Research Article

Topological Aspects of the Product of Lattices

Carmen Vlad

Department of Mathematics, Pace University, Pleasantville, NY 10570, USA
Correspondence should be addressed to Carmen Vlad, cvlad@pace.edu
Received 8 June 2011; Accepted 23 July 2011
Academic Editor: Alexander Rosa
Copyright © 2011 Carmen Vlad. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let \mathbf{X} be an arbitrary nonempty set and \mathbf{L} a lattice of subsets of \mathbf{X} such that $\emptyset, \mathbf{X} \in \mathbf{L} . \mathbf{A}(\mathbf{L})$ denotes the algebra generated by \mathbf{L}, and $\mathbf{M}(\mathbf{L})$ denotes those nonnegative, finite, finitely additive measures on $\mathbf{A}(\mathbf{L})$. In addition, $\mathbf{I}(\mathbf{L})$ denotes the subset of $\mathbf{M}(\mathbf{L})$ which consists of the nontrivial zeroone valued measures. The paper gives detailed analysis of products of lattices, their associated Wallman spaces, and products of a variety of measures.

1. Introduction

It is well known that given two measurable spaces and measures on them, we can obtain the product measurable space and the product measure on that space. The purpose of this paper is to give detailed analysis of product lattices and their associated Wallman spaces and to investigate how certain lattice properties carry over to the product lattices. In addition, we proceed from a measure theoretic point of view. We note that some of the material presented here has been developed from a filter approach by Kost, but the measure approach lends to a generalization of measures and to an easier treatment of topological style lattice properties.

2. Background and Notations

In this section we introduce the notation and terminology that will be used throughout the paper. All is fairly standard, and we include it for the reader's convenience.

Let \mathbf{X} be an arbitrary nonempty set and \mathbf{L} a lattice of subsets of \mathbf{X} such that $\emptyset, \mathbf{X} \in \mathbf{L}$. A lattice L is a partially ordered set any two elements (x, y) of which have both $\sup (x, y)$ and $\inf (x, y)$.
$\mathbf{A}(\mathbf{L})$ denotes the algebra generated by $\mathbf{L} ; \sigma(\mathbf{L})$ is the σ algebra generated by $\mathbf{L} ; \delta(\mathbf{L})$ is the lattice of all countable intersections of sets from $\mathrm{L} ; \tau(\mathrm{L})$ is the lattice of arbitrary intersections of sets from $\mathbf{L} ; \rho(\mathbf{L})$ is the smallest class closed under countable intersections and unions which contains \mathbf{L}.

2.1. Lattice Terminology

The lattice \mathbf{L} is called:
$\boldsymbol{\delta}$-lattice if \mathbf{L} is closed under countable intersections; complement generated if $L \in \mathbf{L}$ implies $L=\cap L_{n}^{\prime}, n=1, \ldots, \infty, L_{n} \in \mathbf{L}$ (where prime denotes the complement); disjunctive if for $x \in \mathbf{X}$ and $L_{1} \in \mathbf{L}$ such that $x \notin L_{1}$ there exists $L_{2} \in \mathbf{L}$ with $x \in L_{2}$ and $L_{1} \cap L_{2}=\emptyset$; separating (or $\mathbf{T}_{\mathbf{1}}$) if $x, y \in \mathbf{X}$ and $x \neq y$ implies there exists $L \in \mathbf{L}$ such that $x \in L, y \notin L ; \mathbf{T}_{2}$ if for $x, y \in \mathbf{X}$ and $x \neq y$ there exist $L_{1}, L_{2} \in \mathbf{L}$ such that $x \in L_{1}^{\prime}, y \in L_{2}^{\prime}$, and $L_{1}^{\prime} \cap L_{2}^{\prime}=\emptyset$; normal if for any $L_{1}, L_{2} \in \mathbf{L}$ with $L_{1} \cap L_{2}=\emptyset$ there exist $L_{3}, L_{4} \in \mathbf{L}$ with $L_{1} \subset L_{3}^{\prime}, L_{2} \subset L_{4}^{\prime}$, and $L_{3}^{\prime} \cap L_{4}^{\prime}=\emptyset$; compact if for any collection $\left\{L_{\alpha}\right\}$ of sets of \mathbf{L} with $\cap_{\alpha} L_{\alpha}=\emptyset$, there exists a finite subcollection with empty intersection; countably compact if for any countable collection $\left\{L_{\alpha}\right\}$ of sets of \mathbf{L} with $\cap_{\alpha} L_{\alpha}=\emptyset$, there exists a finite subcollection with empty intersection.

2.2. Measure Terminology

$\mathbf{M}(\mathbf{L})$ denotes those nonnegative, finite, finitely additive measures on $\mathbf{A}(\mathbf{L})$.
A measure $\mu \in \mathbf{M}(\mathbf{L})$ is called:
$\boldsymbol{\sigma}$-smooth on \mathbf{L} if for all sequences $\left\{L_{n}\right\}$ of sets of \mathbf{L} with $L_{n} \downarrow \emptyset, \mu\left(L_{n}\right) \rightarrow 0$;
$\boldsymbol{\sigma}$-smooth on $\mathbf{A}(\mathbf{L})$ if for all sequences $\left\{A_{n}\right\}$ of sets of $\mathbf{A}(\mathbf{L})$ with $A_{n} \downarrow \emptyset, \mu\left(A_{n}\right) \rightarrow 0$, that is, countably additive.

