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By using the functional type cone expansion and compression fixed-point theorem in cones, some
new and general results on the existence of positive solution for twin singular boundary value
problems with damping term are obtained. An example is given to illustrate our results.

1. Introduction

The study ofmultipoint boundary value problem for linear second-order ordinary differential
equation was initiated by I1’in and Moiseev [1] motivated by the work of Bitsadze and
Samarskiı̆ [2–4] on nonlocal linear elliptic boundary value problem, which is a new area of
still fairly theoretical exploration inmathematics. Several authors have expounded on various
aspects of this theory; see the survey paper by Gupta et al. [5–7] and the references cited
therein. Thereamong, the study of singular boundary value problem for ordinary differential
equation has led to several important applications in applied mathematics and physical
science, such as the Thomas-Fermi problem

x′′(t) − t−1/2x3/2 = 0, 0 < t < 1,

x(0) = 0 = x(1),
(1.1)

which appears in determining the electrical potential in an atom. For other application
results, we refer to [8–10]. With regards to this, increasing attention is paid to question of
singular boundary value problem and has obtained many excellent results of the existence
of the positive solution for two multiple points nonlinear singular boundary value problem
[11–15]. The main techniques are the upper and lower solutions method [16], the Leray-
Schauder continuation theory [17], and the fixed-point theory in cones [18] et al. We would
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like to mention some results of Ma and O’Regan [13] and Yao [15], which motivated us
to consider the singular boundary value problems. In [13], the authors have studied a
multipoint boundary value problem

x′′(t) = f
(
t, x(t), x′(t)

)
+ e(t), 0 < t < 1,

x′(0) = 0, x(1) =
m−2∑

i=1

aix(ξi),
(1.2)

where ξi ∈]0, 1[, ai ∈ R, i = 1, 2, . . . , m − 2, 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, f : [0, 1] × R
2 → R is a

function satisfying Carathéodory’s conditions and (1 − t)e(t) ∈ L1]0, 1[; the Leray-Schauder
continuation theorem leads to the existence of single C1[0, 1[ solution. The literature [15] has
discussed a second-order boundary value problem

x′′(t) + h(t)f(x(t)) = 0, 0 < t < 1,

ax(0) − bx′(0) = 0, ax(1) + bx′(1) = 0,
(1.3)

where h(t) is symmetric on ]0, 1[ and may be singular at both end points t = 0 and t =
1. The author has proved the existence of n symmetric positive solutions and established a
corresponding iterative scheme, the main tool being the monotone iterative technique.

A powerful tool for proving existence of solution to boundary value problem is the
fixed-point theory. In many cases, it is possible to find single, double, or multiple solutions
for boundary value problem, and for the same problem, using the various methods, one can
obtain different results under some appropriate conditions. To my best knowledge, very little
work has been done on the existence of positive solution for boundary value problem by
using the functional type cone expansion and compression fixed-point theorem. The aim of
this paper is to establish some new and general results on the existence of positive solution
to singular boundary value problems with damping term

u′′(t) − λu′(t) + h(t)f(t, u(t)) = 0, a < t < b, (1.4)

u′(a) − λu(a) = 0, γu(b) + δu′(b) =
n∑

i=1

aiu(ti), (1.5)

γu(a) + δu′(a) =
n∑

i=1

aiu(ti), u′(b) − λu(b) = 0, (1.6)

where λ, γ , δ, ai, ti, (i = 1, 2, . . . , n), h, and f satisfy

(H1) −∞ < a < t1 < · · · < tn < b <∞, λ, γ, δ ∈]0,∞[, ai ∈]0,∞[, (i = 1, 2, . . . , n),

(H2) d1 = (γ+λδ) exp(λb)−
∑n

i=1 ai exp(λti) > 0, d2 =
∑n

i=1 ai exp(λti)−(γ+λδ) exp(λa) > 0,

(H3) h :]a, b[→ [0,∞[ is continuous function, h(t)may be singular at t = a and/or t = b,
and 0 <

∫b
a h(s)ds <∞,

(H4) f : [a, b] × [0,∞[→ [0,∞[ satisfies the Carathéodory condition, that is, for each
x ∈ [0,∞[, the mapping t → f(t, x) is Lebesgue measurable on [a, b] and for a.e.
t ∈ [a, b], the mapping x → f(t, x) is continuous on [0,∞[, and for each r > 0, there
exists φr ∈ L1[a, b] such that f(t, x) ≤ φr(t) for all u ∈ [0, r] and for a.e. t ∈ [a, b].
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Wewill impose some advisable conditions on the nonlinearity f to ensure the existence
of at least one positive solution for the above problems. In order to obtain our results, we
construct special operator which is the base for further discussion and provide two crucial
functionals on cones. Applying the functional type cone expansion and compression fixed-
point theorem to the operator and functionals, we obtain some new and general results on
the existence of at least one positive solution for the twin singular problems (1.4), (1.5) and
(1.4), (1.6). Our results improve and generalize those in [15, 19].

