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Dynamics of a nonlinear cellular automaton (CA) is, in general asymmetric, irregular, and
unpredictable as opposed to that of a linear CA, which is highly systematic and tractable, primarily
due to the presence of a matrix handle. In this paper, we present a novel technique of studying
the properties of the State Transition Diagram of a nonlinear uniform one-dimensional cellular
automaton in terms of its deviation from a suggested linear model. We have considered mainly
elementary cellular automata with neighborhood of size three, and, in order to facilitate our
analysis, we have classified the Boolean functions of three variables on the basis of number and
position(s) of bit mismatch with linear rules. The concept of deviant and nondeviant states is
introduced, and hence an algorithm is proposed for deducing the State Transition Diagram of a
nonlinear CA rule from that of its nearest linear rule. A parameter called the proportion of deviant
states is introduced, and its dependence on the length of the CA is studied for a particular class of
nonlinear rules.

1. Introduction

The study of Boolean functions by G. Boole finds its application in various fields like
electronics, computer hardware and software and is the base of digital electronics. On the
other hand, the concept of Cellular Automata (CA) introduced by von Neumann [1] is a
suitable tool for Complex Systems. CA rules have many real-life applications in almost all
areas of science like physics, chemistry, mathematics, biology, engineering, and finance. A
connection can be made between CA rules in different dimensions with n-variable Boolean
functions [2, 3]. Out of 22

n
Boolean functions of n variables, only 2n are linear and the rest are
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nonlinear [4]. In this way we get linear CAs and nonlinear CAs [2, 5, 6]. Likewise, we have
uniform or hybrid CA, abbreviated as UCA and HCA, respectively, according to whether or
not the same rule is applied to all the cells of the CA.

The dynamic behavior of any CA is visualized and studied in terms of either its space-
time pattern or its basin-of-attraction field [7]. The latter is essentially a graph, which may or
may not consist of disjoint subgraphs, and is commonly referred to as the State Transition
Diagram or, in short, the STD of the CA. In the past, several attempts have been made [7–12]
to study qualitatively and quantitatively the characteristics of UCA STDs in general (linear or
nonlinear) in terms of parameters such as Z-parameter, λ-ratio, and λ-parameter. However,
all these are techniques of absolute characterization of an STD (or, equivalently, a CA rule), that
is, their main objective is to capture the graphical features of an STD as it is and they are
not based on the comparison of a given STD with some known standard STD. Any linear
UCA STD may be taken as a standard for comparison because all its essential features bear
simple and well-known relationships with the fundamental properties such as rank, nullity,
and determinant of the state transition matrix or transformation matrix, denoted by T, of the
corresponding linear CA rule. With this in mind, we have made an attempt at the relative
characterization of a particular set of nonlinear UCA STDs by first identifying the nearest linear
rule of each such nonlinear rule, then considering the STD of the said nearest linear CA rule as
a linear model for the nonlinear STD concerned and finally determining the nature and extent
of departure of this nonlinear STD from the said linear model. But, first of all, we cluster
the Boolean rules themselves into classes in order to separate out those rules that are readily
amenable to the above analysis.

The remainder of this paper is organized in the following manner. In Section 2, some
preliminary discussions on both Boolean functions and Cellular Automata are presented.
In Section 3, some theoretical results are obtained using Hamming Distance (H.D) between
Boolean functions. In [5, 6] Boolean functions are classified and subclassified according to
their degree of nonlinearity and also the position of bit mismatch. Some of these ideas are
also included in this section. Using these ideas we introduce the concepts of deviant and
nondeviant states in Section 4. Finally Section 5 concludes the paper.

