the definition of aij to all i, j ∈ I accordingly. Finally, for i ∈ I, let sgn(i) = i/|i| be
the sign of i.

The quantum groupUq(sln) is the associative algebra over Q(q) with generators Ei,Ki,
for i ∈ I, satisfying the following conditions:

(1) KiK−i = K−iKi = 1, and KiKj = KjKi for i, j ∈ I,

(2) KiEj = qai,j EjKi, i, j ∈ I,

(3) EiE−j − E−jEi = δi,j((Ki −K−i)/(q − q−1)), i, j ∈ I±,
(4) EiEj = EjEi, i, j ∈ I±, |i − j| > 1,

(5) E2
i Ej − (q + q−1)EiEjEi + EjE2

i = 0, i, j ∈ I±, |i − j| = 1.

We fix a comultiplication Δ : Uq(sln) → Uq(sln) ⊗ Uq(sln) given as follows for all i ∈ I+:

Δ(Ei) = 1 ⊗ Ei + Ei ⊗Ki,

Δ(E−i) = K−i ⊗ E−i + E−i ⊗ 1,

Δ(K±i) = K±i ⊗K±i.

(2.4)

Via Δ, a tensor product of Uq(sln)-modules becomes a Uq(sln)-module.



4 International Journal of Mathematics and Mathematical Sciences

In this paper we are interested in the irreducible Uq(sln)-modules, V2ωk with highest
weight 2ωk. Therefore, we will identify the weight lattice P ∼= Z

n−1 ⊂ Z
n as follows. Assume

that λ =
∑

i aiωi. For each 1 ≤ i < n, set

λi =
2k − a1 − 2a2 − · · · − (i − 1)ai−1 + (n − i)ai + (n − i − 1)ai+1 + · · · + an−1

n
. (2.5)

Let P(2ωk) denote the set of weights of V2ωk . It is well known that under this
identification each λ ∈ P(2ωk) satisfies λi ∈ {0, 1, 2} for all 1 ≤ i ≤ n and λ1 + · · · + λn = 2k.

3. The Khovanov-Lauda 2-Category

Let k be a field. The k-linear 2-categoryKL defined here was originally constructed in [1].
Let I∞ =

⋃
n≥0 I

n, I+∞ =
⋃
n≥0(I

+)n where In and (I+)n denote n-fold Cartesian products.
Given that i = (i1, i2, . . .) ∈ I∞, let

cont
(
i
)
=

n−1∑

i=1

ciαi, where ci = #
{
j | ij = i

}
− #
{
j | ij = −i

}
. (3.1)

Given that ν ∈ Q, let Seq(ν) = {i ∈ I∞ | cont(i) = ν} and, for ν ∈ Q+, define Seq+(ν) = {i ∈
I+∞|cont(i) = ν}. Finally, define

Seq =
⋃

ν∈Q
Seq(ν). (3.2)

3.1. The Objects

The set of objects for this 2-category is the weight lattice, P .

3.2. The 1-Morphisms

For each λ ∈ P , let Iλ ∈ EndKL(λ) be the identity morphism and, for λ, λ′ ∈ P , set IλIλ′ =
δλ,λ′Iλ. For each i ∈ I, we define morphisms EiIλ ∈ HomKL(λ, λ + αi). Evidently, we have
EiIλ = Iλ+αiEiIλ. For λ, λ′ ∈ P , we have

HomKL
(
λ, λ′
)
=
⊕

i∈Seq
s∈Z

Iλ′EiIλ{s},
(3.3)

where Ei := Ei1 · · · Eir if i = (i1, . . . , ir) ∈ I∞, and s refers to a grading shift. Observe that
Iλ′EiIλ = 0 unless cont(i) = λ′ − λ, and Iλ+cont(i)EiIλ = EiIλ.
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3.3. The 2-Morphisms

The 2-morphisms are generated by

Yi;λ ∈ EndKL(EiIλ), Ψi,j;λ ∈ HomKL
(
EiEjIλ,EjEiIλ

)
,

⋃

i;λ

∈ HomKL(Iλ,E−iEiIλ),
⋂

i;λ

∈ HomKL(E−iEiIλ,Iλ),
(3.4)

for i, j ∈ I±. We define 1i;λ ∈ EndKL(EiIλ) to be the identity transformation.
For λ ∈ P , the degrees of the basic 2-morphisms are given by

degYi;λ = aii, degΨi,j;λ = −aij , deg
⋃

i;λ

= deg
⋂

i;λ

= 1 + (αi, λ). (3.5)

Let λ+cont(i) = λ+cont(j) = λ+cont(k) = λ′ and λ′+cont(i′) = λ+cont(j ′) = λ′′. Let Θ1 ∈
HomKL(EiIλ,EjIλ) and Θ2 ∈ HomKL(Ei′Iλ′ ,Ej ′Iλ′). Then denote the horizontal composition
of these 2-morphisms by Θ2Θ1 which is an element of HomKL(Ei′Iλ′EiIλ,Ej ′Iλ′EjIλ). If Θ3 ∈
HomKL(EjIλ,EkIλ), denote the vertical composition of Θ3 and Θ1 by Θ3 ◦Θ1.

For convenience of notation, we define the following 2-morphisms. If θ ∈ End(EiIλ),
let θ[j] = θ ◦ · · · ◦ θ︸ ︷︷ ︸

j

. For each i ∈ I, define the bubble

©•Ni;λ =
⋂

i;λ

◦(1−i;λ+αiYi;λ)
[N] ◦

⋃

i;λ

. (3.6)

Also, define half-bubbles

•N⋃

i;λ

= (1−i;λ+αiYi;λ)
[N] ◦

⋃

i;λ

,
•N⋃

i;λ

=
⋂

i;λ

◦(Y−i;λ+αi1i,λ)
[N]. (3.7)

We now define the relations satisfied by these basic 2 morphisms. In what follows, we
omit the argument λ when the relation is independent of it.

(1) sl2Relations

(a) For all i ∈ I,

(
⋂

−i
1i

)

◦
(

1i
⋃

i

)

= 1i =

(

1i
⋂

i

)

◦
(
⋃

−i
1i

)

. (3.8)

(b) For all i ∈ I+,

Yi =

(
⋂

−i
1i

)

◦ (1iY−i1i) ◦
(

1i
⋃

i

)

=

(

1i
⋂

i

)

◦ (1iY−i1i) ◦
(
⋃

−i
1i

)

. (3.9)
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(c) Suppose that i ∈ I and (−αi, λ) > r + 1, then

•r
©
i;λ
= 0. (3.10)

(d) Let i ∈ I. If (αi, λ) ≤ −1,

•−(αi,λ)−1
©
i;λ

= 1. (3.11)

(e) Let i ∈ I. If (αi, λ) ≥ 1, then

1i;λ−αi1−i;λ = −Ψ−i,i;λ ◦Ψi,−i;λ

+
(αi,λ)−1∑

f=0

f∑

g=0

•[(αi,λ)−f−1]⋃

−i;λ
◦
•[−(αi,λ)−1+g]
©
i;λ

◦
•[f−g]⋂

−i;λ
.

(3.12)

(f) Let i ∈ I+. If (αi, λ) ≤ 0, then

(

1i;λ
⋂

−i;λ

)

◦ (Ψi,i;λ−αi1−i;λ) ◦
(

1i;λ
⋃

−i;λ

)

= −
−(αi,λ)∑

f=0

Yi;λ
[−(αi,λ)−f]

•[(αi,λ)−1+f]
©
−i;λ

.

(3.13)

If (αi, λ) ≥ −2, then

(
⋂

i;λ

1i;λ−αi

)

◦ (1−i;λ+αiΨi,i;λ−αi) ◦
(
⋃

i;λ

1i;λ−αi

)

=
(αi,λ)+2∑

g=0

•[−(αi,λ)−1+g]
©
i;λ

Yi;λ−αi
[(αi,λ)−g].

(3.14)

Remark 3.1. Note that in 1(e) above the exponent of the bubble may be negative, which is not
defined. To make sense of this, for i ∈ I+, define these symbols (referred to as fake bubbles in
[1]) inductively by the formula

(
∑

n≥0

•(α−i ,λ)−1+n
©
i;λ

tn
)(
∑

n≥0

•(α−i ,λ)−1+n
©
−i;λ

tn
)

= 1 (3.15)

and©•−1
i;λ = 1 whenever (αi, λ) = 0.

(2) The nil-Hecke Relations

(a) For each i ∈ I+, Ψ[2]
i,i = 0.

(b) For i ∈ I+, (Ψi,i1i) ◦ (1iΨi,i) ◦ (Ψi,i1i) = (1iΨi,i) ◦ (Ψi,i1i) ◦ (1iΨi,i).
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(c) For i ∈ I+, (1i1i) = (Ψi,i) ◦ (Yi1i) − (1iYi) ◦ (Ψi,i) = (Yi1i) ◦ (Ψi,i) − (Ψi,i) ◦ (1iYi).
(d) For j, i ∈ I−,

Ψj,i =

⎛

⎝
⋂

−j
1i1j

⎞

⎠ ◦
(

1j
⋂

−i
1−j1i1j

)

◦
(
1j1iΨ−j,−i1i1j

)
◦
(

1j1i1−j
⋃

i

1j

)

◦

⎛

⎝1j1i
⋃

j

⎞

⎠

=

(

1i1j
⋂

i

)

◦

⎛

⎝1i1j1−i
⋂

j

1i

⎞

⎠ ◦
(
1i1jΨ−j,−i1j1i

)
◦

⎛

⎝1i
⋃

−j
1−i1j1i

⎞

⎠ ◦
(
⋃

−i
1j1i

)

.

(3.16)

Remark 3.2. For all i, j ∈ I±, set Ψi,−j = (1−j1i
⋂
−j) ◦ (1−jΨj,i1−j) ◦ (

⋃
j 1i1−j).

(3) The R(ν) Relations

(a) For i, j ∈ I±, (Ψ−j,i) ◦ (Ψi,−j) = 1i1−j .
(b) For i, j ∈ I+, i /= j,

Ψj,i ◦Ψi,j =

⎧
⎨

⎩

1i1j if
∣∣i − j

∣∣ > 1,
(
i − j
)(
Yi1j − 1iYj

)
if
∣∣i − j

∣∣ = 1.
(3.17)

(c) For i, j ∈ I+, i /= j,

(
1jYi
)
◦
(
Ψi,j

)
=
(
Ψi,j

)
◦
(
Yi1j
)
,

(
Yj1i
)
◦
(
Ψi,j

)
=
(
Ψi,j

)
◦
(
1iYj
)
. (3.18)

(d) For i, j, k ∈ I+,

(
Ψj,k1i

)
◦
(
1jΨi,k

)
◦
(
Ψi,j1k

)
−
(
1kΨi,j

)
◦
(
Ψi,k1j

)
◦
(
1iΨj,k

)

=

⎧
⎨

⎩

0 i /= k or
∣∣i − j

∣∣ = 0,
(
i − j
)
1i1j1i i = k and

∣∣i − j
∣∣ = 1.