Let α and β be nonnegative continuous functionals on a cone P in real Banach space
B. For positive numbers r and L, we define the sets

P(α, r) = {x ∈ P : r < α(x)},

P
(
β, L
)
=
{
x ∈ P : β(x) < L

}
,

P
(
β, α, r, L

)
=
{
x ∈ P : r < α(x), β(x) < L

}
.

(1.7)

We state the functional type cone expansion and compression fixed-point theorem [20].

Lemma 1.1. Let P be a cone in a real Banach space B, and let α and β be nonnegative continuous
functionals on P. Let P(β, α, r, L) be a nonempty bounded subset of P,

T : P
(
β, α, r, L

)
−→ P (1.8)

is a completely continuous operator with

inf
x∈∂P(β,α,r,L)

‖Tx‖ > 0, P(α, r) ⊆ P
(
β, L
)
, (1.9)

for P(β, L). If α(Tx) ≥ r for all x ∈ ∂P(α, r), β(Tx) ≤ L for each x ∈ ∂P(β, L), and for each
y ∈ ∂P(α, r), z ∈ ∂P(β, L), θ ∈]0, 1], and μ ∈ [1,∞[, the functionals satisfy the properties

α
(
θy
)
≤ θα

(
y
)
, β

(
μz
)
≥ μβ(z), β(0) = 0, (1.10)

then T has at least one positive fixed-point x such that

r ≤ α(x), β(x) ≤ L. (1.11)

2. Main Results

Let B be the Banach space C1[a, b] with the norm ‖u‖ = max{‖u‖0, ‖u′‖1}, where ‖u‖0 =
supt∈[a,b]|u(t)| and ‖u′‖1 = supt∈]a,b[|u′(t)|, and let a cone in B

P1 =
{
v ∈ B : v is nondecreasing on [a, b], v(a) = 0

}
. (2.1)
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For v ∈ P1, define the operator T1 by

T1v(t) =
∫ t

a

h(s)f

(

s, exp(λs)

(

c1(v) +
∫b

s

v(ω) exp(−λω)dω
))

ds, t ∈ [a, b], (2.2)

where c1(v) = (1/d1)(δv(b) +
∑n

i=1 ai exp(λti)
∫b
ti
v(ω) exp(−λω)dω).

Lemma 2.1. If v ∈ P1 is a fixed-point T1, then

u(t) := exp(λt)

(

c1(v) +
∫b

t

v(ω) exp(−λω)dω
)

(2.3)

is one solution of the problem (1.4), (1.5).

Proof. Suppose that v∈P1 is a fixed-pointT1 and u(t) = exp(λt)(c1(v)+
∫b
t v(ω) exp(−λω)dω),

thus we have

u′(t) − λu(t) = −v(t) = −T1v(t) = −
∫ t

a

h(s)f

(

s, exp(λs)

(

c1(v) +
∫b

s

v(ω)exp(−λω)dω
))

ds.

(2.4)

Further,

u′′(t) − λu′(t) = −h(t)f
(

t, exp(λt)

(

c1(v) +
∫ tn

t

v(ω) exp(−λω)dω
))

= −h(t)f(t, u(t)).

(2.5)

The boundary condition (1.5) is satisfied due to the relation between u, v, and c1(v).

For v ∈ P1, we define the nonnegative continuous functionals α and β on P1 by

α(v) =
∫b

t1

v(ω) exp(−λω)dω, β(v) = v(t1). (2.6)

Lemma 2.2. Let r1 > 0. If v ∈ ∂P1(α, r1), then

v(t1) ≤
exp(λb)
b − t1

r1,

∫b

a

v(ω) exp(−λω)dω ≥ r1.

