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A mapping x : V → {−1, 1} is called negative if
∑

u∈N[v] x(u) ≤ 1 for every v ∈ V. The maximum of
the values of

∑
v∈V x(v) taken over all negative mappings x, is called the modified negative decision

number and is denoted by β′D(G). In this paper, several sharp upper bounds of this number for a
general graph are presented. Exact values of these numbers for cycles, paths, cliques and bicliques
are found.

1. Introduction

Let G = (V, E) be a graph with vertex set V and edge set E. For a vertex v ∈ V , the open
neighbourhood of v in G is N(v) = {u ∈ V | uv ∈ E}, and N[v] = N(v) ∪ {v} is its closed
neighbourhood. For a graph G, and a subset S ⊆ V , we let degS(v) denote the number of
vertices in S joined to v. In particular, degV (v) = deg(v), the degree of v in G. For disjoint
subsets S and T of vertices, we use E(S, T) for the set of edges between S and T , and let
e(S, T) = |E(S, T)|. Let G[S] denote the subgraph of G induced by S. For an integer k ≥ 3, the
bipartite graph K1,k is called a star, and the vertex of degree k is called the central vertex. Let
x : V → � be a real-valued function. For convenience, we write x(S) for

∑
v∈S x(v) for S ⊆ V .

In [1], we initiated the study of the negative decision number in a graph. A function x :
V (G) → {−1, 1} is called a bad function ofG if x(N(v)) ≤ 1 for every v ∈ V (G). The maximum
of the values of x(V (G)), taken over all bad functions f , is called the negative decision number
and is denoted by βD(G).

The motivation for studying this parameter may be explained from a modelling
perspective. For instance, by assigning the values −1 or 1 to the vertices of a graph, one
can model networks of people in which global decisions must be made (e.g., positive or
negative responses). In certain circumstances, a positive decision can be made only if there
are significantly more people voting for than those voting against. We assume that each
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individual has one vote, and each has an initial opinion. We assign 1 to vertices (individuals)
which have a positive opinion and −1 to vertices which have a negative opinion. A voter votes
“good” if there are at least two more vertices in its open neighbourhood with positive opinion
than with negative opinion, otherwise the vote is “bad”. We seek an assignment of opinions
that guarantee a unanimous decision; namely, for which every vertex votes “bad”. Such an
assignment of opinions is called a uniformly negative assignment. Among all uniformly
negative assignments of opinions, we are particularly interested in the minimum number
of vertices (individuals)which have a negative opinion. The negative decision number is the
maximum possible sum of all opinions, 1 for a positive opinion and −1 for a negative opinion,
in a uniformly negative assignment of opinions. The negative decision number corresponds
to the minimum number of individuals who can have negative opinions and in doing so force
every individual to vote bad.

In the present paper, we study a variation of the negative decision number in a graph.
A mapping x : V → {−1, 1} is called negative if

∑
u∈N[v] x(u) ≤ 1 for every v ∈ V . The

maximum of the values of
∑

v∈V x(v), taken over all negative mappings x, is called the
modified negative decision number and is denoted by β′D(G).

The parameter β′D differs significantly from βD. For instance, for a cycle Cn of order n,
βD(Cn)∈{−2,−1, 0} ([1] see Theorem 5), while β′D(Cn) ∈ {	n/3
, 	n/3−1
} (see Corollary 2.6).

Throughout this paper, if x is a negative mapping ofG, then we let P andQ denote the
sets of those vertices of G which are assigned (under x) the values +1 and −1, respectively,
and we let p = |P | and q = |Q|. Hence, x(V ) = p − q.

All graphs considered in this paper are simple, finite, and undirected. For a general
reference on graph theory, the reader is referred to [2, 3]. Notice that β′D(G ∪ H) = β′D(G) +
β′D(H) for two disjoint graphs G and H . Hence, we assume that all graphs are connected in this
paper.

In the next section, we present several sharp upper bounds on the modified negative
decision number for a general graph. We also establish sharp upper bounds on this number
for bipartite graphs and regular graphs. Exact values of these numbers for cycles, paths,
cliques, and bicliques are found.

2. Main Results

In this section, we investigate the modified negative decision number of a graph. We first
present an upper bound on this number for a general graph in terms of its order.

For this purpose, we define a family F of graphs as follows. Let F3 = K1,2, and for
k ≥ 4, let Fk be the graph obtained from the disjoint union of k stars K1,k+1 by adding all
possible edges between the central vertices of the k stars. See Figure 1 for an example of F4.
Let F = {Fk | k ≥ 3}.