(3.19)

4. The Huerfano-Khovanov 2-Category

4.1. The Khovanov Diagram Algebra

Let A = C[x]/x2. This is a Z-graded algebra with multiplication map m : A ⊗A → A such
that deg 1 = −1 and degx = 1. There is a comultiplication map Δ : A → A ⊗ A such that
Δ(1) = x ⊗ 1 + 1 ⊗ x and Δ(x) = x ⊗ x. There is a trace map Tr : A → C such that Tr(x) = 1
and Tr(1) = 0. There is also a unit map ι : C → A given by ι(1) = 1. Also, let κ : A → A
be given by κ(1) = 0, κ(x) = 1. This algebra gives rise to a two-dimensional TQFT F, which
is a functor from the category of oriented 1 + 1 cobordisms to the category of abelian groups.
The functor F sends a disjoint union of m copies of the circle S

1 to A⊗m. For a cobordism C1,
from two circles to one circle, F(C1) = m. For a cobordism C2, from one circle to two circles,
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a b

Figure 1: Crossingless matches a and b for r = 2.

Figure 2: Concatenation (Ra)b.

F(C2) = Δ. For a cobordism C3, from the empty manifold to S
1, F(C3) = ι. For a cobordism C4,

from the empty manifold to S
1,F(C4) = Tr .

For any nonnegative integer r, consider 2r marked points on a line. Let CMr be the set
of nonintersecting curves up to isotopy whose boundary is the set of the 2r marked points
such that all of the curves lie on one side of the line. Then there are

(
2r

r

)
/r + 1 elements in

this set. The set of crossingless matches for r = 2 is given in Figure 1.
Let a, b ∈ CMr . Then (Rb)a is a collection of circles obtained by concatenating a ∈ CMr

with the reflection Rb of b ∈ CMr in the line. Then applying the two-dimensional TQFT F,
one associates the graded vector space bH

r
a to this collection of circles. Taking direct sums

over all crossingless matches gives a graded vector space

Hr =
⊕

a,b

bH
r
a{r}, (4.1)

where the degree i component of bH
r
a{r} is the degree i − r component of bH

r
a. This graded

vector space obtains the structure of an associative algebra via F; compare, for example, [5].
Let T be a tangle from 2r points to 2s points. Let a be a crossingless match for 2s

points and b a crossingless match for 2s points. Then let aTb be the concatenation Ra ◦ T ◦ b
and aF(T)b = F(aTb). See Figure 3 for an example when T is the identity tangle.

To any tangle diagram T from 2r points to 2s points, there is an (Hs,Hr)-bimodule

F(T) =
⊕

a∈CMr
b∈CMs

F( aTb){r}.
(4.2)

To any cobordism C between tangles T1 and T2, there is a bimodule map F(C) : F(T1) →
F(T2), of degree −χ(C)−r−s, where χ(C) is the Euler characteristic ofC; compare, for example,
Proposition 5 of [5].

Lemma 4.1. Consider the tangles I andUi in Figure 4. Then there are saddle cobordisms Si : Ui → I
and Si : I → Ui.

Let Ti and Ti be the tangles in Figure 5.

(1) There exists an (Hn−1,Hn)-bimodule homomorphism μi : F(Ti) → F(Ti+1) of degree one.

(2) There exists an (Hn,Hn−1)-bimodule homomorphism μi : F(Ti) → F(Ti+1) of degree one.
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Figure 3: Concatenation aTb.

1 i· · · i + 1 · · · n 1 · · · i i + 1 · · · n

Figure 4: I and Ui.

Proof. There is a degree zero isomorphism of bimodules F(Ti) ∼= F(Ti)
⊗

HnF(I). Then by [5]
there is a bimodule map of degree one

1 ⊗ F
(
Si+1
)

: F(Ti)
⊗

Hn

F(I) −→ F(Ti)
⊗

Hn

F(Ui+1), (4.3)

where 1 denotes the identity map. Finally note that F(Ti)
⊗

HnF(Ui+1) ∼= F(Ti+1). Then μi is the
composition of these maps.

The construction of μi is similar.

Remark 4.2. One may construct, in a similar way, maps of degree one: F(Ti) → F(Ti−1) and
F(Ti) → F(Ti−1).

Lemma 4.3. Let a ∈ CMn and b ∈ CMn−1 be two crossingless matches. Let Ti be the tangle on
the right side of Figure 5. Let Ui be the tangle in Figure 4. Consider the homomorphism induced by
the cobordism Si,F(Ti) → F(Ui)

⊗
HnF(Ti) ∼= A

⊗
C
F(Ti). Let α ⊗ β ∈ F( aTib), where α ∈ A

corresponds to the circle passing through the point i on the top line and β ∈ A⊗p corresponds to the
remaining circles. Then α ⊗ β �→ Δ(α) ⊗ β.

Proof. The map is induced by the cobordism Si. On the set of circles, this cobordism is a union
of identity cobordisms and a cobordism C2. The result now follows upon applying F.

Lemma 4.4. Let I be the identity tangle from 2r points to 2r points, Ti a tangle from 2(r + 1) points
to 2r points, and Ti a tangle from 2r points to 2(r + 1) points. Let a and b be cup diagrams for 2r
points (a, b ∈ CMr). Consider the map

A
⊗

C

F(I) −→ F(Ti)
⊗

Hr+1

F
(
Ti
)
−→ F(Ti+1)

⊗

Hr+1

F
(
Ti
)
−→ F(I), (4.4)

where the first and last maps are isomorphisms and the middle map is μi ⊗ 1. Let β ∈ A correspond
to the circle passing through point i of aIb, γ ∈ A⊗r correspond to the remaining circles, and α ∈ A.
Then the map above sends α ⊗ β ⊗ γ �→ (αβ) ⊗ γ.
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1 i· · · i + 1 · · · n 1 · · · i i + 1 · · · n

Figure 5: Ti and Ti.

λ1 λi· · · λi+1 · · · λn λ1 · · · λi λi+1 · · · λn

λ1 λi + 1· · · λi+1 − 1 · · · λn λ1 · · · λi + 1 λi+1 − 1 · · · λn

Figure 6: Dλ,i and Dλ,i.

λ1 λi· · · λi+1 · · · λn λ1 · · · λi λi+1 · · · λn

λ1 λi + 1· · · λi+1 − 1 · · · λn λ1 · · · λi + 1 λi+1 − 1 · · · λn

Figure 7: Tλ,i and Tλ,i.

λ1 λi· · · λi+1 · · · λn

λ1 λi· · · λi+1 · · · λn

Figure 8: Identity tangle Iλ.

Proof. The map is induced by a cobordism Si+1. On the set of circles, this cobordism is union
of identity cobordisms and a cobordism C1. The result now follows upon applying F.

4.2. The Huerfano-Khovanov Categorification

Let λ ∈ P(2ωk). Recall that α−i = −αi. Hence, for i ∈ I, we have

λ + αi =
(
λ1, . . . , λi + sgn(i), λi+1 − sgn(i), . . . , λn

)
. (4.5)

Label n collinear points by the integers λi. Those points labeled by 0 or 2 will never be the
boundaries of arcs but will rather just serve as place holders. Then define the algebra Hλ =
Hγ(λ) (as in Section 4.1), where γ(λ) = (1/2) | {λi | λi = 1}|. Let eλ be the identity element.

Let i ∈ I+. We define five special tangles Dλ,i, D
λ,i, Tλ,i, T

λ,i, Iλ in Figures 6, 7, and 8.
If a point is labeled by zero or two, it will not be part of the boundary of any curve. Away
from points i, i + 1, the tangle is the identity.
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λ1 λi· · · λi+1 λi+2 · · · λn λ1 λi· · · λi+1 λi+2 · · · λn

λ1 λi + 1· · · λi+1 λi+2 − 1 · · · λn λ1 λi + 1· · · λi+1 λi+2 − 1 · · · λn

Sλ,i,i+1

Figure 9: Cobordism Sλ,i,i+1.

λ1 λi· · · λi+1 · · · λn λ1 · · · λi λi+1 · · · λn

λ1 λi − 1· · · λi+1 + 1 · · · λn λ1 · · · λi − 1 λi+1 + 1 · · · λn

Figure 10: Dλ,−i and Dλ,−i.

λ1 λi· · · λi+1 · · · λn λ1 · · · λi λi+1 · · · λn

λ1 λi − 1· · · λi+1 + 1 · · · λn λ1 · · · λi − 1 λi+1 + 1 · · · λn

Figure 11: Tλ,−i and Tλ,−i.

The cobordisms Sλ,i : Tλ+αi,i ◦ Tλ,i → Iλ and Sλ,i,j : Tλ+αi,j ◦ Tλ,i → Dλ+αj ,i ◦ Dλ,j are
saddle cobordisms for j = i ± 1. Similarly, the cobordisms Sλ,i, Sλ,i,j are saddle cobordisms in
the opposite direction. For example, the cobordism Sλ,i,i+1 is given in Figure 9.

Let Cλ be the category of finitely generated, graded Hλ-modules, and let Iλ : Cλ → Cλ
be the identity functor. For λ, λ′ ∈ P(2ωk), set Iλ′Iλ = δλ,λ′Iλ.

Let i ∈ I+. To make future definitions more homogeneous, define
Dλ,−i, Dλ,−i, Tλ,−i, Tλ,−i as in Figures 10 and 11. Also, in what follows, interpret the pair
(λ−i, λ−i+1) as (λi+1, λi) and recall that α−i = −αi.

Let i ∈ I. Let Iλ : Cλ → Cλ denote the identity functor which is tensoring with the
(Hλ,Hλ)-bimodule Hλ. Let EiIλ : Cλ → Cλ+αi be the functor of tensoring with a bimodule
defined as follows:

EiIλ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(Dλ,i) if (λi, λi+1) = (1, 2),

F
(
Dλ,i
)

if (λi, λi+1) = (0, 1),

F(Tλ,i) if (λi, λi+1) = (1, 1),

F
(
Tλ,i
)

if (λi, λi+1) = (0, 2),

0 otherwise.

