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We construct a stability cone, which allows us to analyze the stability of the matrix delay difference
equation xn = Axn−1 + Bxn−k . We assume that A and B are m ×m simultaneously triangularizable
matrices. We construct m points in �3 which are functions of eigenvalues of matrices A, B such
that the equation is asymptotically stable if and only if all the points lie inside the stability cone.

1. Introduction

Parameters of linear systems are subject to time changes. That is why in order to construct
such systems it is desirable to know if they are not only stable but also able to estimate the
distance of the system from the boundary of the stability region in the parameter space.
Therefore, it makes sense to investigate the geometry of the subset of stable polynomials
in the space of characteristic polynomials of linear systems (in the canonical space [1]).
This idea has already been applied to the investigation of geometry of the subset of stable
polynomials in a two-dimensional subspace of the canonical space [2, 3], the stability simplex
for general difference equations [4], connections of the convexity of the coefficients sequence
with stability of difference equations [5], and stability ovals for matrix difference equations
of the form xn = xn−1 + Bxn−k with the delay k [6].

Consider the matrix equation

xn = Axn−1 + Bxn−k , n = 0, 1, 2 . . ., (1.1)

where k ∈ �+ is the delay. Equations of the form (1.1) have been used for investigations of
a delayed discrete-time Hopfield neural network [7, 8]. The suitable representation of the
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solution of (1.1) with commutative matrices A,B and nonsingular A is given in [9]. But [9]
does not solve the stability problems of (1.1). The stability of (1.1) was investigated in [7, 8,
10, 11] with special 2 × 2 matricesA,B. In [12], the stability of (1.1)was investigated without
any restriction on the dimension but with the special matrix A = αI, α ∈ �, 0 � α � 1, where
I is the identity matrix.

In this paper we give a geometric solution to the problem of asymptotic stability of
(1.1) in any dimension with simultaneously triangularizable matrices A,B. It is known that
commuting matrices are simultaneously triangularizable [13]. As usual, we say that (1.1) is
stable if its zero solution is stable. Our solution is based on constructing the stability ovals
which, in turn, form a stability cone. At the same time we give an algorithm for checking the
stability of the scalar equation

xn = axn−1 + bxn−k, n = 0, 1, 2 . . . (1.2)

with complex coefficients a, b.
The paper is organized as follows. In the second section, we recall the results on the

stability of the scalar equation (1.2) with real nonnegative a and any real b [14, 15]. Further
in that section we construct the stability oval for (1.2)with real nonnegative coefficient a and
complex coefficient b. In Section 3, we consider a wider class of equations of the form (1.2)
with a, b being complex numbers. In Section 4, we state a system of inequalities allowing us
to check the stability of the scalar equation (1.2) with two complex coefficients. In Section 5,
we give a geometrical criterion for the asymptotic stability of matrix equation (1.1) with
simultaneously triangularizable matrices. Besides, we establish nongeometric necessary and
sufficient conditions for the stability of matrix equation (1.1) in terms of inequalities. In
Section 6, we use the stability ovals and cones for analysis of some numerical examples.

2. The Stability Oval for (1.2) with Real Nonnegative a and Complex b

We start by stating the results from [14, 15] in the form which is suitable for us. Since the case
k = 1 is obvious, we consider only the case k > 1.

Theorem 2.1 (see [14, 15]). In (1.2) let a and b be real, a � 0, k > 1.

(1) If a � k/(k − 1), then (1.2) is unstable.

(2) If 0 � a < k/(k − 1), then (1.2) is asymptotically stable if and only if

−
√
a2 + 1 − 2a cosω1 < b < 1 − a, (2.1)

where ω1 ∈ [0, π/k] is the root of the equation

a =
sinkω

sin(k − 1)ω
. (2.2)

Stability region of (1.2) is shown in Figure 1.
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Figure 1: The domain of asymptotic stability of (1.2), a � 0, k = 6.

Our first new result about the case of nonnegative real a and complex b in (1.2) is the
following.

Theorem 2.2. Let a � 0 be a real number and b a complex number, k > 1.