(2.7)
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Proof. For v ∈ ∂P1(α, r1), that is, α(v) = r1. Since v(t) nondecreasing on [a, t1], we have

r1 = α(v) =
∫b

t1

v(ω) exp(−λω)dω ≤
∫b

t1

v(b) exp(−λω)dω ≤ v(b) exp(−λt1)(b − t1), (2.8)

so we get (2.7). Furthermore,

∫b

a

v(ω) exp(−λω)dω =
∫ t1

a

v(ω) exp(−λω)dω +
∫b

t1

v(ω) exp(−λω)dω ≥ r1. (2.9)

Lemma 2.3. Let L1 > 0. If v ∈ ∂P1(β, L1), then

∫b

t1

v(ω) exp(−λω)dω ≥ L1 exp(−λb)(b − t1). (2.10)

Proof. For v ∈ ∂P1(β, L1), that is to say, β(v) = L1. In view of v(t) is nondecreasing on [a, b],
for ω ∈ [t1, b], we have

v(ω) ≥ v(t1) = β(v) = L1. (2.11)

Hence,

∫b

t1

v(ω) exp(−λω)dω ≥ L1

∫b

t1

exp(−λω)dω ≥ L1 exp(−λb)(b − t1). (2.12)

Lemma 2.4. Let (H1)–(H4) hold, then T1 : P1 → P1 is completely continuous.

Proof. By (H1)–(H4), we observe that T1v ∈ C1[a, b], (T1v)(t) is nondecreasing on [a, b], and
(T1v)(a) = 0, so T1 : P1 → P1. Since h(t) may be singular at t = a and/or t = b, we take the
arguments to show that T1 is completely continuous.

Assume that vn, v0 ∈ P1. In view of f satisfying the Carathéodory condition, it is easy
to see that

‖vn − v0‖0 −→ 0 implies that

sup
s∈Ω

∣∣∣∣∣
f

(

s, exp(λs)

(

c1(vn) +
∫b

s

vn(ω) exp(−λω)dω
))

−f
(

s, exp(λs)

(

c1(v0) +
∫b

s

v0(ω) exp(−λω)dω
))
∣∣∣∣∣∣∣
ds −→ 0

(2.13)
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as n → ∞, where Ω = [a, b] or ]a, b[. Thus, we have

‖T1vn − T1v0‖0 = sup
t∈[a,b]

|(T1vn)(t) − (T1v0)(t)|

≤
∫b

a

h(s)

∣
∣
∣
∣
∣
f

(

s, exp(λs)

(

c1(vn) +
∫b

s

vn(ω) exp(−λω)dω
))

−f
(

s, exp(λs)

(

c1(v0) +
∫b

s

v0(ω) exp(−λω)dω
))∣∣

∣
∣
∣
ds,

∥
∥(T1vn)′ − (T1v0)′

∥
∥
1 = sup

t∈]a,b[

∣
∣(T1vn)′(t) − (T1v0)′(t)

∣
∣

≤ sup
t∈]a,b[

(

h(t)

∣
∣∣∣∣
f

(

t, exp(λt)

(

c1(vn) +
∫b

s

vn(ω) exp(−λω)dω
))

−f
(

t, exp(λt)

(

c1(v0) +
∫b

s

v0(ω) exp(−λω)dω
))∣∣∣∣∣

)

.

(2.14)

Therefore,

‖T1vn − T1v0‖ −→ 0 (n −→ ∞). (2.15)

This means that the operator T1 : P1 → P1 is continuous.
Choose two sequences {ϕn}∞n=1, {ψn}

∞
n=1 ⊂]a, b[ satisfying ϕn ≤ ψn for any n ≥ 1, such

that ϕn → a and ψn → b as n → ∞, respectively. Define

hn(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

inf
a≤t≤ϕn

h(t),

h(t), ϕn < t < ψn

inf
ψn≤t≤b

h(t),

(2.16)

and an operator sequence {T1n}∞n=1 by

T1nv =
∫ t

a

hn(s)f

(

s, exp(λs)

(

c1(v) +
∫b

s

v(ω) exp(−λω)dω
))

ds. (2.17)

Clearly, hn : [a, b] → [0,∞) is a piecewise continuous function, and the operator T1n : P1 →
P1 is well defined. Further, we can see that T1n : P1 → P1 is completely continuous.