(4.6)

Evidently, EiIλ = Iλ+αiEiIλ for all i ∈ I, and Iλ = F(Iλ).
For i ∈ I, let KiIλ : Cλ → Cλ be the grading shift functor KiIλ = Iλ{(αi, λ)}. Finally, set

C =
⊕

λ∈P(2ωk)Cλ, Ei =
⊕

λ∈P(2ωk)EiIλ, Ki =
⊕

λ∈P(2ωk)KiIλ, and I =
⊕

λ∈P(2ωk)Iλ.

Propositions 2 and 3 of [4] are that these functors satisfy quantum sln relations.
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Proposition 4.5 (see [4, Propositions 2, 3]). One has

(1) KiK−iIλ ∼= Iλ
∼= K−iKiIλ, and KiKjIλ

∼= KjKiIλ for i, j ∈ I,
(2) KiEjIλ

∼= EjKiIλ{aij}, for i, j ∈ I,
(3) EiE−jIλ ∼= E−jEiIλ if i, j ∈ I+, i /= j,
(4) EiEjIλ

∼= EjEiIλ if i, j ∈ I±, |i − j| > 1,

(5) EiEiEjIλ ⊕ EjEiEiIλ
∼= EiEjEiIλ{1} ⊕ EiEjEiIλ{−1} if i, j ∈ I±, |i − j| = 1,

(6) For i ∈ I,

EiE−iIλ ∼=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

E−iEiIλ ⊕ Iλ{1} ⊕ Iλ{−1} if i ∈ I+, (λi, λi+1) = (2, 0),

E−iEiIλ ⊕ Iλ{1} ⊕ Iλ{−1} if i ∈ I−, (λi, λi+1) = (0, 2),

E−iEiIλ ⊕ Iλ if (αi, λ) = 1,

E−iEiIλ if (αi, λ) = 0.

(4.7)

Now we define the Huerfano-Khovanov 2-categoryHKk,n over the field k, chark = 2.

4.3. The Objects

The objects ofHKk,n are the categories Cλ, λ ∈ P(V2ωk).

4.4. The 1-Morphisms

For each λ ∈ P(2ωk), Iλ ∈ EndHK(λ) is the identity morphism and, for λ, λ′ ∈ P , set
IλI
′
λ = δλ,λ′Iλ as above. For each i ∈ I, we have defined morphisms EiIλ ∈ HomHK(Cλ,Cλ+αi).

Evidently, we have EiIλ = Iλ+αiEiIλ. For λ, λ′ ∈ P(2ωk), we have

HomHK(Cλ,Cλ′) =
⊕

i∈Seq
s∈Z

Iλ′EiIλ{s},
(4.8)

where Ei := Ei1 · · ·Eir Iλ if i = (i1, . . . , ir) ∈ I∞, and s refers to a grading shift. Observe that
Iλ′EiIλ = 0 unless cont(i) = λ′ − λ, and Iλ+cont(i)EiIλ = EiIλ.

4.5. The 2-Morphisms

In this section we define natural transformations of functors. These maps were not explicitly
defined in [4]. Note that the notation for these 2-morphisms is similar to the 2-morphisms in
Section 3 since we will construct a 2-functor mapping one set of 2-morphisms to the other.
Recall the convention (λ−i, λ−i+1) = (λi+1, λi) for i ∈ I+.

(1) The Maps 1i,λ, 1λ

Let i ∈ I, and let 1i,λ : EiIλ → EiIλ and 1λ : Iλ → Iλ be the identity maps.
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(2) The Maps yi;λ

For i ∈ I we define maps yi;λ : EiIλ → EiIλ of degree 2. Let T be the tangle diagram for the
functor EiIλ. It depends on the pair (λi, λi+1). Let a and b be crossingless matches such that
(Rb)Ta is a disjoint union of circles. Thus F((Rb)Ta) = (A)⊗p for some natural number p.
Define

yi;λ
((
β1 ⊗ · · · ⊗ βp

))
=
(
β1 ⊗ · · · ⊗ xβi ⊗ · · · ⊗ βp

)
, (4.9)

where

(a) if (λi, λi+1) = (1, 2), then the ith factor in (A)⊗p corresponds to the circle passing
through the ith point on the bottom set of dots for tangle Dλ,i in Figure 6,

(b) if (λi, λi+1) = (0, 1), then the ith factor in (A)⊗p corresponds to the circle passing
through the ith point on the top set of dots for tangle Dλ,i in Figure 6,

(c) if (λi, λi+1) = (0, 2), then the ith factor in (A)⊗p corresponds to the circle passing
through the ith point on the top set of dots for tangle Tλ,i in Figure 7,

(d) if (λi, λi+1) = (1, 1), then the ith factor in (A)⊗p corresponds to the circle passing
through the ith point on the bottom set of dots for tangle Tλ,i in Figure 7.

(3) The Map ∪i;λ

We define a map ∪i;λ : Iλ → E−iEiIλ. There are four nontrivial cases for (λi, λi+1) to consider.

(a) (λi, λi+1) = (1, 2). The identity functor is induced from the identity tangle Iλ. The
functor E−iEi is isomorphic to tensoring with the bimodule F(Dλ+αi,i ◦Dλ,i) which is
equal to F(Iλ). Thus in this case ∪i;λ is given by the identity map.

(b) (λi, λi+1) = (1, 1). Then the functor E−iEi is isomorphic to tensoring with the
bimodule F(Tλ+αi,i ◦ Tλ,i). Then ∪i;λ is F(Sλ,i).

(c) (λi, λi+1) = (0, 2). Then the functor E−iEi is isomorphic to tensoring with the
bimodule F(Tλ+αi,i ◦ Tλ,i) = F(Iλ) ⊗A. Then the bimodule map is given by 1λ ⊗ ι.

(d) (λi, λi+1) = (0, 1). The functor E−iEi is isomorphic to tensoring with the bimodule
F(Dλ+αi,i◦Dλ,i).As in case 1, this tangle is isotopic to the identity so the map between
the functors is the identity map.

(4) The Map ∩i;λ.

We define a map ∩i;λ : E−iEiIλ → Iλ. There are four non-trivial cases for (λi, λi+1) to consider.

(a) (λi, λi+1) = (1, 2). The functor E−iEi is isomorphic to tensoring with the bimodule
F(Dλ+αi,i ◦Dλ,i) which is equal to F(Iλ). Thus in this case ∩i;λ is given by the identity
map.

(b) (λi, λi+1) = (1, 1). Then the functor E−iEi is isomorphic to tensoring with the
bimodule F(Tλ+αi,i ◦ Tλ,i). Then the homomorphism is F(Sλ,i).

(c) (λi, λi+1) = (0, 2). Then the functor E−iEi is isomorphic to tensoring with the
bimodule F(Tλ+αi,i ◦ Tλ,i) = F(Iλ) ⊗A. Then the bimodule map is given by 1λ ⊗ Tr .
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(d) (λi, λi+1) = (0, 1). The functor E−iEi is given by tensoring with the bimodule
F(Dλ+αi,i◦Dλ,i).As in case 1, this tangle is isotopic to the identity so the map between
the functors is the identity map.

(5) The Maps ψi,j;λ

We define a map ψi,j;λ : EiEjIλ → EjEiIλ for i, j ∈ I±.
There are four cases for i and j to consider and then subcases for λ.

(a) i = j. In this case, the functors are non-trivial only if λi = 0 and λi+1 = 2. The
bimodule for EiEi is isomorphic to tensoring with the bimodule F(Tλ+αi,i ◦ Tλ,i) =
F(Iλ) ⊗A. Then ψi,i = 1λ ⊗ κ.

(b) |i−j| > 1. In this case, the functors EiEj and EjEi are isomorphic via an isomorphism
induced from a cobordism isotopic to the identity so set ψi,j to the identity map.

(c) ψi,i+1 : EiEi+1 → Ei+1Ei. There are four non-trivial subcases to consider.

(i) (λi, λi+1, λi+2) = (1, 1, 2). The bimodule for EiEi+1 is F(Dλ+αi+1,i ◦ Dλ,i+1). The
bimodule for Ei+1Ei is F(Tλ+αi,i+1 ◦ Tλ,i). In this case we define the bimodule
map to be F(Sλ,i,i+1).

(ii) (λi, λi+1, λi+2) = (1, 1, 1). The functor EiEi+1 is given by tensoring with a
bimodule isomorphic to

F(Dλ+αi+1,i ◦ Tλ,i+1) ∼= F(Dλ+αi+1,i ◦ Tλ,i+1)
⊗

Hλ

F(Iλ). (4.10)

The bimodule for Ei+1Ei is isomorphic to F(Dλ+αi,i+1 ◦ Tλ,i). Then define ψi,j to
be 1λ

⊗
Hλ

F(Sλ,i) since

F(Dλ+αi+1,i ◦ Tλ,i+1)
⊗

Hλ

F
(
Tλ+αi,−i ◦ Tλ,i

)
∼= F
(
Dλ+αi,i+1 ◦ Tλ,i

)
. (4.11)

(iii) (λi, λi+1, λi+2) = (0, 1, 2). The bimodule for EiEi+1 is isomorphic to

F
(
Tλ+αi+1,i ◦Dλ,i+1

)
∼= F(Iλ+αi+αi+1)

⊗

Hλ+αi+αi+1

F
(
Tλ+αi+1,i ◦Dλ,i+1

)
. (4.12)

The bimodule for Ei+1Ei is isomorphic to F(Tλ+αi,i+1 ◦Dλ,i). Then define ψi,j to
be F(Sλ+αi+αi+1,i)

⊗
Hλ

1λ since

F
(
Tλ+2αi+αi+1,−(i+1) ◦ Tλ+αi+αi+1,i+1

) ⊗

Hλ+αi+αi+1

F
(
Tλ+αi+1,i ◦Dλ,i+1

)

∼= F
(
Tλ+αi,i+1 ◦Dλ,i

)
.

(4.13)

(iv) (λi, λi+1, λi+2) = (0, 1, 1). The bimodule for EiEi+1 is F(Tλ+αi+1,i ◦ Tλ,i+1). The
bimodule for Ei+1Ei is F(Dλ+αi,i+1 ◦Dλ,i). Then set ψi,j = F(Sλ,i+1,i).
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(d) ψi+1,i : Ei+1Ei → EiEi+1. We essentially just have to read the maps in cases (c)(i)–(iv)
above backwards.

(i) (λi, λi+1, λi+2) = (1, 1, 2). The functors are just as in case (c)(i). Now the map is
F(Sλ,i,i+1).