(1) If a � k/(k − 1), then (1.2) is unstable.

(2) If 0 � a < k/(k − 1), then (1.2) is asymptotically stable if and only if b lies inside the oval
bounded by

b = exp(ikω) − a exp(i(k − 1)ω), −ω1 � ω � ω1, (2.3)

where ω1 ∈ [0, π/k] is the root of (2.2).

(3) If 0 � a < k/(k − 1) and b is outside of the stability oval (2.3), then (1.2) is unstable.

(4) If 0 � a < k/(k − 1) and b lies on the boundary (2.3) of the stability oval, then (1.2) is
stable (nonasymptotically).

Proof. We will use the D-decomposition method (parameter plane method) [16, 17]. A
characteristic polynomial for (1.2) is the following:

f(z) = zk − azk−1 − b. (2.4)

For any fixed value of a, the complex plane of the parameter b is divided into some regions
by a curve f(exp(iω)) = 0, that is,

exp(ikω) − a exp(i(k − 1)ω) − b = 0, −π � ω � π. (2.5)
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Hence,D-decomposition occurs in the plane of the complex parameter b by means of a curve

b(ω) = exp(ikω) − a exp(i(k − 1)ω), −π � ω � π. (2.6)

The example of the D-decomposition for k = 6, a = 0.7 is shown in Figure 2. From (2.6) we
obtain

|b(ω)|2 = 1 + a2 − 2a cosω. (2.7)

Therefore, |b| increases monotonically when ω runs from 0 to π . Similarly, |b| increases
monotonically whenω runs from 0 to (−π). Let us construct an increasing sequence (ωi)ri=0 of
all values ω ∈ [0, π], such that Im(b(ωi)) = Im(b(−ωi)) = 0. Here 1 � r � k, ω0 = 0, ωr = π .
Each pair of the curves (2.6) formed by motion ω on intervals [ωi, ωi+1], [−ωi+1,−ωi] creates a
new region ofD-decomposition of the complex plane of parameter b. This region necessarily
contains some real values of b as the function |b(ω)| is monotone on [0, π] and on [−π, 0]. Due
to the properties of the regions, if some inner point of this region is an asymptotically stable
point, then the whole region consists of asymptotically stable points. If a � k/(k − 1), then
according to Theorem 2.1 there are no stable points on the axis Im (b) = 0. Hence, there are no
stable points on the complex plane of parameter b. Let now a < k/(k − 1). Let ω1 ∈ [0, π/k]
be the root of (2.2). Then the unique D-decomposition region containing the real straight
line segment (2.1) is the oval with the boundary (2.3). Parts 1–3 of Theorem 2.2 are proved.
Direct checking shows that the derivative of a characteristic polynomial (2.4) is not equal to
zero on the boundary of the stability oval. Therefore, when the parameter b runs along the
boundary of the stability oval, all the corresponding roots z of the characteristic equation,
satisfying |z| = 1, are simple. Hence, (1.2) is stable (nonasymptotically). Theorem 2.2 is
proved.

Example 2.3. Let k = 6 and, also, (1) a = 0.2, (2) a = 0.75, and (3) a = 1.1. Let b = 0.33 exp (iα),
0 � α < 2π . Let us analyze the asymptotic behavior of the solutions of (1.2) for all values of
α. We construct three stability ovals for three values of a and also the circle b = 0.33 exp (iα)
(Figure 3). Theorem 2.2 and Figure 3 give the following result. (1) For a = 0.2, the equation
is asymptotically stable for any value of α. (2) For a = 0.75, the equation is asymptotically
stable for 2.0918 ∼= α0 < α < 2π − α0

∼= 4.1914, it is unstable for α /∈ [α0, 2π − α0], and it is
stable (nonasymptotically) for α = α0 and α = 2π − α0. (3) Finally, for a = 1.1, the equation is
unstable for any value of α.