2. Basic Concepts

2.1. Boolean Functions: Their Representations,
Naming Conventions, and Types

A Boolean function or rule f (y1, y2, . . . , yp) of p independent binary variables is defined as a
mapping from {0, 1}p to {0, 1}. Any Boolean function can be represented either by a Truth
Table or by one of several alternative algebraic forms such as D.N.F. (“Disjunctive Normal
Form”), C.N.F. (“Conjunctive Normal Form”), and A.N.F. (“Algebraic Normal Form”). A
Boolean rule is often identified with the output column of its Truth Table, which is a binary
string of length 2p for p independent variables. The decimal equivalent of this binary string,
with the output of the first row being taken as the least significant bit, is called the Wolfram’s
number (W) of the rule, and the rule is referred to as Rule W or fW. For example, the two-
variable function f (y1, y2) satisfying f(0, 0) = 0, f(0, 1) = 1, f(1, 0) = 1, f(1, 1) = 1 is
considered identical to the bitstring 1110 and is designated as Rule 14 of two variables or
f14(y1, y2). Another naming scheme of Boolean functions is based on their Algebraic Normal
Form which consists of AND and XOR operations only [4]. For one variable y1, the complete
algebraic normal form is (y1 ⊕ 1)which is also the A.N.F. of f1(y1) = y1. Proceeding recursively,
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the complete A.N.F. of two variables y1, y2 is [{y2(y1 ⊕ 1)} ⊕ (y1 ⊕ 1)] = (y2y1 ⊕ y2 ⊕ y1 ⊕ 1) ≡
f1(y1, y2) = y1y2, and that of three variables is given by [{y3(y1y2 ⊕ y2 ⊕ y1 ⊕ 1)} ⊕ (y1y2 ⊕
y2 ⊕ y1 ⊕ 1)] = (y1y2y3 ⊕ y2y3 ⊕ y3y1 ⊕ y3 ⊕ y1y2 ⊕ y2 ⊕ y1 ⊕ 1) ≡ f1(y1, y2, y3) = y1y2y3
and so on. In general, there are 2p product terms in the complete A.N.F. of p-variables. The
A.N.F. of any p-bit Boolean function can be generated by excluding one or more terms from
the complete A.N.F. of p variables. If we denote presence of a term by 1 and absence by 0, we
get a new binary string (of length 2p) corresponding to every Boolean rule and the decimal
equivalent of this bitstring is called the A.N.F. number of the rule concerned, for example,
consider the function f102(y1, y2, y3) = y1y2y3+y1y2y3+y1y2y3+y1y2y3 = y2⊕y3; comparing
with the complete A.N.F. of three variables, the binary string corresponding to the A.N.F. of
f102 is found to be 00010100, so its A.N.F. number must be 20. Throughout this paper, Boolean
functions have always been represented by their A.N.F. but have been referred to by their
Wolfram numbers [2]. It is also worthwhile to mention here that if the Wolfram’s number of
a rule is even (odd), its ANF number is also even (odd), hence, without loss of generality, a
rule may be referred to as “even-numbered” or “odd-numbered,” as the case may be. Thus
Rule 10 is an even rule while Rule 57 is an odd rule.

The generalized A.N.F. of a Boolean function of p variables y1, y2, . . . , yp is given by

f
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where each of the coefficients a0, a1, a2, . . . , a12, a13, . . . , a123, . . . , a123···p may be either 0 or 1.
The number of variables in the highest product term with non-zero coefficient in the

A.N.F. of a Boolean function is the algebraic degree of the function. A function of degree
at most one is called an affine function. An affine function with the constant term equal
to zero is called a linear function; all other functions are nonlinear functions. For p binary
variables, there are 2p+1 affine functions of which 2p are linear and the remaining 2p are
logical complements of these linear rules (they are nonlinear as each has its constant term
equal to unity). For example, f0, f60, f90, f102, f150, f170, f204, f240 are the 8 linear functions of
3 variables; the remaining 248 functions are called nonlinear functions out of which the 8
functions f255, f195, f165, f153, f105, f85, f51, f15 are nonlinear affine functions.

2.2. Hamming Distance and Degree of Nonlinearity of a Boolean Rule

The Hamming distance (abbreviated as H.D. throughout this paper) between any two bit
sequences of equal length is defined as the number of positions at which the bits differ in
the two sequences.
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The H.D. between two Boolean functions of p variables is defined as the H.D. between
the binary sequences formed by the output columns of their Truth Tables (i.e., the p-bit binary
equivalents of the rule numbers according to Wolfram’s labeling convention). For example,
let us take two Boolean functions of three variables namely Rule 34 and Rule 225. Their 8-
bit binary representations are 00100010 and 11100001, respectively. Clearly, these two strings
differ from each other at 4 bit positions. Hence, the H.D. of Rule 34 from Rule 225 is 4.
Equivalently, the H.D. between two rules f1 and f2 is given by the weight of the sum mod
2 (XOR) of these two rules; in other words, it is the number of “1”s in the output column of
the Truth Table of f1 ⊕ f2.

The degree of nonlinearity of a p-variable Boolean function f is defined as the minimum
H.D. of f from the set of all affine functions of p variables.

2.3. Terminology and Notation Pertaining to One-Dimensional
Cellular Automata

In this paper, we will restrict ourselves to the study of a one-dimensional, binary cellular
automaton (CA) of n cells (i.e., n bits) x1, x2, . . . , xn, with local architecture [7]. The global state
or simply state of a CA at any time instant t is represented as a vector Xt = (x1

t, x2
t, . . . , xn

t)
where xt

i denotes the bit in the ith cell xi at time instant t. However, instead of expressing a
state as a bitstring, we will frequently represent it by the decimal equivalent of the n-bit string
with x1 as the Most Significant Bit; for example, for a 4-bit CA, the state 1011may be referred
to as state 11 (=1 × 20 + 1 × 21 + 0 × 22 + 1 × 23).