(ii) (λi, λi+1, λi+2) = (1, 1, 1). The bimodule for Ei+1Ei is isomorphic to

F
(
Dλ+αi,i+1 ◦ Tλ,i

)
∼= F
(
Dλ+αi,i+1 ◦ Tλ,i

)⊗

Hλ

F(Iλ). (4.14)

Then define ψi+1,i = 1λ
⊗

Hλ
F(Sλ,i+1).

(iii) (λi, λi+1, λi+2) = (0, 1, 2). The bimodule for Ei+1Ei is isomorphic to

F
(
Tλ+αi,i+1 ◦Dλ,i

)
∼= F(Iλ+αi+αi+1)

⊗

Hλ+αi+αi+1

F
(
Tλ+αi,i+1 ◦Dλ,i

)
. (4.15)

Then define ψi+1,i = F(Sλ+αi+αi+1,i)
⊗

Hλ
1λ.

(iv) (λi, λi+1, λi+2) = (0, 1, 1). The functors are just as in case (c)(iv). Now the map
is F(Sλ,i+1,i).

Proposition 4.6. For all i, j ∈ I, and λ ∈ P(V2ωk), the maps yi;λ, ψi,j,λ, ∪i,λ, ∩i,λ are bimodule
homomorphisms.

For convenience of notation, we define the following 2-morphisms. If θ ∈ End(Ei), let
θ[j] = θ ◦ · · · ◦ θ︸ ︷︷ ︸

j

. For each i ∈ I, define the bubble

•N
©
i;λ

= ∩i;λ ◦
(
1−i;λ+αiyi;λ

)[N] ◦ ∪i;λ, (4.16)

and define fake bubbles inductively by the formula

(
∑

n≥0

•(α−i ,λ)−1+n
©
i;λ

tn
)(
∑

n≥0

•(α−i ,λ)−1+n
©
−i;λ

tn
)

= 1 (4.17)

and©•−1
i;λ = 1 whenever (αi, λ) = 0. Also, define half-bubbles

•N⋃

i;λ

=
(
1−i;λ+αiyi;λ

)[N] ◦ ∪i;λ,
•N⋂

i;λ

= ∩i;λ ◦
(
yi;λ+αi1i,λ

)[N]
. (4.18)

Finally, for i, j ∈ I±, define

ψi,−j =
(
1−j1i∩−j

)
◦
(
1−jψj,i1−j

)
◦
(
∪j1i1−j

)
. (4.19)
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Figure 12: Tangles for Ei and EiE−iEi, (λi, λi+1) = (1, 2).

1 1

0 2

1 1

0 2

1 1

0 2

Figure 13: Tangles for Ei and EiE−iEi, (λi, λi+1) = (0, 2).

4.6. The 2-Morphism Relations

In this section we prove certain relations between the 2-morphisms defined in Section 4.5.
This will allow us to define a 2-functor from the Khovanov-Lauda 2-category to the Huerfano-
Khovanov 2-category. Again, we will often omit the argument λ when it is clear from context.

4.6.1. sl2 Relations

Proposition 4.7. For all i ∈ I, (∩−i1i) ◦ (1i∪i) = 1i = (1i∩i) ◦ (∪−i1i).

Proof. The second equality is similar to the first equality. The case i ∈ I− is similar to the case
i ∈ I+ so we just compute the map (∩i1i) ◦ (1i∪i) on the bimodule for the functor Ei for i ∈ I+.
There are four cases to consider.

Suppose that (λi, λi+1) = (1, 2). Then the tangle diagrams for the functors Ei and EiE−iEi

are Dλ,i and Dλ,i ◦Dλ+αi ◦Dλ,i and can be found in Figure 12.
The cobordism between the tangles is isotopic to the identity map so in this case the

composition is equal to the identity map.
The case (λi, λi+1) = (0, 1) is similar to the (1, 2) case.
Now let (λi, λi+1) = (0, 2). Then the tangle diagrams for the functors Ei and EiE−iEi can

be found in Figure 13.
Let B be the bimodule for the functor Ei. Then the bimodule for EiE−iEi is isomorphic

to A ⊗ B. The map Ei → EiE−iEi is given by the unit map which sends an element b ∈ B to
1 ⊗ b. The map EiE−iEi → Ei is obtained from the cobordism joining the circle to the upper
cup which induces the multiplication map. This maps 1⊗b to b. Thus the composition is equal
to the identity.
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2 0

1 1

2 0

1 1

2 0

1 1

Figure 14: Tangles for Ei and EiE−iEi, (λi, λi+1) = (1, 1).

Finally consider the case (λi, λi+1) = (1, 1). The tangle diagrams for the functors Ei and
EiE−iEi can be found in Figure 14.

Let B be the bimodule giving rise to the functor Ei and letA⊗B be the bimodule giving
rise to the functor EiE−iEi. Let α ⊗ β ∈ B, where α is in the tensor factor corresponding to the
circle passing through point i on the bottom row of the left side of Figure 14 and β belongs to
the remaining tensor factors.

The cobordism between the two tangle diagrams is a saddle which, on the level of
bimodule maps, sends α ⊗ β �→ Δ(α) ⊗ β. Then the map from EiE−iEi to Ei is given by Tr⊗1λ
so Δ(α) ⊗ β �→ α ⊗ β by considering the two cases α = 1 or x. Thus the composition is equal to
the identity map.

Proposition 4.8. One has

yi = (∩−i1i) ◦
(
1iy−i1i

)
◦ (1i∪i) = (1i∩i) ◦

(
1iy−i1i

)
◦ (∪−i1i). (4.20)

Proof. We prove only the first equality as the second is similar. There are four cases to consider
for which the functor Ei is nonzero.

Suppose that (λi, λi+1) = (1, 2). Then the tangle diagrams for the functors Ei and EiE−iEi

can be found in Figure 12.
Note that the bimodules for Ei and EiE−iEi are the same. Denote this bimodule by B.

Let α ⊗ β ∈ B, where α is an element in the tensor factor corresponding to a circle passing
through point i in the bottom row of Figure 12. Then the first map 1i∪i is given by the
identity cobordism and is thus the identity. The second map is multiplication by x on all
tensor components corresponding to circles passing through the point i + 1 in the second
row of the right side of Figure 12. The final map EiE−iEi → Ei is also given by the identity
cobordism. Thus the composition maps α ⊗ β �→ α ⊗ β �→ xα ⊗ β �→ α ⊗ β. On the other hand,
yi(α ⊗ β) = xα ⊗ β.

The case (λi, λi+1) = (0, 1) is similar to the previous case.
Suppose that (λi, λi+1) = (0, 2). Then the bimodule for the functor Ei is B = F(Tλ,i)

and the tangle diagram for EiE−iEi is F(Tλ,i ◦ Tλ−αi,i ◦ Tλ,i) ∼= A ⊗ B. Let α ⊗ β ∈ B, where α
is an element of the tensor factor corresponding to the circle passing through the point i in
the top row of the tangle Tλ,i and β is an element in the remaining tensor factors. Then the
composition of maps sends α ⊗ β �→ 1 ⊗ α ⊗ β �→ x ⊗ α ⊗ β �→ xα ⊗ β. This is equal to yi(α ⊗ β).

Suppose that (λi, λi+1) = (1, 1). Then the tangle diagrams for the functors Ei and EiE−iEi

can be found in Figure 14.
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Let B be the bimodule for the functor E−i and let A ⊗ B be the bimodule for EiE−iEi.
Let α ⊗ β ∈ B, where α is an element in the tensor factor corresponding to the circle passing
through point i on the bottom row of Figure 14 and β is an element in the remaining tensor
factors. First let α = 1. Then

1 ⊗ β �−→ x ⊗ 1 ⊗ β + 1 ⊗ x ⊗ β �−→ x ⊗ x ⊗ β �−→ x ⊗ β = yi
(
1 ⊗ β
)
, (4.21)

where the last map is Tr⊗1. If α = x, then

x ⊗ β �−→ x ⊗ x ⊗ β �−→ 0 = yi
(
x ⊗ β

)
. (4.22)

Proposition 4.9. Suppose i ∈ I and (−αi, λ) > r + 1, then©•ri;λ = 0.

Proof. In order that r ≥ 0, it must be the case that (−αi, λ) ≥ 2. Thus the only possibility is
(λi, λi+1) = (0, 2) and r = 0. Then the bimodule for E−iEi isA⊗F(Iλ). Thus the map 1 → E−iEi

is given by the unit map. The map E−iEi → 1 is given by the trace map. Thus the composition
of the maps in the proposition sends an element β �→ 1 ⊗ β �→ Tr(1) ⊗ b = 0.

Proposition 4.10. If (αi, λ) ≤ −1, then©•(−αi,λ)−1
i;λ = 1.

Proof. The only cases to consider are (λi, λi+1) = (0, 2), (1, 2), (0, 1).
Consider the case (0, 2). Let B = F(Iλ). Then the bimodule corresponding to E−iEi is

A ⊗ B. Let β ∈ B. Then ∪i(β) = 1 ⊗ β, yi(1 ⊗ β) = x ⊗ β, and ∩i(x ⊗ β) = Tr(x)β = β. Thus in this
case, the composition is the identity map.

For the case (1, 2), (−αi, λ) − 1 = 0. The cobordism between the tangle diagrams for
the identity functor and E−iEi is isotopic to the identity cobordism. Similarly, the cobordism
between the tangle diagrams for the functors E−iEi and the identity functor is isotopic to the
identity cobordism. Thus the bimodule map is equal to the identity.

The case (0, 1) is the same as the case (1, 2).

Proposition 4.11. Let i ∈ I. If (αi, λ) ≥ 1, then

1i;λ−αi1−i;λ = ψ−i,i;λ ◦ ψi,−i;λ +
(αi,λ)−1∑

f=0

f∑

g=0

•(αi,λ)−f−1⋃

−i;λ
◦
•−(αi,λ)−1+g
©
i;λ

◦
•f−g⋂

−i;λ
. (4.23)

Proof. There are three cases to consider: (λi, λi+1) = (1, 0), (2, 1), (2, 0).
For the case (1, 0), the first term on the right-hand side is zero since that map passes

through the functor EiEiE−i which is zero for this λ. The summation on the right-hand side
reduces to

•0⋃

−i;λ
◦
•−2
©
i;λ
◦
•0⋂

i;λ

= ∪−i;λ ◦ ∩−i;λ (4.24)

by definition (4.17) of the fake bubbles. This map is a composition EiE−i → 1 → EiE−i. This
composition of maps is the identity.