Example 2.4. Let k = 6 and, also, (1) a = 0.2, (2) a = 0.75, and (3) a = 1.1. Let b =
r exp(i 19π/20), r � 0. Let us find the asymptotic behavior of (1.2) for all values of r.
We construct the beam b = r exp(i 19π/20) together with three stability ovals (Figure 3).
Theorem 2.2 and Figure 3 give the following result.

(1) For a = 0.2, the equation is asymptotically stable for 0 � r < r1 ∼= 0.8276, it is
unstable for r > r1, and it is stable (nonasymptotically) for r = r1.

(2) For a = 0.75, the equation is asymptotically stable for 0 � r < r2 ∼= 0.4080, it is
unstable for r > r2, and it is stable (nonasymptotically) for r = r2.

(3) Finally, for a = 1.1, the equation is stable for 0.1063 ∼= r31 < r < r32 ∼= 0.1944, it is
unstable for r /∈ [r31, r32], and it is stable (nonasymptotically) for r = r31, r = r32.
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Figure 2: D-decomposition of the complex plane of the parameter b for k = 6, a = 0.7.
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Figure 3: Stability ovals for k = 6, a = 0.2, and a = 0.75; a = 1.1. A circle b = 0.33 exp(iα) and a beam
b = r exp(i 19π/20) are constructed for Examples 2.3 and 2.4.

3. The Stability Cone for (1.2) with Complex Coefficients

The family of stability ovals depending on a ∈ k/(k − 1) forms a surface which we call the
stability cone.

Definition 3.1. The stability cone for delay k is a surface in a three-dimensional space
(Re(b), Im(b), z) with 0 � z � k/(k − 1), such that its intersection with any plane z = a (0 �
a � k/(k − 1)) is the stability oval (2.3).
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Figure 4: Stability cone for k = 6. The point on the cone is constructed for Example 3.3.

The stability cone is the image of the two-dimensional domain in the space (ω, a)

0 � a �
sin kω

sin (k − 1)ω
,

−π
k
� ω �

π

k

(3.1)

under the mapping into �3 by the functions

Re(b) = cos kω − a cos(k − 1)ω,

Im(b) = sin kω − a sin(k − 1)ω,

z = a.

(3.2)

The stability cone for k = 6 is presented in Figure 4.
Let us now study the problem of the stability of scalar equation (1.2) with complex

coefficients a, b. We consider the equation

xn = ρ1 exp (iα1)xn−1 + ρ2 exp (iα2)xn−k, (3.3)

with real nonnegative ρ1, ρ2 and real α1, α2. We set xn = yn exp (inα1). Then (3.3) becomes

yn = ρ1yn−1 + ρ2 exp (i(α2 − kα1))yn−k. (3.4)

Obviously, (3.4) is stable (asymptotically stable) if and only if (3.3) is stable (asymptotically
stable). The stability problem of (3.4) can be solved due to Theorem 2.2. Thus, we obtain the
following theorem.
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Theorem 3.2. Consider (3.3). Put

a = ρ1, b = ρ2 exp (i(α2 − kα1)). (3.5)

Construct the pointM = (Re(b), Im(b), a) in �3 .

(1) Equation (3.3) is asymptotically stable if and only if the point M lies inside the cone (3.2)
(if a = 0 and (Re(b))2 + (Im(b))2 < 1, then the point M is assumed to be the inner point
of the cone).

(2) If the point M lies outside the cone (3.2) or on its top Re(b) = −1/(k − 1), Im (b) =
0, a = k/(k − 1), then (3.3) is unstable.

(3) If the point M lies on the boundary of a cone (3.2), but not on its top, then (3.3) is stable
(nonasymptotically).