L-regular if for any $A \in \mathbf{A}(\mathbf{L})$,

$$
\begin{equation*}
\mu(A)=\sup \{\mu(L) \mid L \subset A, L \in \mathbf{L}\} \tag{2.1}
\end{equation*}
$$

We denote by $\mathbf{M}_{R}(\mathbf{L})$ the set of \mathbf{L}-regular measures of $\mathbf{M}(\mathbf{L}) ; \mathbf{M}_{\sigma}(\mathbf{L})$ the set of σ-smooth measures on \mathbf{L}, of $\mathbf{M}(\mathbf{L}) ; \mathbf{M}^{\sigma}(\mathbf{L})$ the set of σ-smooth measures on $\mathbf{A}(\mathbf{L})$ of $\mathbf{M}(\mathbf{L}) ; \mathbf{M}_{R}^{\sigma}(\mathbf{L})$ the set of L-regular measures of $\mathbf{M}^{\sigma}(\mathbf{L})$.

In addition, $\mathbf{I}(\mathbf{L}), \mathbf{I}_{R}(\mathbf{L}), \mathbf{I}_{\sigma}(\mathbf{L}), \mathbf{I}^{\sigma}(\mathbf{L}), \mathbf{I}_{R}^{\sigma}(\mathbf{L})$ are the subsets of the corresponding \mathbf{M}^{\prime} s which consist of the nontrivial zero-one valued measures.

Finally, let \mathbf{X}, \mathbf{Y} be abstract sets and $\mathbf{L}_{\mathbf{1}}$ a lattice of subsets of \mathbf{X} and $\mathbf{L}_{\mathbf{2}}$ a lattice of subsets of \mathbf{Y}. Let $\mu_{1} \in \mathbf{M}\left(\mathbf{L}_{1}\right)$ and $\mu_{2} \in \mathbf{M}\left(\mathbf{L}_{2}\right)$.

The product measure $\mu_{1} \times \mu_{2} \in \mathbf{M}\left(\mathbf{L}_{\mathbf{1}} \times \mathbf{L}_{2}\right)$ is defined by

$$
\begin{equation*}
\left(\mu_{1} \times \mu_{2}\right)\left(L_{1} \times L_{2}\right)=\mu_{1}\left(L_{1}\right) \mu_{2}\left(L_{2}\right) \quad \forall L_{1} \in \mathbf{A}\left(\mathbf{L}_{1}\right), L_{2} \in \mathbf{A}\left(\mathbf{L}_{2}\right) \tag{2.2}
\end{equation*}
$$

2.3. Lattice-Measure Correspondence

The support of $\mu \in \mathbf{M}(\mathbf{L})$ is $S(\mu)=\cap\{L \in \mathbf{L} / \mu(L)=\mu(X)\}$.
In case $\mu \in \mathbf{I}(\mathbf{L})$ then the support is $S(\mu)=\cap\{L \in \mathbf{L} / \mu(L)=1\}$.
With this notation and in light of the above correspondences, we now note:
For any $\mu \in \mathbf{I}(\mathbf{L})$, there exists $v \in \mathbf{I}_{R}(\mathbf{L})$ such that $\mu \leq v$ on \mathbf{L} (i.e., $\mu(L) \leq \mathcal{v}(L)$ for all $L \in \mathbf{L})$. For any $\mu \in \mathbf{I}(\mathbf{L})$, there exists $\nu \in \mathbf{I}_{R}\left(\mathbf{L}^{\prime}\right)$ such that $\mu \leq \nu$ on \mathbf{L}^{\prime}.
\mathbf{L} is compact if and only if $S(\mu) \neq \emptyset$ for every $\mu \in \mathbf{I}_{R}(\mathbf{L}) . \mathbf{L}$ is countably compact if and only if $\mathbf{I}_{R}(\mathbf{L})=\mathbf{I}_{R}^{\sigma}(\mathbf{L})$. \mathbf{L} is normal if and only if for each $\mu \in \mathbf{I}(\mathbf{L})$, there exists a unique $v \in \mathbf{I}_{R}(\mathbf{L})$ such that $\mu \leq v$ on \mathbf{L}. \mathbf{L} is regular if and only if whenever $\mu_{1}, \mu_{2} \in \mathbf{I}(\mathbf{L})$ and $\mu_{1} \leq \mu_{2}$ on \mathbf{L}, then $S\left(\mu_{1}\right)=S\left(\mu_{2}\right) . \mathbf{L}$ is replete if and only if for any $\mu \in \mathbf{I}_{R}^{\sigma}(\mathbf{L}), S(\mu) \neq \emptyset$. L is prime-complete if and only if for any $\mu \in \mathbf{I}_{\boldsymbol{\sigma}}(\mathbf{L}), S(\mu) \neq \emptyset$.
Finally, if μ_{x} is the measure concentrated at $x \in \mathbf{X}$, then $\mu_{x} \in \mathbf{I}_{R}(\mathbf{L})$, for all $x \in \mathbf{X}$ if and only if L is disjunctive.