The bit in the ith cell at the “next” time instant t+ 1 is given by a local mapping denoted
by fi, say, which takes as its argument a vector of the bits (in proper order) at time instant t
in the cells of a certain predefined neighborhood (of size p, say) of the ith cell. Thus, the size of
the neighborhood is taken to be the same for each cell and may also be called the “number of
variables” (which fi takes as inputs).

Null Boundary (NB)

The left neighbor of x1 and the right neighbor of xn are taken as 0 each.

Periodic Boundary (PB)

xn is taken as the left neighbor of x1 and x1 as the right neighbor of xn.
A CA may be represented as a string of the rules applied to the cells in proper

order, along with a specification of the boundary conditions. For example, 〈103, 234, 90, 0〉NB
refers to the CA (x1, x2, x3, x4), where x1

t+1 = f103(0, x1
t, x2

t), x2
t+1 = f234(x1

t, x2
t, x3

t),
x3

t+1 = f90(x2
t, x3

t, x4
t), x4

t+1 = f0(x3
t, x4

t, 0).
If the “present state” of an n-bit CA (at time t) is Xt, its “next state” (at

time t + 1), denoted by Xt+1, is in general given by the global mapping F(Xt) =
(f1(lbt, x1

t, x2
t), f2(x1

t, x2
t, x3

t), . . . , fn(xn−1t, xn
t, rbt)), where lb and rb denote, respec-

tively, the left boundary of x1 and right boundary of xn.
If the rule applied to each cell of a CA is a linear Boolean function, the CA will be

called a Linear Cellular Automaton, otherwise a Nonlinear Cellular Automaton, for example,
〈0, 60, 60, 204〉NB is a linear CA while 〈31, 31, 31, 31〉NB and 〈60, 90, 87, 123〉PB are nonlinear
CAs.

If the same Boolean function (rule) determines the “next” bit in each cell of a CA, the
CA will be called a Uniform Cellular Automaton (UCA), otherwise it will be called a Hybrid
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Table 1: H.D.s of three-variable Boolean Functions from linear rules.

Rule no. H.D. from Rule nos.
0 60 90 102 150 170 204 240

0 0 4 4 4 4 4 4 4
1 1 5 5 5 5 5 5 5
2 1 5 3 3 3 3 5 5
3 2 6 4 4 4 4 6 6
4 1 3 5 3 3 5 3 5
5 2 4 6 4 4 6 4 6
6 2 4 4 2 2 4 4 6
7 3 5 5 3 3 5 5 7
8 1 3 3 5 5 3 3 5
...

...
...

...
...

...
...

...
...

248 5 3 3 5 5 3 3 1
249 6 4 4 6 6 4 4 2
250 6 4 2 4 4 2 4 2
251 7 5 3 5 5 3 5 3
252 6 2 4 4 4 4 2 2
253 7 3 5 5 5 5 3 3
254 7 3 3 3 3 3 3 3
255 8 4 4 4 4 4 4 4

Cellular Automaton (HCA), for example, 〈135, 135, 135, 135〉PB is a UCA, 〈0, 60, 72, 72〉NB is a
HCA.

For a UCA, the Boolean function applied to each cell will be called the rule of the CA.
So for a UCA, we can obviously drop the superscript “i” from the local mapping fi and
simply denote it as f . for example. for the 4-bit CA〈230, 230, 230, 230〉PB, the rule of the CA
is Rule 230 and the CA will be called the “Rule 230 CA” of 4 bits with periodic boundary
conditions. Henceforth, we will use the following notation UCAnNB, UCAnPB, HCAnNB,
and HCAnPB for an n-bit CA. For our purpose, we will be mostly interested in elementary CA
defined by Wolfram [2] to be one-dimensional binary CA with a symmetrical neighborhood
of size p = 3 for each cell so that xi

t+1 = fi(xi−1t, xi
t, xi+1

t), i = 2, 3, . . . , n − 1.

3. Studies on the Hamming Distances between Boolean
Functions and Their Classification

In our paper [5], we proposed and proved a few theorems (and their corollaries) on the
H.D.s between Boolean functions of any number of variables n. Next, we presented a chart
of the H.D.s of all the 256 Boolean rules of three variables from the set of the 8 linear rules of
three variables and, based on these observations, suggested a classification of three-variable
Boolean functions. Here, we have a quick recapitulation.

3.1. Theorems on the H.D.s between Boolean Functions

Theorem 3.1. If the H.D. of an n- variable Boolean function f from another rule g is m, then the H.D.
of the complement of f from the same rule g is (2n −m).