Let R > 0, BR := {v ∈ P1 : ‖v‖0 ≤ R}, and MR = sup{f(t, u) : (t, u) ∈ [a, b] × [0, R]},
where R = (R exp(λb)/d1)(δ+(1/λ)

∑n
i=1 ai(1−exp(−λ(b− ti))))+ (R/λ)(expλ(b−a)−1) > 0.
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Wewill prove thatT1n approachT1 uniformly on BR. From the absolute continuity of integral,
we obtain

lim
n→∞

∫

l(n)
h(s)ds = 0, (2.18)

where l(n) = [a, ϕn] ∪ [ψn, b]. For each v ∈ BR, t ∈ [a, ϕn], we have

‖T1nv − T1v‖0 = sup
t∈[a,ϕn]

∣
∣
∣
∣
∣
∣

∫ t

a

(hn(s) − h(s))f
(

s, exp(λs)

(

c1(v) +
∫b

s

v(ω) exp(−λω)dω
))

ds

≤MR

∫ϕn

a

|hn(s) − h(s)|ds −→ 0 (n −→ ∞).

(2.19)

For each v ∈ BR, t ∈ [ψn, b], we have

‖T1nv − T1v‖0 = sup
t∈[ψn,b]

∣∣∣∣∣∣

∫ t

a

(hn(s) − h(s))f
(

s, exp(λs)

(

c1(v) +
∫b

s

v(ω) exp(−λω)dω
))

ds

≤MR

∫b

a

|hn(s) − h(s)|ds −→ 0 (n −→ ∞).

(2.20)

It is easy to see that, for each v ∈ BR and ϕn < t < ψn, there is ‖T1nv − T1v‖0 → 0 as n → ∞.
Similarly, for any v ∈ BR, and t ∈ [a, ϕn], ]ϕn, ψn[, [ψn, b], respectively, we can obtain that

∥∥(T1nv)′ − (T1v)′
∥∥
1 = sup

t

∣∣∣∣∣
(hn(t) − h(t))f

(

t, exp(λt)

(

c1(v) +
∫b

t

v(ω) exp(−λω)dω
))∣∣∣∣∣

≤MR|hn(t) − h(t)| −→ 0 (n −→ ∞).
(2.21)

From the above argument, we obtain

‖T1nv − T1v‖ = max
{
‖T1nv − T1v‖0,

∥∥(T1nv)′ − (T1v)′
∥∥
1

}
−→ 0 (n −→ ∞). (2.22)

That is to say, the sequence T1n is uniformly approximate T1 on any bounded subset of P1.
Therefore, T1 : P1 → P1 is completely continuous.
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For convenience, we set

m1 =
∫b

t1

exp(−λt)
(∫ t

a

h(s)ds

)

dt, M1 =
∫b

a

h(s)ds,

u1 = r1 exp(λa)
(
δ exp(λa)
d1(b − a)

+ 1
)
, u2 = L1 exp(λt1)

δ + Σn
i=1ai(b − ti) exp(λ(ti − b))

d1
.

(2.23)

We are now ready to apply a functional type cone expansion and compression fixed-
point theorem to the operator T1 to give the sufficient conditions for the existence of at least
one positive solution to the problem (1.4), (1.5).

Theorem 2.5. Suppose that (H1)–(H4) hold. Assume that there exist positive numbers k1, r1, and L1

with (exp(λb))/(b − t1)r1 < L1 such that

(A1) f(t,w) ≥ k1, (t,w) ∈ [a, b] × [r1,∞[,

(A2) f(t,w) ≥ r1/m1, (t,w) ∈ [a, t1] × [u1,∞[,

(A3) f(t,w) ≤ L1/M1, (t,w) ∈ [t1, b] × [u2,∞[,

then the operatorT1 has at least one fixed-point v such that r1 ≤ α(v) and β(v) ≤ L1, and the problem
(1.4), (1.5) has at least one positive solution u such that

u(t) = exp(λt)

(

c1(v) +
∫b

t

v(ω) exp(−λω)dω
)

. (2.24)

Proof. The cone P1 and operator T1 are defined by (2.1) and (2.2), respectively. By the
properties of operator T1, it suffices to show that the conditions of Lemma 1.1 hold with
respect to T1. In view of Lemma 2.1, it is not difficult to prove that a fixed point of T1 is
coincident with the solution of the boundary value problem (1.4), (1.5), so we concentrate on
the existence of the fixed point of the operator T1. Set P1(β, α, r1, L1) is a nonempty bounded
subset of P1. From Lemma 2.4, it can be shown that

T1 : P1
(
β, α, r1, L1

)
−→ P1 (2.25)

is completely continuous by the Arzela-Ascoli lemma. For v ∈ ∂P1(β, α, r1, L1), the
assumption (A1) implies that

‖T1v‖0 =
∫b

a

h(s)f

(

s, exp(λs)

(

c1(v) +
∫b

s

v(ω) exp(−λω)dω
))

ds ≥ k1
∫b

a

h(s)ds,

∥∥(T1v)′
∥∥
1 = sup

t∈]a,b[
h(t)f

(

t, exp(λt)

(

c1(v) +
∫b

t

v(ω) exp(−λω)dω
))

≥ k1 sup
t∈]a,b[

h(t).