For further results and related matters see [1-3].

2.4. The General Wallman Space and Wallman Topology

The Wallman topology in $\mathbf{I}_{\mathbf{R}}^{\sigma}(\mathbf{L})$ is obtained by taking all

$$
\begin{equation*}
W_{\sigma}(L)=\left\{\mu \in \mathbf{I}_{\mathbf{R}}^{\sigma}(\mathbf{L}) / \mu(L)=1\right\}, \quad L \in \mathbf{L} \tag{2.3}
\end{equation*}
$$

as a base for the closed sets in $\mathbf{I}_{\mathbf{R}}^{\sigma}(\mathbf{L})$ and then $\mathbf{I}_{\mathbf{R}}^{\sigma}(\mathbf{L})$ is called the general Wallman space associated with \mathbf{X} and \mathbf{L}. Assuming \mathbf{L} is disjunctive, $\mathbf{W}_{\sigma}(\mathbf{L})=\left\{W_{\sigma}(L) / L \in \mathbf{L}\right\}$ is a lattice in $\mathbf{I}_{R}^{\sigma}(\mathbf{L})$, isomorphic to \mathbf{L} under the map $L \rightarrow W_{\sigma}(L), L \in \mathbf{L} . \mathbf{W}_{\sigma}(\mathbf{L})$ is replete and a base for the closed sets $\mathbf{t} \mathbf{W}_{\sigma}(\mathrm{L})$, all arbitrary intersections of sets of $\mathbf{W}_{\sigma}(\mathbf{L})$.

If $A \in \mathbf{A}(\mathbf{L})$, then $W_{\sigma}(A)=\left\{\mu \in \mathbf{I}_{\mathbf{R}}^{\sigma}(\mathbf{L}) / \mu(A)=1\right\}$ and the following statements are true:

$$
\begin{gather*}
W_{\sigma}(A \cup B)=W_{\sigma}(A) \cup W_{\sigma}(B), \\
W_{\sigma}(A \cap B)=W_{\sigma}(A) \cap W_{\sigma}(B), \\
W_{\sigma}\left(A^{\prime}\right)=W_{\sigma}(A)^{\prime} \tag{2.4}\\
A \supset B \text { iff } W_{\sigma}(A) \supset W_{\sigma}(B), \\
\mathbf{A}\left(\mathbf{W}_{\sigma}(\mathbf{L})\right)=\mathbf{W}_{\sigma}(\mathbf{A}(\mathbf{L}))
\end{gather*}
$$

The Induced Measure
Let $\mu \in \mathbf{I}_{\mathbf{R}}^{\sigma}(\mathbf{L})$ and consider the induced measure $\underline{\mu} \in \mathbf{I}_{\mathbf{R}}^{\sigma}\left(\mathbf{W}_{\boldsymbol{\sigma}}(\mathbf{L})\right)$, defined by

$$
\begin{equation*}
\underline{\mu}\left(W_{\sigma}(A)\right)=\mu(A), \quad A \in \mathbf{A}(\mathbf{L}) . \tag{2.5}
\end{equation*}
$$

The map $\mu \rightarrow \underline{\mu}$ is a bijection between $\mathbf{I}_{\mathbf{R}}^{\sigma}(\mathbf{L})$ and $\mathbf{I}_{\mathbf{R}}^{\sigma}\left(\mathbf{W}_{\sigma}(\mathbf{L})\right)$.

3. The Case of Finite Product of Lattices

3.1. Notations

Let \mathbf{X}, \mathbf{Y} be abstract sets and \mathbf{L}_{1} a lattice of subsets of \mathbf{X} and $\mathbf{L}_{\mathbf{2}}$ a lattice of subsets of \mathbf{Y}. We denote:
(1) $\mathbf{L}^{*}=\mathbf{L}_{1} \times \mathbf{L}_{2}=\left\{L_{1} \times L_{2} / L_{1} \in \mathbf{L}_{1}, L_{2} \in \mathbf{L}_{2}\right\}$,
(2) $\mathbf{L}=\mathbf{L}\left(\mathbf{L}^{*}\right)$, the lattice generated by \mathbf{L}^{*}. ${ }^{\text {jlist-item }}$ ¿ilabel $/ i$

We have the following:
(3) $\mathbf{A}\left(\mathbf{L}_{1}\right) \times \mathbf{A}\left(\mathbf{L}_{2}\right)=\mathbf{A}\left(\mathbf{L}_{1} \times \mathbf{L}_{2}\right)$,
(4) $\mathbf{A}\left(\mathbf{L}^{*}\right)=\mathbf{A}(\mathbf{L})$,
(5) $\mathbf{S}_{\mathbf{L}}(\mu)=\mathbf{S}_{\mathbf{L}^{*}}(\mu)$,
(6) $\mathbf{I}_{\boldsymbol{\sigma}}\left(\mathbf{L}^{*}\right)=\mathbf{I}_{\boldsymbol{\sigma}}(\mathbf{L})$,
(7) $\mathbf{I}_{\mathbf{R}}\left(\mathbf{L}^{*}\right)=\mathbf{I}_{\mathbf{R}}(\mathbf{L})$.