The case (2, 1) is similar to the (1, 0) case.
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For the case (2, 0), the first term on the right-hand side is zero as in the previous two
cases. The summation on the right-hand side consists of three terms, which simplifies by
(4.17) to

•1⋃

−i;λ
◦ ∩−i;λ + ∪−i;λ ◦

•1⋃

−i;λ
+ ∪−i;λ◦

•2
©
i;λ
◦∩−i;λ. (4.25)

Let B = F(Iλ). Then the bimodule for EiE−i isA ⊗ B. Then

•1⋃

−i;λ
◦ ∩−i;λ : EiE−i −→ I → EiE−i −→ EiE−i. (4.26)

Under this composition of maps, 1⊗b maps to zero since the first map is given by a trace map
on the first component. The element x ⊗ b gets mapped to x ⊗ b as follows:

x ⊗ b �−→ b �−→ 1 ⊗ b �−→ x ⊗ b, (4.27)

where the first map is the trace map, the second map is the unit map, and the third map is
multiplication by x. Similarly,

∪−i;λ ◦
•1⋃

−i;λ
: EiE−i −→ EiE−i −→ I −→ EiE−i. (4.28)

Under this composition, 1 ⊗ b �→ 1 ⊗ b and x ⊗ b �→ 0. Finally, the map

∪−i;λ◦
•2
©
i;λ
◦∩−i;λ (4.29)

is zero because the middle term is zero. Thus the right-hand side is the identity as well.

Proposition 4.12. Let i ∈ I+.

(1) If (αi, λ) ≤ 0, then

(1i∩−i;λ) ◦
(
ψi,i;λ−αi1−i

)
◦ (1i∪−i;λ) =

−(αi,λ)∑

f=0

yi
−(αi,λ)−f

•(αi,λ)−1+f
©
−i;λ

. (4.30)

(2) If (αi, λ) ≥ −2, then

(∩i;λ+αi1i) ◦
(
1iψi,i;λ

)
◦ (∪i;λ+αi1i) =

(αi,λ)+2∑

g=0

•−(αi,λ)−3+g
©
i,λ

yi
(αi,λ)−g+2. (4.31)
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Proof. We prove (1), the proof of (2) being similar. Since the maps on both sides pass through
the functor EiEiE−i, the maps on both sides are zero unless (λi, λi+1) = (1, 1). The functors for
Ei and EiEiE−i are given by tangles in Figure 14.

Let B be the bimodule for the functor Ei so A ⊗ B is the bimodule for the functor
EiEiE−i. Let α ⊗ β ∈ B, where α is an element in the tensor factor corresponding to a circle
passing through point i in the bottom row of the left side of Figure 14 and β is an element
in the other tensor factors. Consider first α = 1. The left-hand side maps an element α ⊗ β as
follows:

1 ⊗ β �−→ x ⊗ 1 ⊗ β + 1 ⊗ x ⊗ β �−→ 1 ⊗ 1 ⊗ β �−→ 1 ⊗ β, (4.32)

where the first map is Δ ⊗ 1, the second map is κ ⊗ 1 ⊗ 1, and the third map is m ⊗ 1. If α = x,
the left-hand side maps α ⊗ β as follows:

x ⊗ β �−→ x ⊗ x ⊗ β �−→ 1 ⊗ x ⊗ β �−→ x ⊗ β. (4.33)

The right-hand side is 1 by convention.

4.6.2. nil-Hecke Relations.

Proposition 4.13. For i ∈ I+, ψ[2]
i,i = 0.

Proof. Since EiEi is identically zero unless (λi, λi+1) = (0, 2),we need only to consider this case.
Let B = F(Iλ). Then the bimodule for EiEi is isomorphic to F(Tλ,i ◦ Tλ,i) = A ⊗ B.

Then ψi,i ◦ψi,i : A⊗B → A⊗B → A⊗B. This map sends 1⊗b �→ 0 and x⊗b �→ 1⊗b �→
0.

Proposition 4.14. Let i ∈ I+. Then, (ψi,i1i) ◦ (1iψi,i) ◦ (ψi,i1i) = (1iψi,i) ◦ (ψi,i1i) ◦ (1iψi,i).

Proof. Both sides are natural transformations of the functor EiEiEi. However, by definition
this composition is zero.

Proposition 4.15. For i ∈ I+, (1i1i) = (ψi,i) ◦ (yi1i) − (1iyi) ◦ (ψi,i) = (yi1i) ◦ (ψi,i) − (ψi,i) ◦ (1iyi).

Proof. The only case to check is (λi, λi+1) = (0, 2) since otherwise EiEi = 0. Let B = F(Iλ). Then
the bimodule for EiEi is isomorphic toA ⊗ B. Then

(
ψi,i
)
◦
(
yi1i
)

: A ⊗ B −→ A ⊗ B. (4.34)

Under this map, 1 ⊗ b �→ x ⊗ b �→ 1 ⊗ b and x ⊗ b �→ 0. For the map (1iyi) ◦ (ψi,i), 1 ⊗ b �→ 0, and
x ⊗ b �→ 1 ⊗ b �→ x ⊗ b. This gives the first equality since our field has characteristic two.

For the second equality, (yi1i) ◦ (ψi,i) : 1 ⊗ b �→ 0, (yi1i) ◦ (ψi,i) : x ⊗ b �→ 1 ⊗ b �→ x ⊗ b.
Similarly, (ψi,i) ◦ (1iyi) : 1 ⊗ b �→ x ⊗ b �→ 1 ⊗ b and (ψi,i) ◦ (1iyi) : x ⊗ b �→ 0.
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Proposition 4.16. For i, j ∈ I−,

ψj,i =
(
∩−j1i1j

)
◦
(
1j∩−i1−j1i1j

)
◦
(
1j1iψ−j,−i1i1j

)
◦
(
1j1i1−j∪i1j

)
◦
(
1j1i∪j

)

=
(
1i1j∩i

)
◦
(
1i1j1−i∩j1i

)
◦
(
1i1jψ−j,−i1j1i

)
◦
(
1i∪−j1−i1j1i

)
◦
(
∪−i1j1i

)
.

(4.35)

Proof. Let i, j ∈ I−. We prove only the first equality. If |i−j| > 1, the proposition is easy because
then ψ±i,±j are identity morphisms. Therefore, we take i = j + 1, the case i = j − 1 being similar.
The natural transformation on the right side of the proposition is a composition of natural
transformations:

EjEj+1 −→ EjEj+1E−jEj −→ EjEj+1E−jE−j−1Ej+1Ej

−→ EjEj+1E−j−1E−jEj+1Ej −→ EjE−jEj+1Ej −→ Ej+1Ej .
(4.36)

There are four nontrivial cases for λ. We prove the case (λj , λj+1, λj+2) = (2, 1, 1). The
proofs of the remaining cases (2, 1, 0), (1, 1, 0), and (1, 1, 1) are similar.

Let B be the bimodule representing the functor EjEj+1 and B′ the bimodule
representing the functor Ej+1Ej . Then the morphism is the composition B → B → B →
A ⊗ B → B → B′ induced by the tangle cobordisms in Figure 15. The first and second maps
are the identity maps. The third map is comultiplication. The fourth map is the trace map and
the last map is ψj,j+1. Computing this composition on elements as in previous propositions
easily gives that it is equal to ψj,j+1.

4.6.3. R(ν) Relations

Proposition 4.17. For i, j ∈ I±, i /= j,

ψ−j,i ◦ ψi,−j = 1i1−j . (4.37)

Proof. Note that, for |i− j| > 1, the left-hand side is easily seen to be the identity so let j = i+ 1.
The case j = i − 1 is similar. Thus the left-hand side is

ψ−j,i ◦ ψi,−j : EiE−i−1 −→ E−i−1Ei+1EiE−i−1 −→ E−i−1EiEi+1E−i−1 −→ E−i−1Ei

−→ E−i−1EiEi+1E−i−1 −→ E−i−1Ei+1EiE−i−1 −→ EiE−i−1.
(4.38)

There are four non-trivial cases for λ.

Case 1 ((λi, λi+1, λi+2) = (1, 2, 1)). Let B be the bimodule representing the functor EiE−i−1. Then

ψ−j,i ◦ ψi,−j : B −→ A ⊗ B −→ B −→ B −→ B −→ A ⊗ B −→ B. (4.39)

The first map is ι ⊗ 1λ. The second map is multiplication m. The third and fourth maps are
the identity. The fifth map is comultiplication Δ. The last map is Tr⊗1. It is easy to check on
elements that this is the identity map.
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2 0 2

2 1 1

1 1 2

2 0 2

2 1 1

1 2 1

2 1 1

1 1 2

2 0 2

2 1 1

1 2 1

1 1 2

1 2 1

2 1 1

1 1 2

2 0 2

2 1 1

2 0 2

1 1 2

1 2 1

2 1 1

1 1 2

2 0 2

1 1 2

1 2 1

2 1 1

1 1 2

1 2 1

2 1 1

Figure 15: Tangles for compositions of natural transformations in the (2, 1, 1) case.

Case 2 ((λi, λi+1, λi+2) = (1, 2, 0)). Let B be the bimodule representing the functor EiE−i−1. Then

ψ−j,i ◦ ψi,−j : B −→ B −→ A ⊗ B −→ B −→ A ⊗ B −→ B −→ B. (4.40)

The first map is the identity. The second map is Δ by Lemma 4.3. The third map is Tr⊗1
where the trace map is applied to the tensor factor arising from the new circle component.
The fourth map is ι ⊗ 1. The fifth map is multiplication by Lemma 4.4. The last map is the
identity. It is easy to check that this composition is the identity on all elements.

Case 3 ((λi, λi+1, λi+2) = (0, 2, 1)). This is similar to Case 2.

Case 4 ((λi, λi+1, λi+2) = (0, 2, 0)). This is similar to Case 1.

Proposition 4.18. If i, j ∈ I+ and |i − j| > 1, then ψj,i ◦ ψi,j = 1i1j .

Proof. The tangle diagrams for the bimodules for EiEj and EjEi are the same up to isotopy.
The maps in the proposition are obtained from cobordisms isotopic to the identity so they are
identity maps.

Proposition 4.19. If i, j ∈ I+ and |i − j| = 1, then ψj,i ◦ ψi,j = (yi1j + 1iyj).

Proof. Assume that j = i + 1. The case j = i − 1 is similar. There are eight cases for λ such that
EiEi+1 is non-zero. In all cases let a and b be cup diagrams. Let B be the bimodule for EiEi+1

and B′ the bimodule for Ei+1Ei.