Example 3.3. Let us test the stability of the equation with complex coefficients

xn = σ exp
(
iπ

5

)
xn−1 + 0.7 exp

(
iπ

3

)
xn−k (3.6)

with a real parameter σ and a delay k = 6. Put first σ � 0. By Theorem 3.2, according to (3.5)
we calculate

b = 0.7 exp
(
i

(
π

3
− 6 · π

5

))
= 0.7 exp

(
i17π
15

)
. (3.7)

The vertical line (Re(b), Im(b), σ), (0 � σ < ∞) in �3 intersects the boundary of the stability
cone at z = σ0

∼= 0.3442 (Figure 4). To study the negative values of σ we rewrite (3.6):

xn = −σ exp
(
i6π
5

)
xn−1 + 0.7 exp

(
iπ

3

)
xn−k. (3.8)

By Theorem 3.2, according to (3.5) we calculate

b = 0.7 exp
(
i

(
π

3
− 6 · 6π

5

))
= 0.7 exp

(
i17π
15

)
. (3.9)

As the results (3.9), (3.7) coincide, we obtain the following answer: (3.6) is asymptotically
stable for (−σ0) < σ < σ0

∼= 0.3442, and it is unstable for σ /∈ [−σ0, σ0]. According to part 2 of
Theorem 3.2 for σ = σ0 or σ = −σ0, (3.6) is stable (nonasymptotically).

Example 3.4. We test (3.6) with a real parameter σ for stability. Unlike the previous example
let now the delay be odd: k = 7. For positive σ by Theorem 3.2, according to (3.5) we obtain

b = 0.7 exp
(
i

(
π

3
− 7 · π

5

))
= 0.7 exp

(
i14π
15

)
. (3.10)



8 International Journal of Mathematics and Mathematical Sciences

The vertical line (Re(b), Im(b), σ) in �3 intersects the boundary of the stability cone at z =
σ0

∼= 0.3377. To study the negative values of σ similarly to the previous example, we obtain

b = 0.7 exp
(
i

(
π

3
− 7 · 6π

5

))
= 0.7 exp

(
i29π
15

)
. (3.11)

The results (3.10), (3.11) do not coincide. For (3.11) the vertical line (Re(b), Im(b), σ), (0 � σ <
∞) intersects the boundary of the stability cone at z = σ1

∼= 0.3002. We obtain the following
answer: (3.6) with k = 7 is asymptotically stable if (−0.3002) ∼= −σ1 < σ < σ0

∼= 0.3377, it is
unstable if σ /∈ [−σ1, σ0], and it is stable (nonasymptotically) for σ = σ0 or σ = −σ1.

Comparison of Examples 3.3 and 3.4 reveals the difference in the behavior of (3.3) for
even and odd values of the delay k. Let us compare the stability of (1.1) and the following
equations:

xn = −Axn−1 + Bxn−k , (3.12)

xn = −Axn−1 − Bxn−k . (3.13)

Substituting xn = (−1)nyn reduces (1.1) to

yn = −Ayn−1 + (−1)kByn−k. (3.14)

Equations (1.1) and (3.14) are simultaneously stable or unstable. Therefore, we have the
following symmetry property of the stability region for (1.1).

Theorem 3.5. For even delays k the (asymptotic) stability of (1.1) implies the (asymptotic) stability
of (3.12) and vice versa. For odd k the (asymptotic) stability of (1.1) implies the (asymptotic) stability
of (3.13) and vice versa.

Similar properties of symmetry have been specified in [11, 15] for the scalar equation
(1.2) with real a, b.

4. A System of Inequalities for Checking the Stability of (3.3)

In the previous sections we used some geometric procedures. In this section we construct
a system of inequalities in order to check the stability of (3.3). Henceforth we assume 0 �
arg(z) < 2π for a complex variable z.

Theorem 4.1.

(1) If ρ1 < 1 − ρ2, then (3.3) is asymptotically stable.

(2) If 1 − ρ2 � ρ1 < min(1 + ρ2, k/(k − 1)), then for the asymptotic stability of (3.3) it is
necessary and sufficient to fulfill simultaneously the following conditions (H1), (H2):

ρ2 <
√
ρ21 + 1 − 2ρ1 cosω1, (H1)
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where ω1 ∈ [0, π/k] is the root of the equation

ρ1 =
sin kω

sin (k − 1)ω
,

∣∣π − arg
(
exp(i(α2 − kα1))

)∣∣ < π − (k − 1)arccos
1 + ρ21 − ρ22

2ρ1
− arccos

1 − ρ21 − ρ22
2ρ1ρ2

.