3.2. Results

Theorem 3.1 (the finite product of lattices/regular measures). Let \mathbf{X}, \mathbf{Y} be abstract sets and let $\mathbf{L}_{1}, \mathbf{L}_{\mathbf{2}}$ be lattices of subsets of \mathbf{X} and \mathbf{Y}, respectively. Then $\mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{\mathbf{1}}\right) \times \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{\mathbf{2}}\right)=\mathbf{I}_{\mathbf{R}}(\mathbf{L})$.
Proof. For $A \in \mathbf{A}\left(\mathbf{L}_{1}\right) \times \mathbf{A}\left(\mathbf{L}_{2}\right)=\mathbf{A}\left(\mathbf{L}_{\mathbf{1}} \times \mathbf{L}_{\mathbf{2}}\right)$, we have $A=\bigcup_{i=1}^{n} A_{1}^{i} \times A_{2}^{i}$, disjoint union and $A_{1}^{i} \in \mathbf{A}\left(\mathbf{L}_{1}\right), A_{2}^{i} \in \mathbf{A}\left(\mathbf{L}_{2}\right)$.

Let $\mu \in \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{\mathbf{1}}\right)$ and $v \in \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{\mathbf{2}}\right)$ and consider $\mu \times v$ defined on $\mathbf{A}\left(\mathbf{L}_{\mathbf{1}}\right) \times \mathbf{A}\left(\mathbf{L}_{2}\right)$.
If $\mu \times v(A)=1$, then $\mu \times v\left(A_{1}^{i} \times A_{2}^{i}\right)=1$ for some i.
Then $\mu\left(A_{1}^{i}\right) v\left(A_{2}^{i}\right)=1$, and since μ and v are zero-one valued measures, $\mu\left(A_{1}^{i}\right)=1$ and $v\left(A_{2}^{i}\right)=1$. By the regularity of μ and v there exist $L_{1} \subset A_{1}^{i}, L_{1} \in \mathbf{L}_{1}$ with $\mu\left(L_{1}\right)=1$ and $L_{2} \subset A_{2}^{i}$, $L_{2} \in \mathrm{~L}_{2}$ with $\mathcal{v}\left(L_{2}\right)=1$.

Therefore $\mu \times v\left(L_{1} \times L_{2}\right)=\mu\left(L_{1}\right) v\left(L_{2}\right)=1$ and $L_{1} \times L_{2} \in \mathbf{L}^{*}$.
If we let $M=L_{1} \times L_{2} \subset A_{1}^{i} \times A_{2}^{i} \subset A$, then

$$
\begin{equation*}
\mu \times v(A)=\sup \left\{\mu \times v(M) / M \subset A, M \in \mathbf{L}^{*}\right\} \Longrightarrow \mu \times v \in \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}^{*}\right) \tag{3.1}
\end{equation*}
$$

Conversely, let $\mu \in \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}^{*}\right)=\mathbf{I}_{\mathbf{R}}(\mathbf{L})$ and define μ_{1} on $\mathbf{A}\left(\mathbf{L}_{\mathbf{1}}\right)$ by $\mu_{1}(A)=\mu(A \times \mathbf{Y})$, $A \in \mathbf{A}\left(\mathbf{L}_{1}\right)$. Since μ is a zero-one measure on $\mathbf{A}\left(\mathbf{L}_{\mathbf{1}} \times \mathbf{L}_{2}\right)$, it follows that μ_{1} is a zero-one measure on $\mathbf{A}\left(\mathbf{L}_{1}\right)$, that is, $\mu_{1} \in \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{\mathbf{1}}\right)$.

Suppose $\mu_{1}(A)=\mu(A \times \mathbf{Y})=1$; there exists $A \times \mathbf{Y} \supset L_{1} \times L_{2} \in \mathbf{L}^{*}$ such that $\mu\left(L_{1} \times \mathbf{Y}\right)=1$ and $\mu\left(L_{1} \times L_{2}\right)=1$. Then $\mu_{1}\left(L_{1}\right)=\mu\left(L_{1} \times \mathbf{Y}\right)=1$ and $L_{1} \subset A$ which shows that $\mu_{1} \in \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{\mathbf{1}}\right)$. Similarly take μ_{2} on $\mathbf{A}\left(\mathbf{L}_{2}\right)$ defined by $\mu_{2}(B)=\mu(\mathbf{X} \times B), B \in \mathbf{A}\left(\mathbf{L}_{2}\right)$.