(2.26)
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the hypotheses of (H3) lead to

inf
v∈∂P1(β,α,r,L)

‖T1v‖ ≥ k1 min

{

sup
t∈]a,b[

h(t),
∫b

a

h(s)ds

}

> 0. (2.27)

If v ∈ P1(α, r1), then β(v) = v(t1) ≤ (exp(λb))/(b − t1)r1 < L1, and so v ∈ P1(β, L1), that
is, P1(α, r1) ⊆ P1(β, L1). It follows that the conditions of Lemma 1.1 hold with respect to
T1. By the definition of functionals α and β, we can check that the functionals satisfy the
properties α(θy) =

∫b
t1
θy(ω) exp(−λω)dω = θ

∫b
t1
y(ω) exp(−λω)dω = θα(y) for y ∈ ∂P1(α, r1)

and θ ∈]0, 1], β(μz) = μz(t1) = μβ(z) for z ∈ ∂P1(β, L1) and μ ∈ [1,∞[, β(0) = 0.
We now prove that α(T1v) ≥ r1, in Lemma 1.1, holds. In fact, if v ∈ ∂P1(α, r1), by the

properties of c1(v) and Lemma 2.2, for each t ∈ [a, t1],

u(t) = exp(λt)

(

c1(v) +
∫b

t

v(ω) exp(−λω)dω
)

≥ exp(λa)(c1(v) + r1)

≥ r1 exp(λa)
(
δ exp(λa)
d1(b − a)

+ 1
)
.

(2.28)

Hence, by the assumption (A2) and (2.28), there is

α(T1v) =
∫b

t1

(T1v)(t) exp(−λt)dt

=
∫b

t1

exp(−λt)
(∫ t

a

h(s)f

(

s, exp(λs)

(

c1(v) +
∫b

s

v(ω) exp(−λω)dω
))

ds

)

dt

≥ r1
m1

∫b

t1

exp(−λt)
(∫ t

a

h(s)ds

)

dt = r1.

(2.29)

Finally, we assert that β(T1v) ≤ L1, in Lemma 1.1, also holds. If v ∈ ∂P1(β, L1), by Lemma 2.3,
for t ∈ [t1, b],

u(t) = exp(λt)

(

c1(v) +
∫b

t

v(ω) exp(−λω)dω
)

≥ v(t1) exp(λt1)
δ + Σn

i=1ai(b − ti) exp(λ(ti − b))
d1

= L1 exp(λt1)
δ + Σn

i=1ai(b − ti) exp(λ(ti − b))
d1

.

(2.30)
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The assumption (A3) and (2.30) imply that

β(T1v) = (T1v)(b)

=
∫b

a

h(s)f

(

s, exp(λs)

(

c1(v) +
∫b

s

v(ω) exp(−λω)dω
))

ds

≤ L1

M1

∫b

a

h(s)ds = L1.

(2.31)

To sum up, the hypotheses of Lemma 1.1 are satisfied. Hence, the operator T1 has at
least one fixed point, that is, the problem (1.4), (1.5) has at least one positive solution.

Let the cone

P2 =
{
v ∈ B : v is nonincreasing on [a, b], v(b) = 0

}
. (2.32)

Evidently, P2 ⊂ B. For v ∈ P2, define the operator T2 by

T2v(t) =
∫b

t

h(s)f
(
s, exp(λs)

(
c2(v) +

∫ s

a

v(ω) exp(−λω)dω
))

ds, t ∈ [a, b], (2.33)

where c2(v) = (1/d2)(δv(a) −
∑n

i=1 ai exp(λti)
∫ ti
a v(ω) exp(−λω)dω).

We only give the preliminary lemmas and result of the problem (1.4), (1.6), the proofs
are similar to the above argument.