(H2)

(3) If ρ1 � min (1 + ρ2, k/(k − 1)), then (3.3) is not asymptotically stable.

Proof. The stability of (3.3) is equivalent to the stability of (3.4), so we will work with (3.4).

(1) For ρ1 < 1−ρ2 by Theorem 2.2 the stability oval exists and the circle of radius ρ2 lies
completely inside the oval. Therefore, Theorem 2.2 implies the asymptotic stability
of (3.4). Part 1 of Theorem is proved.

(2) Let 1 − ρ2 � ρ1 < min (1 +æ2, k/(k − 1)). Let us consider two cases.

Case 1 ((1 − ρ2) � ρ1 < 1). In this case, the stability oval exists by Theorem 2.2, and the origin
of the coordinates lies inside the oval. For (3.4) to be asymptotically stable, it is necessary and
sufficient to satisfy the two following conditions. The first one is that the circle of radius ρ2
should intersect the stability oval. It is equivalent to (H1). The second condition is that the
argument of a point exp(i(α2 −kα1)) should be between the arguments of the two crosspoints
M1,M2 of a circle of radius ρ2 with the stability oval (2.3). Let us assume that Im(M1) > 0,
and let the parameter ω correspond to the point M1. We obtain

arg(M1) = arg
(
exp(ikω) − ρ1 exp(i(k − 1)ω)

)
= (k − 1)ω + arg

(
exp (iω) − ρ1

)
(4.1)

from (2.3). But we also obtain

cosω =
1 + ρ21 − ρ22

2ρ1
(4.2)

from (2.7). Equalities (4.1), (4.2) give

arg(M1) = (k − 1)arccos
1 + ρ21 − ρ22

2ρ1
+ arccos

1 − ρ21 − ρ22
2ρ1ρ2

. (4.3)

It follows from (4.3) that the second requirement is equivalent to (H2). Part 2 of Theorem 4.1
is proved in Case 1.

Case 2 (1 � ρ1 < min(1+ρ2, k/(k−1))). By virtue of the inequality ρ1 < k/(k−1), the stability
oval exists, and, since ρ1 � 1, the origin does not lie inside the oval. The same requirements as
in the previous case lead to the same conditions (H1), (H2). Part 2 of the Theorem is proved.

(3) Let ρ1 � min(1 + ρ2, k/(k − 1)). We consider two cases.

Case 1 (1 + ρ2 � ρ1 < k/(k − 1)). In this case the stability oval exists by Theorem 2.2,
and, by virtue of the inequality ρ1 � 1, the origin does not lie inside the oval. Due to the
inequality ρ2 � ρ1 − 1, no point of the circle of radius ρ2 lies inside the oval and so (3.4) is not
asymptotically stable by Theorem 2.2.
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Case 2 (ρ1 � k/(k − 1)). In this case, (3.4) is unstable by Theorem 2.2.

Theorem 4.1 is proved.

As we see, the text of Theorem 4.1 does not contain any geometric terms. However,
Theorem 3.2 has a considerable advantage over Theorem 4.1 because of its simplicity and
geometric visualization. That is why in the future examples we prefer describing the stability
of matrix equation (1.1) in geometric terms.

5. The Stability Cone for the Matrix Equation with Simultaneously
Triangularizable Matrices

In this section we consider (1.1) with simultaneously triangularizable matrices A, B.

Theorem 5.1. Let A,B, S ∈ �m×m and S−1AS = AT and S−1BS = BT , where AT, BT are the lower
triangular matrices with elements, respectively, λjs, μjs(1 � j, s � m). Let

bj =
∣∣μjj

∣∣ exp (
i
(
arg

(
μjj

) − k arg
(
λjj

)))
, aj =

∣∣λjj

∣∣ (
1 � j � m

)
, (5.1)

and let the pointsMj in �3 be constructed by

Mj =
(
Re

(
bj
)
, Im

(
bj
)
, aj

) (
1 � j � m

)
. (5.2)

Then (1.1) is asymptotically stable if and only if for any j (1 � j � m) the point Mj lies inside cone
(3.2).