Corollary 3.2. For any nonlinear rule of n variables, there exists at least one affine rule of n variables
such that the H.D. between the two is smaller than or equal to 2n−1.
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3.2. Classification of Boolean Rules of Three Variables Based on H.D.s from
the Set of Linear Rules

In Table 1, we provide an incomplete chart of the H.D.s of three-variable Boolean functions
from the set of linear rules and hence enlist a few interesting observations thereof.

Observations

(1) H.D. between any two linear rules of 3 variables is 4 = 23−1.

(2) For any nonlinear rule of 3 variables, there exists at least one linear rule of 3
variables such that the H.D. between the two is smaller than or equal to 4.

(3) If H.D. of a nonlinear rule of 3 variables from one of the 8 linear rules is even (odd),
that from any other linear rule is also even (odd); for example, Rules 3 and 255
shown in Table 1.

(4) If the H.D. of a nonlinear rule of 3 variables from a linear rule of 3 variables is m,
say, then the H.D. of the complement of the said nonlinear rule from that linear rule
is (8 − m); for example, Rule 2 and Rule 253.

(5) If the H.D. of a nonlinear rule of 3 variables from a linear rule of 3 variables is 8,
then its H.D. from every other linear rule is 4. There are 8 such nonlinear rules, each
of which is, evidently, the complement of one of the 8 linear rules.

(6) In case the H.D. of a nonlinear rule of 3 variables from a linear rule is even and
the said nonlinear rule is not the complement of a linear rule, we have either
only one or exactly three linear rule(s) at an H.D. of 2 from the nonlinear rule
under consideration. In that case, we have exactly three or only one linear rule(s),
respectively, each at an H.D. of 6 from the nonlinear rule under consideration. The
H.D. of the nonlinear rule in question from each of the remaining four linear rules
is 4.

A Boolean rule of 3 variables is said to belong to Class m if m is the minimum possible
H.D. of the nonlinear rule from any linear rule of 3 variables, that is, there exists at least one
linear rule such that the H.D. of the rule under consideration from this linear rule is m and, if
m′ is the H.D. of the said rule from any other linear rule, then m′ is larger than or equal to m.
The classification is presented in Table 2.

Comments

(1) The rules in Class 0 and Class 4 are the affine Boolean functions of 3 variables,
Class 0 rules being linear rules and Class 4 rules being the logical complements of
the linear rules. The degree of nonlinearity of each of these rules is 0.

(2) Each rule in Class 3 has its complement in Class 1 (in the order in which the rules
are arranged in Table 3, the ith rule in Class 3 is the complement of the (65 − i)th
rule in Class 1, (i = 1, 2, . . . , 64); the degree of nonlinearity of each of the Class 1 and
Class 3 rules is 1.

(3) In the order in which the rules are presented in Table 3, the ith rule in Class 2 is
the complement of the (113 − i)th rule in Class 2, i = 1, 2, . . . , 56; the degree of
nonlinearity of each Class 2 rule is 2.
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Table 2: Classification of three-variable Boolean rules.

Name of
the class Rules in the class Number of rules

in the class

Class 0 0,60,90,102,150,170,204,240 8

Class 1

1,2,4,8,16,22,26,28,32,38,42,44,52,56,61,
62,64,70,74,76,82,88,91,94,98,100,103,
110,112,118,122,124,128,134,138,140,
146,148,151,158,162,168,171,174,176,
182,186,188,196,200,205,206,208,214,
218,220,224,230,234,236,241,242,244,248

64

Class 2

3,5,6,9,10,12,17,18,20,23,24,27,29,30,33,
34,36,39,40,43,45,46,48,53,54,57,58,63,
65,66,68,71,72,75,77,78,80,83,86,89,92,
95,96,99,101,106,108,111,113,114,116,
119,120,123,125,126,129,130,132,135,
136,139,141,142,144,147,149,154,156,
159,160,163,166,169,172,175,177,178,
180,183,184,187,189,190,192,197,198,
201,202,207,209,210,212,215,216,219,
221,222,225,226,228,231,232,235,237,
238,243,245,246, 249,250,252

112

Class 3

7,11,13,14,19,21,25,31,35,37,41,47,49,50,
55,59,67,69,73,79,81,84,87,93,97,104,107,
109,115,117,121,127,131,133,137,143,
145,152,155,157,161,164,167,173,179,
181,185,191,193,194,199,203,211,213,
217,223,227,229,233,239,247,251,253,254

64

Class 4 15,51,85,105,153,165,195,255 8

Table 3: Classification of three-variable Boolean rules.