Case 1. (λi, λi+1, λi+2) = (0, 0, 1). Since Ei+1Ei = 0, the map ψi+1,i ◦ ψi,i+1 = 0. The bimodule
representing the functor EiEi+1 is isomorphic to F(Dλ+αi+1,i ◦ Dλ,i+1). Since the circle passing
through point i on the bottom row of Dλ+αi+1,i ◦Dλ,i+1 is the same as the circle passing through
point i + 1 in the middle row, the map on the right side of the proposition is zero as well.

Case 2 ((λi, λi+1, λi+2) = (1, 0, 1)). This is similar to Case 1.

Case 3 ((λi, λi+1, λi+2) = (1, 0, 2)). This is similar to Case 1.

Case 4 ((λi, λi+1, λi+2) = (0, 0, 2)). This is similar to Case 1.
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Case 5 ((λi, λi+1, λi+2) = (0, 1, 1)). In this case B ∼= F(Tλ+αi+1,i ◦ Tλ,i+1) and B′ ∼= F(Dλ+αi,i+1 ◦Dλ,i).
Let a and b be crossingless matches.

(i) Suppose that the circle passing through point i+1 on the bottom row of a(Tλ+αi+1,i)◦
Tλ,i+1)b is the same as the circle passing through point i of the top row. Then aBb =
A ⊗ R and aB

′
b = A ⊗A ⊗ R, where R is a tensor product ofA corresponding to the

remaining circles. Then the map on the left side of the proposition is (m⊗1)◦(Δ⊗1).
Thus it maps an element 1 ⊗ r to 2x ⊗ r. On the other hand, yi(1 ⊗ r) = x ⊗ r. Also,
yi+1(1 ⊗ r) = x ⊗ r. Thus both sides are the same.

(ii) Suppose that the circle passing through point i + 1 on the bottom is different from
the circle passing through point i on the top. Then aBb = A⊗A⊗R and aB

′
b = A⊗R.

Then the map on the left side of the proposition is (Δ ⊗ 1λ) ◦ (m ⊗ 1λ). Thus it maps
an element 1⊗ 1⊗ r to x ⊗ 1⊗ r + 1⊗x ⊗ r. On the other hand, yi(1⊗ 1⊗ r) = x ⊗ 1⊗ r.
Also, yi+1(1 ⊗ r) = 1 ⊗ x ⊗ r. Thus both sides are the same

Case 6 ((λi, λi+1, λi+2) = (1, 1, 1)). In this case, B ∼= F(Dλ+αi+1,i ◦ Tλ,i+1) and B′ ∼= F(Dλ+αi,i+1 ◦ Tλ,i).
Let a and b be crossingless matches.

(i) Suppose that the circle passing through point i + 1 on the bottom row of Dλ+αi+1,i ◦
Tλ,i+1 is the same as the circle passing through point i on the bottom row. Then
aBb = A ⊗ R and aB

′
b
= A ⊗A ⊗ R. Then the map on the left side of the proposition

is (m ⊗ 1) ◦ (Δ ⊗ 1). Thus it maps an element 1 ⊗ r to 2x ⊗ r. On the other hand,
yi(1 ⊗ r) = x ⊗ r. Also, yi+1(1 ⊗ r) = x ⊗ r. Thus both sides are the same.

(ii) Suppose that the circle passing through point i + 1 on the bottom row of Dλ+αi+1,i ◦
Tλ,i+1 is different from the circle passing through point i on the bottom row. Then
aBb = A ⊗A ⊗ R and aB

′
b
= A ⊗ R. Then the map on the left side of the proposition

is (Δ ⊗ 1) ◦ (m ⊗ 1). Thus it maps an element 1 ⊗ 1 ⊗ r to x ⊗ 1 ⊗ r + 1 ⊗ x ⊗ r. On the
other hand, yi(1 ⊗ 1 ⊗ r) = x ⊗ 1 ⊗ r. Also, yi+1(1 ⊗ r) = 1 ⊗ x ⊗ r. Thus both sides are
the same.

Case 7 ((λi, λi+1, λi+2) = (1, 1, 2)). This is similar to Case 5.

Case 8 ((λi, λi+1, λi+2) = (0, 1, 2)). This is similar to Case 6.

Proposition 4.20. Let i, j ∈ I+. If i /= j, then

(1) (1jyi) ◦ ψi,j = ψi,j ◦ (yi1j),
(2) (yj1i) ◦ ψi,j = ψi,j ◦ (1iyj).

Proof. We prove only the first statement. Assume further that j = i + 1, the case j = i − 1 being
similar. The case for |j − i| > 1 is easy because the bimodules for EiEj and EjEi are equal.

There are four non-trivial cases for (λi, λi+1, λi+2). Let a and b be crossingless matches.
Let B be the bimodule for EiEi+1 and let B′ be the bimodule for Ei+1Ei.

Case 1 ((λi, λi+1, λi+2) = (1, 1, 2)). (i) Suppose that the circle passing through point i on
the bottom row of the tangle for EiEi+1 is the same as the circle passing through
point i + 1 on the bottom row. Then aBb = A ⊗ R and aB

′
b
= A ⊗ A ⊗ R, where R

denotes a tensor product ofA corresponding to the remaining circles. Then ψi,i+1 is
given by Δ ⊗ 1. Then ψi,i+1yi(1 ⊗ r) = ψi,i+1(x ⊗ r) = x ⊗ x ⊗ r. Then yiψi,i+1(1 ⊗ r) =
yi(x ⊗ 1 ⊗ r + 1 ⊗ x ⊗ r) = x ⊗ x ⊗ r.
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(ii) Suppose that the circle passing through point i on the bottom row of the tangle for
EiEi+1 is different from the circle passing through point i + 1 on the bottom row.
Then aBb = A ⊗A ⊗R and aB

′
b
= A ⊗R. Then ψi,i+1 = m ⊗ 1. Then it is easy to verify

that ψi,i+1yi(1 ⊗ 1 ⊗ r) = yiψi,i+1(1 ⊗ 1 ⊗ r) = x ⊗ r.

Case 2. (λi, λi+1, λi+2) = (0, 1, 1). This is similar to Case 1.

Case 3. (λi, λi+1, λi+2) = (1, 1, 1).

(i) Suppose that the circle passing through point i on the bottom row of the tangle is the
same as the circle passing through point i + 1 on the bottom row. Then aBb = A ⊗ R
and aB

′
b
= A ⊗A ⊗ R. Then ψi,i+1 is given by Δ ⊗ 1. This then follows as in Case 1.

(ii) Suppose that the circle passing through point i on the bottom row of the tangle is
different from the circle passing through the point i + 1 on the bottom row. Then
aBb = A⊗A⊗R and aB

′
b = A⊗R. Then ψi,i+1 = m⊗ 1. This then follows as in Case 1.

Case 4 ((λi, λi+1, λi+2) = (0, 1, 2)). This is similar to Case 3.

Proposition 4.21. For i, j, k ∈ I+,

(
ψj,k1i

)
◦
(
1jψi,k

)
◦
(
ψi,j1k

)
+
(
1kψi,j

)
◦
(
ψi,k1j

)
◦
(
1iψj,k

)
=

⎧
⎨

⎩

0, i /= k or
∣∣i − j

∣∣/= 1,

1i1j1i, i = k and
∣∣i − j

∣∣ = 1.
(4.41)

Proof. The proof of the first part consists of verifying the equality in many different cases,
each of which is similar to the second part. We only prove the second part in the case j = i+ 1
as the case j = i − 1 is similar. There are four cases for (λi, λi+1, λi+2) for which EiEi+1Ei is
non-zero.

Case 1 ((λi, λi+1, λi+2) = (0, 1, 1)). In this case, (ψj,i1i) ◦ (1jψi,i) ◦ (ψi,j1i) = 0 because it passes
through the functor Ei+1EiEi which is zero on the category corresponding to this λ. On the
other hand,

(
1iψi,j
)
◦
(
ψi,i1j
)
◦
(
1iψj,i
)

: EiEi+1Ei −→ EiEiEi+1 −→ EiEiEi+1 −→ EiEi+1Ei. (4.42)

Let B be the bimodule for the functor EiEi+1Ei. Then this is a sequence of maps

B −→ A ⊗ B −→ A ⊗ B −→ B, (4.43)

where the first map is given by comultiplication, the middle map is given by the map 1 ⊗ κ,
and the last map is multiplication. This sequence of maps acts on 1 ⊗ α ∈ B as follows:

1 ⊗ α �−→ x ⊗ 1 ⊗ α + 1 ⊗ x ⊗ α �−→ 1 ⊗ 1 ⊗ α �−→ 1 ⊗ α. (4.44)

Clearly, (ψj,i1i) ◦ (1jψi,i) ◦ (ψi,j1i)(1 ⊗ α) = 0. Similarly, x ⊗ α �→ x ⊗ α.
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Case 2 ((λi, λi+1, λi+2) = (0, 2, 2)). This is similar to Case 1 except that now (1iψi,j) ◦ (ψi,i1j) ◦
(1iψj,i) = 0 and (ψj,i1i) ◦ (1jψi,i) ◦ (ψi,j1i) = 1i1j1i.

Case 3. (λi, λi+1, λi+2) = (0, 1, 2). In this case, (ψj,i1i) ◦ (1jψi,i) ◦ (ψi,j1i) = 0 since this map passes
through the functor Ei+1EiEi which is zero on the category corresponding to λ.

On the other hand,

(
1iψi,j
)
◦
(
ψi,i1j
)
◦
(
1iψj,i
)

: EiEi+1Ei −→ EiEiEi+1 −→ EiEiEi+1 −→ EiEi+1Ei. (4.45)

Let B be the bimodule for the functor EiEi+1Ei. Then this is a sequence of maps

B −→ A ⊗ B −→ A ⊗ B −→ B, (4.46)

where the first and third maps are given by Lemmas 4.3 and 4.4, respectively, and the middle
map is given in Section 4.5. This sequence of maps acts on 1 ⊗ α, x ⊗ α ∈ B as follows:

1 ⊗ α �−→ x ⊗ 1 ⊗ α + 1 ⊗ x ⊗ α �−→ 1 ⊗ 1 ⊗ α �−→ 1 ⊗ α,

x ⊗ α �−→ x ⊗ x ⊗ α �−→ x ⊗ 1 ⊗ α �−→ x ⊗ α.
(4.47)

Case 4 ((λi, λi+1, λi+2) = (0, 2, 1)). This is similar to Case 1 except that now (1iψi,j) ◦ (ψi,i1j) ◦
(1iψj,i) = 0 and (ψj,i1i) ◦ (1jψi,i) ◦ (ψi,j1i)(β ⊗ α) = β ⊗ α.