If for some j (1 � j � m) the pointMj lies outside cone (3.2), then (1.1) is unstable.

Proof. In (1.1) we substitute xn = Syn and multiply the equation by S−1. We obtain

yn = ATyn−1 + BTyn−k (5.3)

with lower triangular matrices AT, BT . By virtue of the nondegeneracy of matrix S, the
stability of (5.3) is equivalent to the stability of (1.1). Let us assume that yn = (y(1)

n , . . . , y
(m)
n )T .

The system (5.3) consists ofm scalar equations

y
(j)
n = λjjy

(j)
n−1 + μjjy

(j)
n−k +

j−1∑
s=1

λjsy
(s)
n−1 +

j−1∑
s=1

μjsy
(s)
n−k

(
1 � j � m

)
. (5.4)

As usual,
∑0

s=1 = 0. Equation (5.4) is called exponentially stable if there are real C > 0, q ∈
(0, 1), such that for any solution y

(j)
n the estimate

∣∣∣y(j)
n

∣∣∣ � Cqn max
(−k)�u�1, 1�s�j

∣∣∣y(s)
u

∣∣∣ (5.5)
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holds. The exponential stability is equivalent to the asymptotic stability for the equations
under consideration. It is more convenient to prove the exponential stability. Let the points
(5.2) (1 � j � m) lie inside the cone (3.2). Due to Theorem 3.2, all equations of the form

y
(j)
n = λjjy

(j)
n−1 + μjjy

(j)
n−k

(
1 � j � m

)
(5.6)

are exponentially stable. Let us prove by induction on j that (5.4) are exponentially stable.
For j = 1, (5.4) coincides with (5.6), so it is exponentially stable. Let, for any r < j, (5.4) with
r instead of j be exponentially stable. Then (5.4) is represented in the form

y
(j)
n = λjjy

(j)
n−1 + μjjy

(j)
n−k + g

(j)
n , (5.7)

where |g(j)
n | has an estimate of the form (5.5) by the induction assumption. Assuming zn =

(y(j)
n , y

(j)
n−1, . . . , y

(j)
n−k)

T , we represent (5.7) in the form

zn = Gzn−1 + hn, (5.8)

where G ∈ �k×k , G is a stable matrix, and |hn| has an estimate of the form (5.5). From (5.8)we
obtain zn = Gnz0+

∑n
r=1 G

n−rhr , which implies the exponential stability of (5.4). The induction
is finished, and asymptotic stability of (1.1) is proved.

Let us assume that some point (5.2) does not lie strictly inside the cone. Then, for the
initial data in (5.4), we assume that y(s)

−n = 0 for any s, n, such that 1 � s � j, 1 � n � k. Thus,
(5.4) becomes (5.6). If the point (5.2) lies on the cone boundary, then (5.6) has a trajectory
which does not tend to zero because the characteristic polynomial of (5.6) has a root z such
that |z| = 1. If some point (5.2) lies outside the cone, then by Theorem 3.2 the equation has
unlimited trajectories. Theorem 5.1 is proved.

Remark 5.2. If no points (5.2) lie outside the stability cone, but some of them lie on the cone
boundary, then (1.1) can be stable (nonasymptotically) or unstable.

Remark 5.3. The stability cones (Figure 5) are constructed for each delay k independently of
the dimension m in (1.1). If k → ∞, then the intersection of all stability cones is the right
circular cone with the base radius 1 and the height 1. The interior of this cone is the “absolute
stability domain,” that is, the stability domain for any delay.

The next theorem, which is the evident consequence of Theorems 4.1 and 5.1, will
establish the asymptotic stability criterion in the form of inequalities formatrix equation (1.1).

Theorem 5.4. Let A,B, S ∈ �m×m and S−1AS = AT and S−1BS = BT , where AT, BT are the lower
triangular matrices with elements λjs, μjs (1 � j, s � m), respectively. Let

ρ1j =
∣∣λjj

∣∣, α1j = arg
(
λjj

)
, ρ2j =

∣∣μjj

∣∣, α2j = arg
(
μjj

) (
1 � j � m

)
. (5.9)
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Figure 5: Stability cones for k = 2, 3, 4, 5.