Lemma 2.6. If v ∈ P2 is a fixed-point T2, then

u(t) = exp(λt)

(

c2(v) +
∫ t

a

v(ω) exp(−λω)dω
)

(2.34)

is one solution of the problem (1.4), (1.6).

For v ∈ P2, the nonnegative continuous functionals α and β on P2 are defined by

α(v) =
∫ tn

a

v(ω) exp(−λω)dω, β(v) = v(tn). (2.35)

Lemma 2.7. Let r2 > 0. If v ∈ ∂P2(α, r2), then

v(tn) ≤
exp(λtn)
tn − a

r2,

∫b

a

v(ω) exp(−λω)dω ≥ r2. (2.36)
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Lemma 2.8. Let L2 > 0. If v ∈ ∂P2(β, L2), then

∫ tn

a

v(ω) exp(−λω)dω ≥ L2 exp(−λtn)(tn − a). (2.37)

Lemma 2.9. Let (H1)–(H4) hold, then T2 : P2 → P2 is completely continuous.

For convenience, we set

m2 =
∫ tn

a

exp(−λt)
(∫b

t

h(s)ds

)

dt > 0, M2 =
∫b

a

h(s)ds > 0,

u3 = r2 exp(λb), u4 = L2 exp(λa)
δ − Σn

i=1ai(ti − a) exp(λ(ti − a))
d2

.

(2.38)

Theorem 2.10. Suppose that (H1)–(H4) hold. Assume that δ−Σn
i=1ai exp(λ(ti −a))(ti −a) > 0, then

there exist positive numbers k2, r2, and L2 with ((exp(λtn))/(tn − a))r2 < L2 such that

(B1) f(t,w) ≥ k2, (t,w) ∈ [a, b] × [r2,∞[,

(B2) f(t,w) ≥ (r2/m2), (t,w) ∈ [tn, b] × [u3,∞[,

(B3) f(t,w) ≤ (L2/M2), (t,w) ∈ [a, tn] × [u4,∞[.

Then the operator T2 has at least one fixed-point v such that r2 ≤ α(v) and β(v) ≤ L2, and the
problem (1.4), (1.6) has at least one positive solution u such that

u(t) = exp(λt)

⎛

⎝c2(v) +

t∫

a

v(ω) exp(−λω)dω

⎞

⎠. (2.39)

3. Examples

Consider the problems

u′′(t) − u′(t) + h(t)f(t, u(t)) = 0, 0 < t < 1, (3.1)

u′(0) − u(0) = 0, u(1) + 2u′(1) = 2u
(
1
2

)
, (3.2)

u(0) + 2u′(0) = 2u
(
1
2

)
, u′(1) − u(1) = 0. (3.3)

Let

h(t) =
1

√
t(1 − t)

, f(t,w) =

⎧
⎪⎪⎨

⎪⎪⎩

10−3t +
2√
w + 2

, w < 2,

10−3t + 2 −
√
2, w ≥ 2.

(3.4)
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It is easy to check that hypotheses (H1)–(H4) hold. For the problem (3.1), (3.2), by some
calculations, we have d1 ≈ 4.858,m1 ≈ 0.348, andM1 ≈ 3.142. Taking k1 = 0.001, r1 = 0.2, and
L1 = 2, satisfying the following conditions: f(t,w) ≥ 0.001, (t,w) ∈ [0, 1] × [0.2,∞[, f(t,w) ≥
r1/m1 ≈ 0.575, (t,w) ∈ [0, 1/2] × [0.141,∞[, f(t,w) ≤ L1/M1 ≈ 0.637, and (t,w) ∈ [1/2, 1] ×
[2.242,∞[. Thus, the hypotheses of Lemma 1.1 are fulfilled, and so the operator T1 has at
least one fixed point, that is to say, the problem (3.1), (3.2) has at least one positive solution.
For the problem (3.1), (3.3), by some calculations, we obtain d2 ≈ 0.297, m2 ≈ 0.348, and
M2 ≈ 3.142. Taking k2 = 0.001, r2 = 0.1, and L2 = 2, combining with the following conditions:
f(t,w) ≥ 0.001, (t,w) ∈ [0, 1]× [0.1,∞[, f(t,w) ≥ r2/m2 ≈ 0.287, (t,w) ∈ [1/2, 1]× [0.272,∞[,
f(t,w) ≤ L2/M2 ≈ 0.637, and (t,w) ∈ [0, 1/2] × [2.364,∞[. So the problem (3.1), (3.3) has at
least one positive solution.
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