The relations of the 2-morphisms proven in this section give the following.

Theorem 4.22. There is a 2-functor Ωk,n :KL → HKk,n such that, for all i, j ∈ I,

(1) Ωk,n(λ) = Cλ,

(2) Ωk,n(Iλ) = Iλ,

(3) Ωk,n(EiIλ) = EiIλ,

(4) Ωk,n(Yi;λ) = yi;λ,

(5) Ωk,n(Ψi,j;λ) = ψi,j;λ,

(6) Ωk,n(
⋃
i;λ) = ∪i;λ,

(7) Ωk,n(
⋂
i;λ) = ∩i;λ,

(8) Ωk,n(1i;λ) = 1i;λ.

5. The 2-Category Pk,n
5.1. Graded Category ZO

Let g = gl2k be the Lie algebra of 2k × 2k-matrices, let d denote the Cartan subalgebra of g

consisting of diagonal matrices, and let p be the Borel subalgebra of upper triangular matrices.
For i = 1, . . . , 2k, let eij denote the (i, j)-matrix unit, and let εi ∈ d∗ be the coordinate functional
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εi(ejj) = δij . Let O be the category of finitely generated g-modules which are diagonalizable
with respect to d and locally finite with respect to p. Let

X =
2k⊕

i=1

Zεi, Y =
2k−1⊕

i=1

Z(εi − εi+1) ⊂ X (5.1)

denote the weight lattice and root lattice of gl2k, respectively. The dominant weights are given
by the set X+ = { μ = μ1ε1 + · · · + μ2kε2k ∈ X | μ1 ≥ · · · ≥ μ2k }. Denote half the sum of the
positive roots by ρ. Let μ ∈ X+, and let Oμ be the block of O consisting of modules that have a
generalized central character corresponding to μ under the Harish-Chandra homomorphism.
Let O(k,k)

μ be the full subcategory O consisting of modules which are locally finite with

respect to the parabolic subalgebra whose reductive part is glk ⊕ glk. Finally, let P(k,k)
μ be the

full subcategory of O(k,k)
μ whose objects have projective presentations by projective-injective

modules.
Let μ and μ′ be integral dominant weights of g, and let Stab(μ) denote the stabilizer

of μ under the ρ-shifted action of the symmetric group S2k. Suppose that μ′ − μ is an integral
dominant weight. Then, let θμ

′

μ : O(k,k)
μ → O(k,k)

μ′ be the translation functor of tensoring with
the finite-dimensional irreducible representation of highest weight μ′ − μ composed with
projecting onto the μ′-block, and let θμμ′ be its adjoint.

Let Pμ be a minimal projective generator of Oμ. It was shown that Aμ = Endg(Pμ) has
the structure of a graded algebra [11]. Since Oμ is Morita equivalent to Aμ-mod, we consider
the category of graded Aμ-modules which we denote by ZOμ. Let the graded lift of O(k,k)

μ

and P(k,k)
μ be ZO(k,k)

μ and ZP(k,k)
μ , respectively. It is known that if Stab(μ) ⊂ Stab(μ′), there is a

graded lift of the translation functors, compare, for example, [14], which by abuse of notation
we denote again by θ̃μμ′ and θ̃

μ′

μ .
The key tool in the construction of graded category O is the Soergel functor. Let

λ = (λ1, . . . , λn) be a composition of 2k and Sλ = Sλ1 × · · · × Sλn . Denote the longest
coset representative in S2k/Sμ by w

μ

0 . Let P(wμ

0 · μ) be the unique up to isomorphism,
indecomposable projective-injective object of Oμ. Let C = S(h)/S(h)S2k

+ be the coinvariant
algebra of the symmetric algebra for the Cartan subalgebra with respect to the action of the
symmetric group. Let {x1, . . . , x2k} be a basis of S(h) and by abuse of notation also let xi
denote its image in C. Let Cλ be the subalgebra of elements invariant under the action of Sλ.
Soergel proved in [15] the following.

Proposition 5.1. One has Endg(P(w
μ

0 · μ)) ∼= CStab(μ).

Define the Soergel functor Vμ : Oμ → CStab(μ)-mod to be Homg(P(w0 · μ), •).

Proposition 5.2. Let P be a projective object. Then there is a natural isomorphism
HomCStab(μ) (VμP,VμM) ∼= Homg(P,M).

Proof. This is the Structure Theorem of [15].
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Proposition 5.3. Let μ, μ′ ∈ X+ be integral dominant weights such that there is a containment of
stabilizers: Stab(μ) ⊂ Stab(μ′). Then there are isomorphisms of functors

(1) Vμ′θ
μ′

μ
∼= ResC

Stab(μ′)

CStab(μ) Vμ,

(2) Vμθ
μ

μ′
∼= CStab(μ)⊗

CStab(μ′)Vμ′ .

Proof. These are Theorem 12 and Proposition 6 of [16].

5.2. The Objects of Pk,n

Let λ = (λ1, . . . , λr) be a composition of 2k with λi ∈ {0, 1, 2} for all i. To each such λ, we
associate an integral dominant weight

λ =
r∑

j=1

λj∑

i=1

(
r − j + 1

)
ελ1+···+λj−1+i − ρ (5.2)

of gl2k, where λ0 = 0. Note that the stabilizer of this weight under the action of S2k is Sλ1 × · · ·×
Sλn .

The set of objects of Pk,n are the categories ZP(k,k)

λ
, λ ∈ P(V2ωk).

5.3. The 1-Morphisms of Pk,n

Let λ ∈ P(V2ωk), and let Iλ ∈ Endg( ZP
(k,k)

λ
) be the identity functor.

For each i ∈ I, we define functors EiIλ and KiIλ. To this end, let λ be a weight of V2ωk

and i ∈ I+. Then we have compositions of 2k into n + 1 parts:

λ(i) = (λ1, . . . , λi, 1, λi+1 − 1, . . . , λn), λ(−i) = (λ1, . . . , λi − 1, 1, λi+1, . . . , λn) (5.3)

Also, if λ =
∑

i aiωi ∈ P , set ri,λ = 1 + a1 + · · · + ai−1 + ai+1 and si,λ = 2 − ai − ai+1.
Let i ∈ I. Suppose that (λi, λi+1) ∈ {(0, 1), (0, 2), (1, 1), (1, 2)}. Then we define, as in [17],

EiIλ:ZP(k,k)

λ
→ ZP(k,k)

λ+αi
which is given by tensoring with the following bimodule:

Homg

(
Pλ+αi , θ

λ+αi
λ(i)

θ
λ(i)

λ
Pλ{ri,λ}

)
∼= HomCλ+αi

(
Vλ+αi

Pλ+αi ,Vλ+αi
θλ+αi
λ(i)

θ
λ(i)

λ
Pλ{ri,λ}

)

∼= HomCλ+αi

(

Vλ+αi
Pλ+αi , C

λ+αi
⊗

Cλ(i)

Re sC
λ(i)

Cλ VλPλ{ri,λ}
)

.

(5.4)

For all other values of (λi, λi+1), set EiIλ = 0. Let KiIλ:ZP(k,k)

λ
→ ZP(k,k)

λ
be the grading shift

functor KiIλ = Iλ{(αi, λ)}.
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Let ZP(k,k)

λ
and ZP(k,k)

λ
′ be two objects. Then

Hom
(

ZP
(k,k)

λ
,ZP

(k,k)

λ
′

)
=
⊕

i∈Seq
s∈Z

Iλ′EiIλ{s}, (5.5)

where Ei := Ei1 · · ·Eir Iλ if i = (i1, . . . , ir) ∈ I∞, and s refers to a grading shift.

5.4. Bimodule Categories over the Cohomology of Flag Varieties

A review of certain bimodules and bimodule maps over the cohomology of flag varieties
developed in [1, 2, 18] is given here. Let λ = (λ1, . . . , λn) be a composition of 2k into n parts.
Let x(λ)j,r = xλ1+···+λj−1+r . There is an isomorphism of algebras:

Cλ ∼=

⊗
1≤j≤nC

[
x(λ)j,1, x(λ)j,2, . . . , x(λ)j,λj

]

Jλ,n
, (5.6)

where Jλ,n is the ideal generated by the homogeneous terms in the equation

∏

1≤j≤n

(
1 + x(λ)j,1t + x(λ)j,2t

2 + · · · + x(λ)j,λj t
λj
)
= 1. (5.7)

Let x̂(λ)i,k be the homogenous term of degree 2k in the product

∏

1≤j≤n
j /= i

(
1 + x(λ)j,1t + x(λ)j,2t

2 + · · · + x(λ)j,λj t
λj
)
.

(5.8)

Then, using (5.7), we see that

k∑

j=1

x(λ)i,j x̂(λ)i,k−j = δk,0, (5.9)

compare, for example, [1, Section 5.1] for details.
We must also consider Cλ(i). There is an isomorphism of algebras:

Cλ(i) ∼=
⊗

1≤j≤n,
j /= i+1

C

[
x(λ)j,1, x(λ)j,2, . . . , x(λ)j,λj

]
⊗ C[ζi]

⊗
C
[
x(λ)i+1,1, x(λ)i+1,2, . . . , x(λ)i+1,λi+1−1

]

Jλ(i),n
,

(5.10)
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where Jλ(i),n is the ideal generated by the homogeneous terms in the equation

∏

1≤j≤n,
j /= i+1

(1 + ζit)
λi+1−1∑

r=0

x(λ)i+1,r t
r
λj∑

s=0

x(λ)j,st
s = 1. (5.11)

There is also an isomorphism of algebras:

Cλ(−i) ∼=
⊗

1≤j≤n,
j /= i

C

[
x(λ)j,1, x(λ)j,2, . . . , x(λ)j,λj

]
⊗ C
[
x(λ)i,1, x(λ)i,2, . . . , x(λ)i,λi−1

]
⊗ C[ζi]/Jλ(−i),n,

(5.12)

where Jλ(−i),n is the ideal generated by the homogeneous terms in the equation

∏

1≤j≤n,
j /= i

(1 + ζit)
λi−1∑

r=0

x(λ)i,r t
r
λj∑

s=0

x(λ)j,st
s = 1. (5.13)

5.5. The 2-Morphisms

In light of Propositions 5.2 and 5.3, we may define the 2-morphisms on the algebras Cλ, λ ∈
P(V2ωk) in order to define natural transformations of functors.

The Maps yi;λ

Let i ∈ I. Define yi;λ : Cλ(i) → Cλ(i) which is a map of (Cλ+αi , Cλ)-bimodules by yi;λ((ζi)
r) =

(ζi)
r+1.