Then, as before μ_{2} is regular on L_{2}.
Finally for any $A \in \mathbf{A}\left(\mathbf{L}_{\mathbf{1}}\right)$ and any $B \in \mathbf{A}\left(\mathbf{L}_{2}\right)$ we have $\mu_{1} \times \mu_{2}(A \times B)=\mu_{1}(A) \mu_{2}(B)=$ $\mu(A \times \mathbf{Y}) \mu(\mathbf{X} \times B)=\mu[(A \times \mathbf{Y}) \cap(\mathbf{X} \times B)]=\mu[(A \cap \mathbf{X}) \times(\mathbf{Y} \cap B)]=\mu(A \times B)$ which shows that $\mu=\mu_{1} \times \mu_{2}$, and therefore $\mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{\mathbf{1}}\right) \times \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{2}\right)=\mathbf{I}_{\mathbf{R}}(\mathbf{L})$.

Theorem 3.2 (the product of lattices/ σ-smooth regular measures). Let \mathbf{X}, \mathbf{Y} be abstract sets and let $\mathbf{L}_{1}, \mathbf{L}_{2}$ be lattices of subsets of \mathbf{X} and \mathbf{Y}, respectively. Then $\mathbf{I}_{\mathbf{R}}^{\sigma}\left(\mathbf{L}_{\mathbf{1}}\right) \times \mathbf{I}_{\mathbf{R}}^{\sigma}\left(\mathbf{L}_{\mathbf{2}}\right)=\mathbf{I}_{\mathbf{R}}^{\sigma}\left(\mathbf{L}_{\mathbf{1}} \times \mathbf{L}_{2}\right)$.
Proof. Let $\mu \in \mathbf{I}_{\mathbf{R}}^{\sigma}\left(\mathbf{L}_{\mathbf{1}}\right)$ and $v \in \mathbf{I}_{\mathbf{R}}^{\sigma}\left(\mathbf{L}_{2}\right)$. Hence for $A_{1 n} \in \mathbf{A}\left(\mathbf{L}_{\mathbf{1}}\right)$ with $A_{1 n} \downarrow \emptyset$ we have $\mu\left(A_{1 n}\right) \rightarrow 0$ and for $A_{2 n} \in \mathbf{A}\left(\mathbf{L}_{2}\right)$ with $A_{2 n} \downarrow \emptyset$ we have $\mathcal{v}\left(A_{2 n}\right) \rightarrow 0, n=1,2, \ldots$.

Consider the sequence $\left\{B_{n}\right\}$ of sets from $\mathbf{A}\left(\mathbf{L}_{1}\right) \times \mathbf{A}\left(\mathbf{L}_{2}\right)$. As in Theorem 3.1 $B_{n}=$ $\bigcup_{i=1}^{k} A_{1 n}^{i} \times A_{2 n}^{i}$, disjoint union and $A_{1 n}^{i} \in \mathbf{A}\left(\mathbf{L}_{1}\right), A_{2 n}^{i} \in \mathbf{A}\left(\mathbf{L}_{2}\right)$.

Suppose that $B_{n} \downarrow \emptyset$, that is, $A_{1 n}^{i} \times A_{2 n}^{i} \downarrow \emptyset$ for all i. Therefore $A_{1 n} \downarrow \emptyset$ or $A_{2 n} \downarrow \emptyset$ or both:

$$
\begin{align*}
\mu \times v\left(B_{n}\right) & =\mu \times v\left[\bigcup_{i=1}^{k}\left(A_{1 n}^{i} \times A_{2 n}^{i}\right)\right]=\sum_{i=1}^{k} \mu \times v\left(A_{1 n}^{i} \times A_{2 n}^{i}\right) \tag{3.2}\\
& =\sum_{i=1}^{k} \mu\left(A_{1 n}^{i}\right) v\left(A_{2 n}^{i}\right) \longrightarrow 0, \text { therefore } \mu \times v \in \mathbf{I}_{\mathbf{R}}^{\sigma}\left(\mathbf{L}_{1} \times \mathbf{L}_{2}\right) .
\end{align*}
$$

Conversely, let $\mu \in \mathbf{I}_{\mathbf{R}}^{\sigma}\left(\mathbf{L}_{\mathbf{1}} \times \mathbf{L}_{\mathbf{2}}\right)$ and define μ_{1} on $\mathbf{A}\left(\mathbf{L}_{\mathbf{1}}\right)$ by

$$
\begin{equation*}
\mu_{1}(A)=\mu(A \times \mathbf{Y}), \quad A \in \mathbf{A}\left(\mathbf{L}_{1}\right) \tag{3.3}
\end{equation*}
$$

If $\left\{A_{n}\right\}$ is a sequence of sets with $A_{n} \in \mathbf{A}\left(\mathbf{L}_{1}\right)$ and $A_{n} \downarrow \emptyset$, then $A_{n} \times \mathbf{Y} \downarrow \emptyset$, and since $\mu \in \mathbf{I}^{\sigma}\left(\mathbf{L}_{\mathbf{1}} \times \mathbf{L}_{2}\right)$ it follows that $\mu\left(A_{n} \times \mathbf{Y}\right) \rightarrow 0$.