Theorem 2.1. If G is a graph of order n ≥ 2, then

β′D(G) ≤ n + 2 − 2
√
n + 1, (2.1)

and this bound is sharp.

Proof. Let x be a negative mapping such that β′D(G) = x(V ). Then β′D(G) = |P | − |Q| = n − 2q.
Note that every vertex in P must be joined to at least one vertex in Q. By the pigeonhole
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Figure 1: A copy of the graph F4.

principle, at least one vertex v in Q is joined to at least |P |/|Q| = (n − q)/q vertices in P .
Hence,

1 ≥ x(N[v]) ≥ −|Q| + n − q

q
= −q − 1 +

n

q
. (2.2)

That is,

q2 + 2q − n ≥ 0. (2.3)

Solving the above inequality, we obtain that

q ≥ −1 +
√
n + 1. (2.4)

Thus β′D(G) = n − 2q ≤ n + 2 − 2
√
n + 1.

To see this bound is sharp, let G ∈ F. Thus, G = Fk for some k ≥ 4. Hence, G has order
n = k(k + 2), and so k =

√
n + 1 − 1. Assigning the value −1 to each of the k central vertices

of the stars, and +1 to all other vertices, we define a negative mapping x of G satisfying
x(V ) = k2 = n − 2k = n + 2 − 2

√
n + 1. Thus, β′D(G) ≥ n + 2 − 2

√
n + 1. It follows that β′D(G) =

n + 2 − 2
√
n + 1.

Next we give an upper bound of the modified negative decision number for a general
graph in terms of its order and size.

Theorem 2.2. If G is a graph of order n ≥ 2 and sizem, then

β′D(G) ≤ 1
5
(4m − n), (2.5)

and this bound is sharp.

Proof. Let x be a negative mapping such that β′D(G) = x(V ). Then β′D(G) = |P | − |Q| = n − 2q.
As every vertex in P must be joinedto at least one vertex in Q, e(P,Q) ≥ p = n − q. For each
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vertex v of Q, degQ(v) ≥ degP (v) − 2, and hence,

n − q ≤ e(P,Q) =
∑

v∈Q
degP(v) ≤

∑

v∈Q

(
degQ(v) + 2

)
. (2.6)

Namely,

n − q ≤ 2|E(G[Q])| + 2q. (2.7)

Hence,

|E(G[Q])| ≥ n − 3q
2

. (2.8)

Thus, the total number of edges in G is

m ≥ |E(G[Q])| + e(P,Q) ≥ n − 3q
2

+ n − q. (2.9)

So, q ≥ (3n − 2m)/5. Hence,

β′D(G) = n − 2q ≤ 1
5
(4m − n). (2.10)

To see this bound is sharp, letG = Fk ∈ F for some k ≥ 4 and let x be the negative mapping of
G defined in the proof of Theorem 2.1. As x(V ) = k2, β′D(G) ≥ k2. On the other hand, asG has
order n = k(k + 2) and sizem = k(k + 1) + k(k − 1)/2, β′D(G) ≤ (1/5)(4m − n) = k2. Therefore,
β′D(G) = (1/5)(4m − n).

In the following theorem, we establish an upper bound of the modified negative
decision number for a bipartite graph in terms of its order and we characterize the graphs
attaining this bound. We define a familyH of bipartite graphs as follows.

For k ≥ 1, let Hk be the bipartite graph obtained from the disjoint union of 2k stars
K1,k+2 with centres {x1, x2, . . . , xk, y1, y2, . . . , yk} by adding all edges of the type xiyj , 1 ≤ i, j ≤
k. See Figure 2 for an example of H2. LetH = {Hk | k ≥ 1}.

Theorem 2.3. If G is a bipartite graph of order n ≥ 2, then

β′D(G) ≤ n + 6 − 2
√
2n + 9. (2.11)

The equality holds if and only if G ∈ H.

Proof. Let x be a negative mapping of G such that β′D(G) = x(V ). Let X and Y be the partite
sets of G. Further, let X+ and X− be the sets of vertices in X that are assigned the value +1
and −1 (under x), respectively. Let Y+ and Y− be defined analogously. Then P = X+ ∪ Y+

and Q = X− ∪ Y−. For convenience, let |X+| = k, |X−| = s, |Y+| = l and |Y−| = t. Hence,
β′D(G) = k + l − s − t = n − 2(s + t).
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Figure 2: A copy of the graphH2.