27 26 25 24 23 22 21 20

22 0 0 0 1 0 1 1 0
150 1 0 0 1 0 1 1 0

3.3. Subclassification of the Classes of Three-Variable Boolean Rules
Based on Position of Bit- Mismatch with the Nearest Linear Rule

Each Class 1 rule has exactly one linear rule at an H.D. of 1 from itself; that linear rule will be
called its nearest linear rule. We express the Wolfram’s number of every Class 1 rule in its 8-bit
binary form and compare it with the binary equivalent of the nearest linear rule. If mismatch
occurs at bit position 2q, q = 0, 1, 2, . . . , 7, the rule is said to belong to Subclass q of Class 1,
denoted by 1 : q; for example, nearest linear rule of Rule 22 is 150 as shown in Table 3.

Therefore, Rule 22 belongs to Subclass 7 of Class 1. Thus, there are 8 subclasses of Class
1, as shown in Table 4.

We observed that each Class 3 rule has exactly three nearest linear rules; so, it is not
possible to subclassify them by the method adopted for Class 1 rules for there remains a
confusion as to which of the three nearest linear rules to choose. But, since each rule in Class
3 has its complement in Class 1, the 64 rules in Class 3 can be subclassified into 8 subclasses
of 8 rules each in the following manner.
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Table 4: Subclassification of Class 1 Rules.

Subclass of Class 1 Wolfram’s numbers of the rules included in the subclass
1 : 7 22, 42, 76, 112, 128, 188, 218, 230
1 : 6 26, 38, 64, 124, 140, 176, 214, 234
1 : 5 28, 32, 70, 122, 138, 182, 208, 236
1 : 4 16, 44, 74, 118, 134, 186, 220, 224
1 : 3 8, 52, 82, 110, 158, 162, 196, 248
1 : 2 4, 56, 94, 98, 146, 174, 200, 244
1 : 1 2, 62, 88, 100, 148, 172, 206, 242
1 : 0 1, 61, 91, 103, 151, 171, 205, 241

Table 5: Subclassification of Class 3 Rules.

Subclass of Class 3 Wolfram’s numbers of the rules included in the subclass
3 : 7∗ 233,213,179,143,127,67,37,25
3 : 6∗ 229,217,191,131,115,79,41,21
3 : 5∗ 227,223,185,133,117,73,47,19
3 : 4∗ 239,211,181,137,121,69,35,31
3 : 3∗ 247,203,173,145,97,93,59,7
3 : 2∗ 251,199,161,157,109,81,55,11
3 : 1∗ 253,193,167,155,107,83,49,13
3 : 0∗ 254,194,164,152,104,84,50,14

If the complement of a Class 3 rule belongs to Subclass q of Class 1, then that Class 3
rule is said to belong to Subclass q∗ of Class 3, denoted by 3 : q∗. The details are presented in
Table 5.

For Class 2 rules, we observe the following.

(1) Each of the 56 even-numbered rules in Class 2 is the complement of one of the 56
odd-numbered rules in Class 2.

(2) Every odd rule in Class 2 is at Hamming distance of 2 from exactly one linear rule
(and at an H.D. 6 from exactly three linear rules); this single linear rule may be
called the nearest linear rule of the odd-numbered rule concerned; naturally, each
even rule in Class 2 is at an H.D. of 2 from exactly three linear rules and at an H.D.
of 6 from exactly one linear rule, and, hence, for an even Class 2 rule, the nearest
linear rule is not unique, for example, rule 6 (Table 2).

(3) As a linear rule is necessarily even numbered, the binary representation of any odd
rule in Class 2 will definitely differ from that of its nearest linear rule at the bit
position 20 (i.e., at the LSB) which is always 1 for an odd rule and 0 for an even
rule. The bit position of the second mismatch will naturally not be the same for all
odd-numbered rules.

Thus, the subclassification of the odd-numbered Class 2 rules could be based on the
aforesaid bit-position of the second mismatchwith the nearest linear rule and, the even-numbered
Class 2 rules being the complements of these odd rules, their subclassification could be done
in a manner similar to that in which the Class 3 rules have been sub-classified. For example.
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Table 6: Subclassification of Class 2 Rules.

Subclass of Class 2 Wolfram’s numbers of the rules included in the subclass
2 : 7 23,43,77,113,129,189,219,231
2 : 6 27,39,65,125,141,177,215,235
2 : 5 29,33,71,123,139,183,209,237
2 : 4 17,45,75,119,135,187,221,225
2 : 3 9,53,83,111,159,163,197,249
2 : 2 5,57,95,99,147,175,201,245
2 : 1 3,63,89,101,149,169,207,243
2 : 7∗ 232,212,178,142,126,66,36,24
2 : 6∗ 228,216,190,130,114,78,40,20
2 : 5∗ 226,222,184,132,116,72,46,18
2 : 4∗ 238,210,180,136,120,68,34,30
2 : 3∗ 246,202,172,144,96,92,58,6
2 : 2∗ 250,198,160,156,108,80,54,10
2 : 1∗ 252,192,166,154,106,86,48,12

The nearest linear rule of Rule 3 is 0. Therefore, Rule 3 belongs to Subclass 1 of Class 2,
denoted by 2 : 1 and complement of Rule 3 = 255−3 = 252. Thus, Rule 252 belongs to Subclass
1∗ of Class 2, denoted by 2 : 1∗ as shown in Table 6.