Therefore $\mu_{1} \in \mathbf{I}^{\sigma}\left(\mathbf{L}_{\mathbf{1}}\right)$.
Similarly, defining μ_{2} on $\mathbf{A}\left(\mathbf{L}_{2}\right)$ by $\mu_{2}(B)=\mu(\mathbf{X} \times B), B \in \mathbf{A}\left(\mathbf{L}_{2}\right)$ we get $\mu_{2} \in \mathbf{I}^{\sigma}\left(\mathbf{L}_{2}\right)$.
Hence $\mu=\mu_{1} \times \mu_{2} \in \mathbf{I}^{\sigma}\left(\mathbf{L}_{1}\right) \times \mathbf{I}^{\sigma}\left(\mathbf{L}_{2}\right)=\mathbf{I}^{\sigma}\left(\mathbf{L}_{1} \times \mathbf{L}_{2}\right)$.
Theorem 3.3 (product of supports of measures). Let \mathbf{X}, \mathbf{Y} be abstract sets and let $\mathbf{L}_{1}, \mathbf{L}_{2}$ be lattices of subsets of \mathbf{X} and \mathbf{Y}, respectively. The following statements are true:
(a) if $\mu=\mu_{1} \times \mu_{2} \in \mathbf{I}\left(\mathbf{L}_{1}\right) \times \mathbf{I}\left(\mathbf{L}_{2}\right)=\mathbf{I}\left(\mathbf{L}_{\mathbf{1}} \times \mathbf{L}_{2}\right)$ then $\mathbf{S}(\mu)=\mathbf{S}\left(\mu_{1}\right) \times \mathbf{S}\left(\mu_{2}\right)$;
(b) if $\mathbf{L}_{\mathbf{1}}$ and $\mathbf{L}_{\mathbf{2}}$ are compact lattices then \mathbf{L} is compact.

Proof. We have
(a) $\mathbf{S}(\mu)=\mathbf{S}\left(\mu_{1} \times \mu_{2}\right)=\cap\left\{L_{1} \times L_{2} \in \mathbf{L}_{\mathbf{1}} \times \mathbf{L}_{2} / \mu\left(L_{1} \times L_{2}\right)=\mu(\mathbf{X} \times \mathbf{Y})\right\}$,
$\mathbf{S}\left(\mu_{1}\right) \times \mathbf{S}\left(\mu_{2}\right)=\cap\left\{L_{1} \times L_{2} / L_{1} \in \mathbf{L}_{1}, L_{2} \in \mathbf{L}_{2}, \mu_{1}\left(L_{1}\right)=\mu_{1}(\mathbf{X}), \mu_{2}\left(L_{2}\right)=\mu_{2}(\mathbf{Y})\right\}$,

But $\mu\left(L_{1} \times L_{2}\right)=\mu_{1} \times \mu_{2}\left(L_{1} \times L_{2}\right)=\mu_{1}\left(L_{1}\right) \mu_{2}\left(L_{2}\right)$ and $\mu(\mathbf{X} \times \mathbf{Y})=\mu_{1} \times \mu_{2}(\mathbf{X} \times \mathbf{Y})=$ $\mu_{1}(\mathbf{X}) \mu_{2}(\mathbf{Y})$,
(b) $\mathbf{S}(\mu)=\mathbf{S}\left(\mu_{1}\right) \times \mathbf{S}\left(\mu_{2}\right) \neq \emptyset$, since $\mathbf{S}\left(\mu_{i}\right) \neq \emptyset, \mathbf{L}_{i}$ being compact.

Theorem 3.4 (product of Wallman spaces/Wallman topologies). Consider the spaces $\mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{i}\right)$ with the Wallman topologies $\mathbf{t} \mathbf{W}_{i}\left(\mathbf{L}_{i}\right), i=1,2$.

It is known that the topological spaces $\left(\mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{i}\right), \mathbf{t} \mathbf{W}_{i}\left(\mathbf{L}_{i}\right)\right)$ are compact and $\mathbf{T}_{\mathbf{1}}$. Then the topological space $\left(\mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{\mathbf{1}}\right) \times \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{\mathbf{2}}\right), \mathbf{t} \mathbf{W}_{\mathbf{1}}\left(\mathbf{L}_{\mathbf{1}}\right) \times \mathbf{t} \mathbf{W}_{\mathbf{2}}\left(\mathbf{L}_{\mathbf{2}}\right)\right)$ is also compact and $\mathbf{T}_{\mathbf{1}}$.