As every vertex in X+ must be joined to at least one vertex in Y−, by the pigeonhole
principle, at least one vertex v in Y− is joined to at least |X+|/|Y−| = k/t vertices inX+. Hence,

1 ≥ x(N[v]) ≥ −∣∣X−∣∣ − 1 +
|X+|
|Y−| = −s − 1 +

k

t
. (2.12)

Namely,

t(s + 2) ≥ k. (2.13)

By a similar argument, one may show that

s(t + 2) ≥ l. (2.14)

Adding (2.13) and (2.14), we have that

2st + 2(s + t) ≥ k + l. (2.15)

Thus,

n = k + l + s + t

≤ 2st + 3(s + t)

≤ 1
2
(s + t)2 + 3(s + t).

(2.16)

Solving the above inequality for s + t, we obtain that

s + t ≥ −3 +
√
2n + 9. (2.17)

Thus, β′D(G) = n − 2(s + t) ≤ n + 6 − 2
√
2n + 9.
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If β′D(G) = n + 6 − 2
√
2n + 9, then by the above analysis, we have s = t and k = l =

s(s + 2). Moreover, each vertex of X+ (resp., Y+) has degree 1 and is joined to one vertex
of Y− (resp., X−), while each vertex of Y− is joined to all vertices of X− and s + 2 vertices
of X+ and each vertex of X− is joined to all vertices of Y− and s + 2 vertices of Y+. Thus,
β′D(G) = n + 6 − 2

√
2n + 9 implies that G ∈ H.

If G ∈ H, then G = Hk for some k ≥ 1. Hence, G has order n = 2k(k + 3), and so
k = (1/2)(

√
2n + 9 − 3). Assigning to the k central vertices of the stars the value −1, and to all

other vertices +1, we define a negative mapping x ofG satisfying x(V ) = 2k(k + 1) = n + 6 −
2
√
2n + 9. Hence, β′D(G) ≥ n + 6 − 2

√
2n + 9. It follows that β′D(G) = n + 6 − 2

√
2n + 9.

Finally, we present an upper bound of the modified negative decision number for a
regular graph in terms of its order in Theorem 2.5. We encourage the reader to verify our next
theorem first.

Theorem 2.4. For any integer n ≥ 2, one has

β′D(Kn) =

⎧
⎪⎨

⎪⎩

0 for n even;

1 for n odd.
(2.18)

For a general k-regular graph, we have the following.

Theorem 2.5. If G is k-regular graph of order n, then

β′D(G) ≤

⎧
⎪⎨

⎪⎩

⌊
n

k + 1

⌋

for k even;

0 for k odd.
(2.19)

This bound is sharp.

Proof. Let x be any negative mapping of G. As G is a k-regular graph,

∑

v∈V
x(N[v]) = (k + 1)x(V ). (2.20)

We discuss the following two cases.

Case 1. k is even. Since x is a negative mapping, for every vertex v ∈ V , x(N[v]) ≤ 1. By
(2.20), it follows that

(k + 1)x(V ) ≤ n. (2.21)

Hence, β′D(G) ≤ n/(k + 1).
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Case 2. k is odd. In this case, |N[v]| is even for every v ∈ V . So, for each v ∈ V , x(N[v]) ≤ 1
implies that x(N[v]) ≤ 0. Thus,

∑

v∈V
x(N[v]) ≤ 0. (2.22)

By (2.20), it follows that (k + 1)x(V ) ≤ 0. Hence, β′D(G) ≤ 0.

The sharpness follows from Theorem 2.4.

Corollary 2.6. For any integer n ≥ 3, one has

β′D(Cn) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⌊
n

3

⌋

− 1 n ≡ 1(mod 3);

⌊
n

3

⌋

otherwise.

(2.23)

Proof. As Cn is a 2-regular graph, by Theorem 2.5, we have β′D(Cn) ≤ n/3. Let v1, v2, . . . , vn be
the n vertices of Cn in a clockwise order. We discuss the following three cases.

Case 1. n = 3k for some integer k. To show that β′D(Cn) = k, it suffices to show that there is a
negative mapping x of Cn such that x(V (Cn)) = k. In fact, assigning +1,+1,−1 starting with
v1 clockwise, and repeating, we produce a negative mapping x of Cn satisfying x(V (Cn)) = k.