4. Characterization of Nonlinear UCA STDs in Terms of
Deviation from Linearity

4.1. The State Transition Diagram of a UCA

The evolution of a CA can be completely described by a diagram in which each state is
connected to its successor by a properly directed line segment. This diagram is called the State
Transition Diagram (abbreviated as STD) of the CA. In other words, the STD of a CA is
essentially a directed graph where each node represents one of the states of the CA and the
edges signify transitions from one state to another. The STD of the UCA Rule 170 NB is shown
in Figure 1.

As already mentioned the structure of a linear CA STD is very well behaved and has
been exhaustively studied. But, unfortunately, even for amoderate number of input variables,
the linear rules constitute practically a microscopic fraction of the great multitude of Boolean
functions. The nonlinear rules are, however, at various degrees of nonlinearity. So the idea
that those nonlinear rules that are not so distant from linear rules may be studied in terms of
their similarity (or, equivalently, dissimilarity) with their closest linear rules appears quite
appealing and viable, and we have tried to work on it.

Before we proceed, we would like to draw attention to the biological analogy of the
relationship between a rule table and the corresponding UCA STD that has been suggested
in the literature [7]. Any Boolean rule (or, more correctly, the output column of a Boolean rule
table) is comparable to a genotype of an organism so that a change (complementation) of one
or more bits of the rule may be viewed as a genetic mutation in this context. Consequently,
the change in the topology of the corresponding CA STD brought about by such a bit
complementation is analogous to the change in morphology introduced by genetic mutation.
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Table 7: Comparison of Truth Tables of Rules 150 and 22.

Row a b c Rule 150 Rule 22
0 0 0 0 0 0
1 0 0 1 1 1
2 0 1 0 1 1
3 0 1 1 0 0
4 1 0 0 1 1
5 1 0 1 0 0
6 1 1 0 0 0
7 1 1 1 1 0

As such, the new rule (offspring) obtained from another rule (parent) is called amutant of the
latter. Thus, in our classification, Class 1 rules may be regarded as one-bit mutants of linear
rules, Class 2 rules as two-bit mutants of linear, rules and so on. Of these, the one-bit mutants
are of utmost importance because, quite understandably, they can be expected to exhibit a
greater similarity with linear rules than any other rule. This is found to be true in practice, as
will be elaborated in the subsequent sections.

4.2. The Concept of Deviant States

If we compare the STD of a UCA with a Class 1 nonlinear rule (all subclasses) or an odd-
numbered nonlinear rule from Class 2 with that of a same-sized UCA with its nearest linear
rule, we observe that a considerable number of states have identical successors in both the
STDswhile the successors of other states differ in the two STDs. For a given size (n) of CA, we
define a state of a nonlinear UCA, to which a Class 1 rule or an odd Class 2 rule has been applied,
as a deviant state for that nonlinear rule if the successor of the state under consideration in
the S.T.D. of the nonlinear UCA taken is different from its successor in the STD of the nearest
linear rule UCA (of the same size). For example, Rule 128 belongs to Class 1 : 7 and its nearest
linear rule is 240. Comparison of their STDs for a UCA4NB reveals that only the states 7, 14,
15 have different successors in the two STDs, so for Rule 128 UCA4NB, the deviant states are
7, 14, 15.

It is evident from this discussion that the deviant states have been defined with respect
to the nearest linear rule only (and not just any linear rule) because we can expect maximum
similarity of the STD of a nonlinear rule with the STD of its nearest linear rule. For this same
reason, deviant states have been defined for the above subclasses only; for other subclasses,
the nearest linear rule is not uniquely defined.

4.3. An Algorithm for Deducing the Set of Deviant States

For a Class 1 rule, the deviant states for a given size of CA can be easily determined and,
hence, the STD of such a nonlinear rule, say f, can be easily deduced from that of its nearest
linear rule fL by Algorithm 1.

Illustration

Let us take Rule 22 UCA4NB. Rule 22 belongs to Class 1 : 7 with Rule 150 as its nearest linear
rule. The deduction of the deviant states and their successors and, hence, the derivation of
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Figure 1: S.T.D. of 〈170, 170, 170, 170〉NB.