The Maps ∪i;λ,∩i;λ

Let i ∈ I+. Define a map of (Cλ,Cλ)-bimodules

∪i;λ : Cλ −→ Cλ(i)
⊗

Cλ+αi

Cλ(i){1 − λi − λi+1} (5.14)

by

∪i;λ(1) =
λi∑

f=0

(−1)λi−fζfi ⊗ x(λ)i,λi−f . (5.15)

Next define a map of (Cλ,Cλ)-bimodules

∪−i;λ : Cλ −→ Cλ(−i)
⊗

Cλ−αi

Cλ(−i){1 − λi − λi+1} (5.16)
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by

∪−i;λ(1) =
λi+1∑

f=0

(−1)λi+1−fζ
f

i ⊗ x(λ)i+1,λi+1−f . (5.17)

Next define a map of (Cλ,Cλ)-bimodules

∩i;λ : Cλ(i)
⊗

Cλ+αi

Cλ(i){1 − λi − λi+1} −→ Cλ
(5.18)

by

∩i;λ
(
ζr1
i ⊗ ζ

r2
i

)
= (−1)r1+r2+1−λi+1 x̂(λ)i+1,r1+r2+1−λi+1

. (5.19)

Next define a map of (Cλ,Cλ)-bimodules

∩−i;λ : Cλ(−i)
⊗

Cλ−αi

Cλ(−i){1 − λi − λi+1} −→ Cλ
(5.20)

by

∩−i;λ
(
ζr1
i ⊗ ζ

r2
i

)
= (−1)r1+r2+1−λi x̂(λ)i,r1+r2+1−λi . (5.21)

The Maps ψi,j;λ

Let i, j ∈ I+. Define a map of (Cλ+αi+αj , Cλ)-bimodules

ψi,j;λ : C(λ+αj )(i)
⊗

C
λ+αj

Cλ(j) −→ C(λ+αi)(j)
⊗

Cλ+αi

Cλ(i)
(5.22)

by

ψi,j;λ

(
ζr1
i ⊗ ζ

r2
j

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζr2
j ⊗ ζ

r1
i if

∣∣i − j
∣∣ > 1,

r1−1∑

f=0

ζ
r1+r2−1−f
i ⊗ ζfi −

r2−1∑

g=0

ζ
r1+r2−1−g
i ⊗ ζgi if j = i,

(
ζr2
j ⊗ ζ

r1+1
i − ζr2+1

j ⊗ ζr1
i

)
{−1} if i = j + 1,

(
ζr2
j ⊗ ζ

r1
i

)
{1} if j = i + 1.

(5.23)

Define a map of (Cλ−αi−αj , Cλ)-bimodules

ψ−i,−j;λ : C(λ−αj )(−i)
⊗

C
λ−αj

Cλ(−j) −→ C(λ−αi)(−j)
⊗

Cλ−αi

Cλ(−i)
(5.24)
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by

ψ−i,−j

(
ζr1
i ⊗ ζ

r2
j

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζr2
j ⊗ ζ

r1
i if

∣
∣i − j

∣
∣ > 1,

r2−1∑

f=0

ζ
r1+r2−1−f
i ⊗ ζfi −

r1−1∑

g=0

ζ
r1+r2−1−g
i ⊗ ζgi if j = i,

(
ζr2
j ⊗ ζ

r1+1
i

)
{−1} if i = j + 1,

(
ζr2+1
j ⊗ ζr1

i − ζ
r2
j ⊗ ζ

r1+1
i

)
{1} if j = i + 1.

(5.25)

5.6. The 2-Morphisms of Pk,n

Let i, j ∈ I+.

The Maps 1i;λ

Let 1i;λ : EiIλ → EiIλ and 1−i;λ : E−iIλ → E−iIλ be the identity morphisms.

The Maps yi;λ

Next we define a morphism of degree 2, yi;λ : EiIλ → EiIλ. Recall that

EiIλ
∼= HomCλ+αi

(

Vλ+αi
Pλ+αi , C

λ(i)
⊗

Cλ

VλPλ{ri,λ}
)

. (5.26)

Let f be such a homomorphism. Suppose that f(m) = γ ⊗ n. Then set (yi;λ · f)(m) = yi(γ) ⊗ n.
Similarly,

E−iIλ ∼= HomCλ−αi

(

Vλ−αiPλ−αi , C
λ(−i)
⊗

Cλ

VλPλ{si,λ}
)

. (5.27)

Let f be such a homomorphism. Suppose that f(m) = γ⊗n. Then set (y−i;λ ·f)(m) = y−i;λ(γ)⊗n.

The Maps ∪i;λ,∩i;λ

Note that

Iλ
∼= J = HomCλ

(
VλPλ,VλPλ

)
,

E−i ◦ EiIλ
∼= K = HomCλ

(

VλPλ, C
λ+αi(−i)

⊗

Cλ+αi

Cλ(i)
⊗

Cλ

VλPλ{rλ,i + sλ+αi,i}
)

,

Ei ◦ E−iIλ ∼= L = HomCλ

(

VλPλ, C
λ−αi(i)

⊗

Cλ−αi

Cλ(−i)
⊗

Cλ

VλPλ{sλ,i + rλ−αi,i}
)

.

(5.28)
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Let f ∈ J. Then define ∪i;λ : Iλ → E−iEiIλ by

∪i;λ
(
f
)
(m) = ∪i;λ(1) ⊗ f(m) (5.29)

and ∪−i;λ : Iλ → EiE−iIλ by

∪−i;λ
(
f
)
(m) = ∪−i;λ(1) ⊗ f(m). (5.30)

Now define ∩i;λ : E−iEiIλ → Iλ. Suppose that f ∈ K such that f(m) = γ ⊗ n. Then set
∩i;λ(f)(m) = ∩i;λ(γ) ⊗ n.

Next define ∩−i;λ : EiE−iIλ → Iλ. Suppose that f ∈ L such that f(m) = γ ⊗ n. Then set
∩−i;λ(f)(m) = ∩−i;λ(γ) ⊗ n.

The Maps ψi,j;λ

First we define a map ψi,j;λ : EiEjIλ → EjEiIλ.
Set

J+i,j = EiEjIλ
∼= Hom

C
λ+αi+αj

⎛

⎝Vλ+αi+αj
Pλ+αi+αj , C

(λ+αj )(i)
⊗

C
λ+αj

Cλ(j)
⊗

Cλ

VλPλ

{
rλ,j + rλ+αj ,i

}
⎞

⎠,

K+
i,j = EjEiIλ

∼= Hom
C
λ+αj+αi

(

Vλ+αj+αi
Pλ+αj+αi , C

(λ+αi)(j)
⊗

Cλ+αi

Cλ(i)
⊗

Cλ

VλPλ
{
rλ,i + rλ+αi,j

}
)

.

(5.31)

Let f ∈ J+i,j and suppose that f(m) = γ1 ⊗ γ2 ⊗ n. Then define ψi,j;λf(m) = ψi,j;λ(γ1 ⊗ γ2) ⊗ n.
Set

J−i,j = E−iE−jIλ ∼= Hom
C
λ−αi−αj

⎛

⎝Vλ−αi−αj Pλ−αi−αj , C
(λ−αj )(−i)

⊗

C
λ−αj

Cλ(−j)
⊗

Cλ

VλPλ

{
sλ,j + sλ−αj ,i

}
⎞

⎠,

K−i,j = E−jE−iIλ ∼= Hom
C
λ−αj−αi

(

Vλ−αj−αiPλ−αj−αi , C
(λ−αi)(−j)

⊗

Cλ−αi

Cλ(−i)
⊗

Cλ

VλPλ
{
sλ,i + sλ−αi,j

}
)

.

(5.32)

Let f ∈ J−i,j and suppose that f(m) = γ1 ⊗ γ2 ⊗ n. Then define ψ−i,−j;λf(m) = ψ−i,−j;λ(γ1 ⊗
γ2) ⊗ n.

Theorem 5.4. There is a 2-functorΠk,n :KL → Pk,n such that, for all i, j ∈ I,

(1) Πk,n(λ)=ZP(k,k)

λ
,

(2) Πk,n(Iλ) = Iλ,

(3) Πk,n(EiIλ) = EiIλ,
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(4) Πk,n(Yi;λ) = yi;λ,

(5) Πk,n(Ψi,j;λ) = ψi,j;λ,

(6) Πk,n(
⋃
i;λ) = ∪i;λ,

(7) Πk,n(
⋂
i;λ) = ∩i;λ,

(8) Πk,n(1i;λ) = 1i;λ.

Proof. This now follows from the computations in [1, Section 6.2] for bimodules over the
cohomology of flag varieties using the naturality of the isomorphism in Proposition 5.2.

Finally we show that the category Pk,n is a categorification of the module V2ωk . Denote
the Grothendieck group of Pk,n by [Pk,n], and let [Pk,n]Q(q) = C(q)

⊗
Z[q,q−1][Pk,n].

Proposition 5.5. There is an isomorphism of Uq(sln)-modules [Pk,n]Q(q)
∼= V2ωk .

Proof. Since projective functors map projective-injective modules to projective-injective
modules, it follows from Theorem 5.4 and [1] that [Pk,n]Q(q) is a Uq(sln)-module. By
construction, it contains a highest weight vector of weight 2ωk so it suffices to compute the
dimension of its weight spaces.

By [19, Theorem 4.8], the number of projective-injective objects in O(k,k)

λ
(gl2k) is equal

to the number of column decreasing and row nondecreasing tableau for a diagram with k
rows and 2 columns with entries from the set

⎧
⎪⎨

⎪⎩
n, . . . , n
︸ ︷︷ ︸

λ1

, . . . , 1, . . . , 1
︸ ︷︷ ︸

λn

⎫
⎪⎬

⎪⎭
. (5.33)

Call the set of such tableau T.
Let S = {i ∈ I+ | λi = 1}. Denote by |S| the cardinality of this set. Consider a Young

diagram with |S|/2 rows and 2 columns. Let T ′ denote the set of tableau on such a column
with entries from S such that the rows and columns are decreasing. It is well known that the

cardinality of the set T ′ is the Catalan number
(

2|S|

|S|

)
/(|S| + 1). There is a bijection between

T and T ′. For any tableaux t′ ∈ T ′, one constructs a tableaux t ∈ T by inserting a new box
with the entry i in each column for each i ∈ I+ such that λi = 2. The inverse is given by box
removal.

Finally, the Weyl character formula gives that the dimension of the λ weight space of

V2ωk is
(

2|S|

|S|

)
/(|S| + 1).
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