Construct a set AS ⊆ P = {j ∈ �+ : 1 � j � m} by the following rules (cf. Theorem 4.1).

(1) If ρ1j < 1 − ρ2j , then j ∈ AS.

(2) If 1 − ρ2j � ρ1j < min(1 + ρ2j , k/(k − 1)), then for j ∈ AS it is necessary and sufficient to
fulfill simultaneously the following conditions (H1j), (H2j):

ρ2j <
√
ρ21j + 1 − 2ρ1j cos ω1j , (H1j)

where ω1j ∈ [0, π/k] is the root of the equation

ρ1j =
sinkω

sin (k − 1)ω
,

∣∣π − arg
(
exp

(
i
(
α2j − kα1j

)))∣∣ < π − (k − 1)arccos
1 + ρ21j − ρ22j

2ρ1j
− arccos

1 − ρ21j − ρ22j

2ρ1jρ2j
.

(H2j)

(3) If ρ1j � min(1 + ρ2j , k/(k − 1)), then j /∈ AS.
Equation (1.1) is asymptotically stable if and only if AS = P .

6. Examples of the Stability Oval and the Cone for Matrix Equations

Example 6.1. Consider the equation

xn = 1.0309Axn−1 + (0.9680B)sxn−6, (6.1)
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Figure 6: The stability oval and pointsM(s) for Example 6.1.

where

A =

(
cos α − sinα

sin α cosα

)
, B =

(
cos β − sin β

sin β cos β

)
(6.2)

with α = 0.0314, β = 0.1745. Let us find out for what values of s ∈ �+ (6.1) is stable. Matrices
A,B are commuting; therefore, they are simultaneously triangularizable. The eigenvalues of
matrices A,B are λ1,2 = exp(±0.0314i) and μ1,2 = exp(±0.1745i) correspondingly. In Figure 6
the stability oval is shown, which is the section of the stability cone (3.2) on the level z =
1.0309. By Theorem 5.1 we have to know whether the points

M(s) = (0.9680s cos (0.1745s − 0.1884), 0.9680s sin (0.1745s − 0.1884)) (6.3)

lie inside the cone. Figure 6 illustrates that points M(s) enter the oval of stability twice (s =
53, s = 87) and leave it twice (s = 58, s = 94). The conclusion is that the system (6.1), (6.2) is
stable for 53 � s � 58 and for 87 � s � 94 and is unstable for all the other values of s.

Example 6.2. Consider the equation

xn =
1
3
(Asxn−1 +Axn−6), (6.4)

where

A =

(
0 1.0150

−1.0150 2.0300

)
. (6.5)
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Figure 7: The stability cone and points M(s) for Example 6.2. Grey points M(s) (1 � s � 49) are located
inside the cone therefore (6.4) is stable. Dark points M(s) (s � 50) are located outside therefore (6.4) is
unstable.

Let us find out for what values of s ∈ �+ (6.4) is stable. The eigenvalues of A are
λ1,2 = 1.0150 exp(±0.0374i). Stability ovals are symmetric about the real axis. Therefore, by
Theorem 5.1, only points

M(s) =
(
0.3383 cos(0.0374(1 − 6s)), 0.3383 sin(0.0374(1 − 6s)),

1.0150s

3

)
(6.6)

(see Figure 7) should be checked. Figure 7 displays that points M(s) for 1 � s � 49 are inside
the stability cone (3.2) and for s � 50 points are outside of the stability cone. The conclusion
is that (6.4) is stable for 1 � s � 49 and it is unstable for s � 50.

7. Conclusion

The stability analysis for (1.1) in �m can be reduced to the pole placement problem for a
polynomial of degree km. Our geometric approach allows us to reduce the dimension. To use
the approach, we need to know the eigenvalues of A,B. This is the problem of finding the
roots of a polynomial of degreem. Using these eigenvalues, we get a finite sequence of points
in �3 such that their position with respect to the stability cone allows us to make a conclusion
about the stability of (1.1).