Table 8: Determination of deviant states and their successors for Rule 22 UCA4NB.

Deviant states Successor in Rule 150 UCA4NB Successor in Rule 22 UCA4NB
Binary Decimal Decimal Binary Decimal Binary
0 1 1 1 7 10 1 0 1 0 1 0 0 0 8
1 1 1 0 14 5 0 1 0 1 0 0 0 1 1
1 11 1 15 6 0 11 0 0 00 0 0

the STD of 〈22, 22, 22, 22〉NB from that of 〈150, 150, 150, 150〉NB are shown with the help of
Tables 7 and 8 and Figures 2 and 3.

4.4. Comments on Deviant States

(1) Since the sequence to be searched may occur more than once in the same state and,
in case of multiple occurrences, the repeating sequences may or may not overlap, it
is clear that the task of identifying the deviant states and deducing their successors
by the bit-toggling method becomes increasingly difficult with increasing length of
CA.

(2) Determination of the deviant states for odd Class 2 rules can be similarly
accomplished by first locating the two positions of bit-mismatch and then searching
for at least one of the two corresponding 3-bit combinations in the CA state. We
could also proceed in two steps by considering one mismatch at a time. Obviously,
the task is more difficult than that for the Class 1 case.

(3) The set of deviant states for a given f depends strongly on the number of bits
in the CA as well as on the boundary conditions (null/periodic); for example,
for 〈22, 22, 22, 22〉NB, the set of deviant states is {7, 14, 15} whereas that for
〈22, 22, 22, 22〉PB is {7, 11, 13, 14, 15}.
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(1) Locate the position of bit-mismatch in the Truth Table output column between f and fL
(which is identical to the subclass number of f).
(2) Write down the 3-bit input combination, say a∗b∗c∗ corresponding to that row of the Truth
Table where the said mismatch occurs (which is nothing but the 3-bit binary representation of
the subclass number of f); evidently, it is only for this input sequence a∗b∗c∗ that f and fL give
different (i.e., complementary) outputs, their output for every other 3-bit input combination being
identical. Consequently, a state of a three-neighborhood UCA of any length n will give different
successors when acted upon by f and fL if and only if the state contains the sequence a∗b∗c∗.
(3) Search the space of all 2n possible states of the UCA for states each of which contains the
sequence (neighborhood) a∗b∗c∗ at least once. However, while looking for the neighborhood,
a∗b∗c∗ we must properly take into account the boundary values for the two terminal bits of the CA.
(4) In each deviant state, mark the position of that bit which, along with its immediate left and
right neighbours, forms the sequence a∗b∗c∗. As the same sequence may occur more than once
in state, we may get more than one such bit-positions in a state. Let these marked positions beþ1, þ2 and so forth.
(5) In the STD of the nearest linear rule, locate the successors of the deviant states; in the binary
representation of each such successor state, mark the bit-positions þ1, þ2 and so forth. (which
were marked in the binary representation of each deviant state in step (4)) and toggle the bits
at these positions; the resulting bit string will give us the successor of the deviant state in the
STD of the nonlinear rule in question. Accordingly, make necessary changes in the diagram.
(6) Leave the successors of the nondeviant states unchanged.

Algorithm 1

(4) For given CA length and boundary conditions, all the rules in a subclass have
identical deviant states because bit-mismatch with the respective nearest linear rules
occurs at the same bit-position but the set of deviant states, in general, varies from
one subclass to another.

(5) For the periodic boundary case, the bits in any state may be supposed to be
arranged in a ring or circle so that it is somewhat less difficult to identify the deviant
states because such states will occur in rotationally equivalent sets [7]; for example,
for 〈22, 22, 22, 22〉PB, (7)10 ≡ (0111)2 is clearly a deviant state and (14)10 ≡ (1110)2,
(13)10 ≡ (1101)2, (11)10 ≡ (1011)2 are rotationally equivalent to 7, so we can
immediately declare them deviant states. It is also interesting to note that it is
sufficient to deduce the successor of any one state from this set by the bit-toggling
method because their successors are also rotationally equivalent and hence occupy
equivalent positions in the STD.