Proof. Since $\mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{i}\right)$ are compact topological spaces,

$$
\begin{align*}
& \mathbf{S}_{\mathbf{L}_{1}}(\underline{\mu})=\cap\left\{W_{1}\left(L_{1}\right) \in \mathbf{W}_{\mathbf{1}}\left(\mathbf{L}_{\mathbf{1}}\right) / \underline{\mu}\left(W_{1}\left(L_{1}\right)\right)=1\right\} \neq \emptyset \tag{3.5}\\
& \mathbf{S}_{\mathbf{L}_{2}}(\underline{v})=\cap\left\{W_{2}\left(L_{2}\right) \in \mathbf{W}_{\mathbf{2}}\left(\mathbf{L}_{2}\right) / \underline{v}\left(W_{2}\left(L_{2}\right)\right)=1\right\} \neq \emptyset
\end{align*}
$$

We have

$$
\begin{array}{lll}
\underline{\mu}\left(W_{1}(A)\right)=\mu(A), & \mu \in \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{1}\right), & A \in \mathbf{A}\left(\mathbf{L}_{1}\right),
\end{array} \underline{\underline{\mu} \in \mathbf{I}_{\mathbf{R}}\left(\mathbf{W}_{\mathbf{1}}\left(\mathbf{L}_{1}\right)\right),} \begin{array}{ll}
\underline{v}\left(W_{2}(B)\right)=v(B), & v \in \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{2}\right), \tag{3.6}
\end{array} \quad B \in \mathbf{A}\left(\mathbf{L}_{2}\right), \quad \underline{v} \in \mathbf{I}_{\mathbf{R}}\left(\mathbf{W}_{\mathbf{2}}\left(\mathbf{L}_{2}\right)\right) .
$$

Therefore

$$
\begin{gather*}
\underline{\mu \times v}\left(W_{1}(A) \times W_{2}(B)\right)=\mu \times v(A \times B)=\mu(A) v(B), \\
\underline{\mu} \times \underline{v}\left(W_{1}(A) \times W_{2}(B)\right)=\underline{\mu}\left(W_{1}(A)\right) \underline{v}\left(W_{2}(B)\right)=\mu(A) v(B), \tag{3.7}
\end{gather*}
$$

so that $\underline{\mu \times v}=\underline{\mu} \times \underline{v} \in \mathbf{I}_{\mathbf{R}}\left(\mathbf{W}_{\mathbf{1}}\left(\mathbf{L}_{\mathbf{1}}\right)\right) \times \mathbf{I}_{\mathbf{R}}\left(\mathbf{W}_{\mathbf{2}}\left(\mathbf{L}_{\mathbf{2}}\right)\right)$, and then $\left.S_{L_{1} \times L_{2}} \underline{\mu \times v}\right)=S_{L_{1} \times L_{2}}(\underline{\mu} \times \underline{v})=$ $S_{L_{1}}(\underline{\mu}) \times \overline{S_{L_{2}}}(\underline{v}) \neq \emptyset \Rightarrow \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{\mathbf{1}}\right) \times \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{2}\right)$ is compact.

To show that $\mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{\mathbf{1}}\right) \times \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{2}\right)$ is a \mathbf{T}_{1}-space, let $\mu, v \in \mathbf{I}_{\mathbf{R}}(\mathbf{L})$ and suppose $\mu \neq v$. Since $\mu=\mu_{1} \times \mu_{2}$ with $\mu_{1}, \mu_{2} \in \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{\mathbf{1}}\right)$ and $v=\nu_{1} \times \nu_{2}$ with $\nu_{1}, \nu_{2} \in \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{2}\right)$ we get $\mu_{1} \neq \nu_{1}$ and $\mu_{2} \neq \nu_{2}$. There exist $L_{1}, \widetilde{L}_{1} \in \mathbf{L}_{1}$ and $L_{2}, \widetilde{L}_{2} \in \mathbf{L}_{2}$ with

$$
\begin{array}{lll}
\mu_{1} \in W_{1}\left(L_{1}\right), & v_{1} \in W_{1}\left(L_{1}\right)^{\prime} ; & v_{1} \in W_{1}\left(\widetilde{L}_{1}\right), \tag{3.8}
\end{array} \quad \mu_{1} \in W_{1}\left(\widetilde{L}_{1}\right)^{\prime}, ~ 子 W_{2}\left(L_{2}\right), \quad v_{2} \in W_{2}\left(L_{2}\right)^{\prime} ; \quad v_{2} \in W_{2}\left(\widetilde{L}_{2}\right), \quad \mu_{2} \in W_{2}\left(\widetilde{L}_{2}\right)^{\prime} .
$$

Therefore $\mu_{1}\left(L_{1}\right)=\mu_{2}\left(L_{2}\right)=1, v_{1}\left(L_{1}\right)=v_{2}\left(L_{2}\right)=0, \mu_{1}\left(\tilde{L}_{1}\right)=\mu_{2}\left(\tilde{L}_{2}\right)=0, v_{1}\left(\tilde{L}_{1}\right)=v_{2}\left(\tilde{L}_{2}\right)=1$ which implies $\mu \in W\left(L_{1} \times L_{2}\right), v \in W\left(L_{1} \times L_{2}\right)^{\prime} ; v \in W\left(\tilde{L}_{1} \times \tilde{L}_{2}\right), \mu \in W\left(\tilde{L}_{1} \times \tilde{L}_{2}\right)^{\prime}$.

Theorem 3.5 (product of normal lattices). Let \mathbf{X}, \mathbf{Y} be abstract sets and let $\mathbf{L}_{1}, \mathbf{L}_{\mathbf{2}}$ be normal lattices of subsets of \mathbf{X} and \mathbf{Y}, respectively. Then \mathbf{L} is a normal lattice of subsets of $\mathbf{X} \times \mathbf{Y}$.