In our future work we intend to analyze the stability of equation xn = Axn−m + Bxn−k
with two delays m, k with simultaneously triangularizable matrices A,B. The scalar version
of this equation was examined in [2, 3, 18]. The stability cone for the matrix differential
equation ẋ(t) = Ax(t) + Bx(t − τ) was introduced in [19].

Acknowledgment

The authors are indebted to K. Chudinov, I. Goldsheid, and D. Sheglov for very useful
comments.



International Journal of Mathematics and Mathematical Sciences 15

References

[1] A. T. Fam and J. S. Meditch, “A canonical parameter space for linear systems design,” IEEE
Transactions on Automatic Control, vol. 23, no. 3, pp. 454–458, 1978.

[2] Y. P. Nikolaev, “The geometry ofD-decomposition of a two-dimensional plane of arbitrary coefficients
of the characteristic polynomial of a discrete system,” Automation and Remote Control, vol. 65, no. 12,
pp. 1904–1914, 2004.

[3] M. M. Kipnis and R. M. Nigmatulin, “Stability of trinomial linear difference equations with two
delays,” Automation and Remote Control, vol. 65, pp. 1710–1723, 2004.

[4] M. M. Kipnis and D. A. Komissarova, “A note on explicit stability conditions for autonomous higher
order difference equations,” Journal of Difference Equations and Applications, vol. 13, no. 5, pp. 457–461,
2007.

[5] V. M. Gilyazev andM. M. Kipnis, “Convexity of a sequence of coefficients and the stability of discrete
systems,” Automation and Remote Control, vol. 70, pp. 1856–1861, 2009.

[6] I. S. Levitskaya, “A note on the stability oval for xn+1 = xn +Axn−k ,” Journal of Difference Equations and
Applications, vol. 11, no. 8, pp. 701–705, 2005.

[7] S. Guo, X. Tang, and L. Huang, “Stability and bifurcation in a discrete system of two neurons with
delays,” Nonlinear Analysis: Real World Applications, vol. 9, no. 4, pp. 1323–1335, 2008.

[8] E. Kaslik and S. Balint, “Bifurcation analysis for a two-dimensional delayed discrete-time Hopfield
neural network,” Chaos, Solitons & Fractals, vol. 34, no. 4, pp. 1245–1253, 2007.

[9] J. Diblı́k and D. Y. Khusainov, “Representation of solutions of discrete delayed system x(k + 1) =
Ax(k)+Bx(k−m)+f(k)with commutativematrices,” Journal of Mathematical Analysis and Applications,
vol. 318, no. 1, pp. 63–76, 2006.

[10] H. Matsunaga, “Stability regions for a class of delay difference systems,” in Differences and Differential
Equations, vol. 42 of Fields Institute Communications, pp. 273–283, American Mathematical Society,
Providence, RI, USA, 2004.

[11] H. Matsunaga and C. Hajiri, “Exact stability sets for a linear difference system with diagonal delay,”
Journal of Mathematical Analysis and Applications, vol. 369, no. 2, pp. 616–622, 2010.

[12] E. Kaslik, “Stability results for a class of difference systems with delay,” Advances in Difference
Equations, vol. 2009, Article ID 938492, 13 pages, 2009.

[13] R. Horn and C. Johnson,Matrix Theory, Cambridge University Press, Cambrige, UK, 1986.
[14] S. A. Kuruklis, “The asymptotic stability of x(n + 1) − ax(n) + bx(n − k) = 0,” Journal of Mathematical

Analysis and Applications, vol. 188, no. 3, pp. 719–731, 1994.
[15] V. G. Papanicolaou, “On the asymptotic stability of a class of linear difference equations,”Mathematics

Magazine, vol. 69, no. 1, pp. 34–43, 1996.
[16] E. N. Gryazina and B. T. Polyak, “Stability regions in the parameter space: D-decomposition

revisited,” Automatica, vol. 42, no. 1, pp. 13–26, 2006.
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