4.5. The Significance of the Proportion of Deviant States in an STD

Let us define a quantity Pds, called the proportion of deviant states for an n-bit nonlinear
UCA, as Pds = Nds/2n, where Nds = number of deviant states of the UCA considered and 2n

is the total number of states of the UCA.
The rationale underlying the introduction of the concept of deviant states is that the

behavior of the deviant states embodies the effect of the bit-mismatch (es) between f and fL
(or, in other words, the nature and extent of nonlinearity of f) on the topology of the STD of
the UCAof f—if, for the type of nonlinear UCA considered (Class 1 andClass 2 odd), we start
from a seed which is a nondeviant state, the system evolution follows the path of the nearest
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Figure 2: STD of 〈150, 150, 150, 150〉NB.

linear rule until and unless a deviant state is encountered; when a deviant state is actually
reached, the evolution deviates from the linear path, reaches some state, and henceforward
resumes the linear path till the next deviant state is reached. As such, the proportion of deviant
states in a CAmay provide uswith some measure of the deviation from linearity of a nonlinear rule
(with respect to CA state transitions). This discussion reveals that it is not just the number of
bit-mismatches (i.e., degree of nonlinearity) but also the actual positions of bit-mismatch, which
determine howmuch a nonlinear UCA STD differs both qualitatively and quantitatively from
the closest linear STD.With this in mind, we investigated the dependence of Pds on the length
of the CA for all Class 1 subclasses for the periodic boundary (PB) case, and the results are
presented in Table 9 and Figure 4.

Comments on Figure 4

(1) For any given length of CA (PB), Pds(1 : 7) = Pds(1 : 0) as the neighborhoods 111 and
000 exhibit complementary symmetry [7], Pds(1 : 5) = Pds(1 : 2) as the neighborhoods
101 and 010 also exhibit complementary symmetry, Pds(1 : 6) = Pds(1 : 3) = Pds(1 : 4) =
Pds(1 : 1) as the neighborhoods 110 and 011 exhibit reflection symmetry [7], 011 and
100 show complementary symmetry, and 100 and 001 show reflection symmetry again.

(2) As the length of CA (PB) increases, the proportion of deviant states, say Pds,
tends towards unity for any subclass of Class 1, which means that the effect
of nonlinearity becomes more pronounced but following inequality is always
maintained: Pds(1 : 7, 1 : 0) < Pds(1 : 5, 1 : 2) < Pds(1 : 6, 1 : 3, 1 : 4, 1 : 1)
with the difference between the last two becoming significantly smaller than that
between the first two.

5. Conclusion and Future Research Directions

In this paper, we have identified a group of elementary nonlinear uniform cellular automata
(Class 1 and Class 2 odd), which can be studied in terms of deviation from linearity with
relative ease, and have suggested a new way of looking at their STDs by introducing the
concept of deviant states. Of the remaining Boolean rules, Class 3 is the complement of Class
1 whereas even Class 2 rules are complements of odd Class 2 rules. Hence the last two sets of
Boolean rules (Class 3 and Class 2 even) may be expected to bear the same relationship with
nonlinear affine rules (Class 4) as do the aforesaid two sets (Class 1 and Class 2 odd) with
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Figure 3: STD of 〈22, 22, 22, 22〉NB.
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Figure 4: Plot of proportion of deviant states versus length of CA (periodic bound) for various subclasses
of Class 1.

the linear rules. As such, it would apparently be wiser to classify Boolean functions on the
basis of distance from the set of affine rules (i.e., degree of nonlinearity) rather than the set of
linear rules and, in that case, the entire set of affine rules (linear rules and their complements)
must be taken as the standard. We are exploring this possibility. Although the idea is still in
an incipient state, it appears quite promising.

Another of our current efforts is aimed at deducing a possible formula for the number
of deviant states in terms of the length n of the CA for a given nonlinear rule and given
boundary conditions.

Moreover, we have considered only 3-neighborhood 1D UCA. We are investigating
how far this idea could be carried forward to the cases with larger neighborhoods. From
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Table 9: Table showing the variation in the number of deviant states for a 1 : 7 rule with CA length.

No. of cells in the CA (n) No. of states (2n) No. of deviant states
4 16 5
5 32 11
6 64 25
7 128 57
8 256 125
9 512 271
10 1024 581
11 2048 1233
12 4096 2597
13 8192 5435
14 16384 11313
15 32768 23441
16 65536 48381
17 131072 99519
18 262144 204109
19 524288 417545
20 1048576 852245
21 2097152 1736043
22 4194304 3530121
23 8388608 7166985
24 16777216 14530301
25 33554432 29421711
26 67108864 59507605

the study presented in this paper, it appears that even if the neighborhood size (number of
independent variables) increases, we can still possibly isolate a set of mutants of linear rules,
which can be characterized in terms of deviant states. It is germane to mention here that, as
already pointed out in [7], one-bit mutation amounts to (1/23× 100)% = 12.5% change for a
3-variable function, to (1/25× 100)% = 3.125% for a 5-variable function, and so on. In other
words, the effect of mutation of a CA rule on a CA evolution (and thus the deviation of the
CA STD from linearity) decreases as the size of the neighborhood increases. So, for a given
length of CA and a given nonlinear rule, the proportion of deviant states must decrease with
increasing size of neighborhood.
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