Case 2. n = 3k + 2 for some integer k. To show that β′D(Cn) = k, it suffices to show that there
is a negative mapping x of Cn such that x(V (Cn)) = k. In fact, if we assign 1, 1,−1, 1,−1 to the
vertices in a clockwise order when n = 5, or assign 1, 1,−1, . . ., 1, 1,−1, 1,−1 starting with v1

clockwise when n > 5, then we produce a negative mapping x of Cn satisfying x(V (Cn)) = k.

Case 3. n = 3k + 1 for some integer k. To show that β′D(Cn) ≥ k − 1, it suffices to show
that there is a negative mapping x of Cn such that x(V (Cn)) = k − 1. In fact, if we assign
1,−1, 1,−1 to the vertices in a clockwise order when n = 4, or assign 1, 1,−1, . . . , 1, 1,−1,−1
starting with v1 clockwise when n > 4, thenwe produce a negativemapping x ofCn satisfying
x(V (Cn)) = k − 1.

To show β′D(Cn) ≤ k − 1, we let x be a negative mapping of Cn such that x(V (Cn)) =
β′D(Cn). So β′D(Cn) = |P | − |Q| = 2p − n ≤ n/3. Hence, p ≤ 2k, implying that β′D(Cn) = 2p − n ≤
2 · 2k − (3k + 1) = k − 1.

Corollary 2.7. For any integer n ≥ 2, one has

β′D(Pn) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⌊
n

3

⌋

− 1 n ≡ 1(mod 3);

⌊
n

3

⌋

otherwise.

(2.24)
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Proof. It is easy to see that Corollary 2.7 is true for 2 ≤ n ≤ 4. So we may assume that n ≥ 5. Let
v1, v2, . . . , vn be the n vertices of Pn with end vertices v1 and vn. We only show that β′D(Pn) ≤
n/3. The rest of the proof is similar to that of Corollary 2.6, so is omitted.

Take any negative mapping x of Pn. For i = 1 or n, as deg(vi) = 1, we have that

x(N[vi]) ≤ 0. (2.25)

For 1 < i < n, deg(vi) = 2. Hence,

x(N[vi]) ≤ 1. (2.26)

Thus,

∑

v∈V
x(N[v]) ≤ n − 2. (2.27)

Note that
∑

v∈V x(N[v]) = 3x(V ) − x(v1) − x(vn). So,

3x(V ) − x(v1) − x(vn) ≤ n − 2, (2.28)

implying that x(V ) ≤ (n − 2 + x(v1) + x(vn))/3 ≤ n/3.

For the biclique Kn,n, we have the following result.

Theorem 2.8. For any integer n ≥ 2, one has

β′D(Kn,n) =

⎧
⎨

⎩

0 for n even;

−2 for n odd.
(2.29)

Proof. Let X = {u1, u2, . . . , un} and Y = {v1, v2, . . . , vn} be the partite sets of Kn,n. AsKn,n is an
n-regular graph, by Theorem 2.5, β′D(Kn,n) ≤ 2n/(n+ 1) < 2. Hence, β′D(Kn,n) ≤ 1. AsKn,n has
order 2n, which is even,

β′D(Kn,n) ≤ 0. (2.30)

To prove the case when n is even, it suffices to show that there exists a negative
mapping x of Kn,n such that x(V (Kn,n)) = 0. In fact, we can produce such x by assigning
x(vi) = x(ui) = (−1)i, 1 ≤ i ≤ n.

Now we prove the case when n is odd. Let x be a negative mapping of Kn,n such
that β′D(Kn,n) = x(V (Kn,n)). Let X+,X−, Y+, and Y− be defined the same as in the proof of
Theorem 2.3. Then P = X+ ∪ Y+ and Q = X− ∪ Y−. Let |X+| = k, |X−| = s, |Y+| = l and |Y−| = t.
Thus, β′D(Kn,n) = k + l − s − t = 2n − 2(s + t). As β′D(Kn,n) ≤ 0, by (2.30), we have that

k + l ≤ s + t. (2.31)
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Notice that we may assume k ≤ s and l ≤ t. If k + l = s + t, then k = s and l = t
contradicting to the fact k + s = l + t = n, where n is odd. Hence, β′D(Kn,n) ≤ −2.

To show that β′D(Kn,n) = −2, it suffices to show that there is a negative mapping x of
Kn,n such that x(V (Kn,n)) = −2. In fact, we can produce such x by assigning x(un) = −1,
x(ui) = (−1)i−1 for 1 ≤ i ≤ n − 1 and x(vj) = (−1)j , 1 ≤ j ≤ n.
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