Proof. Let $\mu \in \mathbf{I}(\mathbf{L})$ and $\nu, \rho \in \mathbf{I}_{\mathbf{R}}(\mathbf{L})$ such that $\mu \leq \nu, \rho$ on \mathbf{L}.
Then, since $\mu=\mu_{1} \times \mu_{2} \in \mathbf{I}\left(\mathbf{L}_{1}\right) \times \mathbf{I}\left(\mathbf{L}_{2}\right), v=\nu_{1} \times \nu_{2} \in \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{1}\right) \times \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{\mathbf{2}}\right)$ and $\rho=\rho_{1} \times \rho_{2} \in$ $\mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{\mathbf{1}}\right) \times \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{2}\right)$, we obtain $\mu_{i} \leq v_{i}, \rho_{i}$ on $\mathbf{L}_{i}, i=1,2$.
L_{i} normal lattices $\Rightarrow \mathcal{v}_{i}=\rho_{i}$; therefore $\nu_{1} \times \nu_{2}=\rho_{1} \times \rho_{2}$, that is, $v=\rho$.

3.3. Examples

(1) Let \mathbf{X}, \mathbf{Y} be topological spaces and let $\mathbf{O}_{1}, \mathbf{O}_{2}$ be the lattices of open sets of \mathbf{X} and \mathbf{Y}, respectively. Consider the product space $\mathbf{X} \times \mathrm{Y}$ with a base of open sets given by

$$
\begin{equation*}
\left\{O_{1} \times O_{2} / O_{1} \in \mathbf{O}_{1}, O_{2} \in \mathbf{O}_{2}\right\} \tag{3.9}
\end{equation*}
$$

We have

$$
\begin{align*}
\left(O_{1} \times O_{2}\right)^{\prime} & =\left\{(x, y) \in \mathbf{X} \times \mathbf{Y} /(x, y) \notin\left(O_{1} \times O_{2}\right)\right\} \\
& =\left\{(x, y) /(x, y) \in\left(\mathbf{X} \times O_{2}^{\prime}\right) \text { or }(x, y) \in\left(O_{1}^{\prime} \times \mathbf{Y}\right)\right\} \tag{3.10}\\
& =\left(\mathbf{X} \times O_{2}^{\prime}\right) \cup\left(O_{1}^{\prime} \times \mathbf{Y}\right)=\left(\mathbf{X} \times F_{2}\right) \cup\left(F_{1} \times \mathbf{Y}\right) .
\end{align*}
$$

Hence $\mathbf{F}=\mathbf{t}\left(\mathbf{L}\left(\mathbf{F}_{1} \times \mathbf{F}_{2}\right)\right)$ where $\mathbf{F}_{1}, \mathbf{F}_{2}$ are the lattices of closed sets of \mathbf{X} and \mathbf{Y}, respectively.
(2) Let \mathbf{X}, \mathbf{Y} be topological $\mathbf{T}_{3.5}$-spaces and let $\mathbf{Z}_{1}, \mathbf{Z}_{2}$ be the lattices of zero sets of continuous functions of \mathbf{X} and \mathbf{Y}, respectively. Then for the product space $\mathbf{X} \times \mathbf{Y}$ we consider a base of open sets given by

$$
\begin{equation*}
\left\{Z_{1}^{\prime} \times Z_{2}^{\prime} / Z_{1} \in \mathbf{Z}_{1}, Z_{2} \in \mathbf{Z}_{2}\right\} \tag{3.11}
\end{equation*}
$$

such that any open set from $\mathbf{X} \times \mathbf{Y}$ is of the form $O=\bigcup_{\alpha} Z_{1 \alpha}^{\prime} \times Z_{2 \alpha}^{\prime}$ and any closed set is

$$
\begin{equation*}
F=O^{\prime}=\bigcap_{\alpha}\left(Z_{1 \varepsilon} \times Y\right) \cup\left(X \times Z_{2 \alpha}\right) \in \mathbf{t}\left(\mathbf{L}\left(\mathbf{Z}_{1} \times \mathbf{Z}_{2}\right)\right) \tag{3.12}
\end{equation*}
$$

and then $\mathbf{F}=\mathbf{t}\left(\mathbf{L}\left(\mathbf{Z}_{1} \times \mathbf{Z}_{2}\right)\right)$.

4. The General Case of Product of Lattices

Let $\left\{\mathbf{X}_{\alpha}\right\}_{\alpha \in \Lambda}$ be a collection of abstract sets (Λ an arbitrary index set) and let \mathbf{L}_{α} be the lattice of subsets of \mathbf{X}_{α} for all α.

We denote

$$
\begin{equation*}
\mathbf{L}^{*}=\prod_{\alpha \in \Lambda} \mathbf{L}_{\alpha}=\left\{\prod_{\alpha \in \Lambda} L_{\alpha} / L_{\alpha} \in \mathbf{L}_{\alpha}, L_{\alpha}=\mathbf{X}_{\alpha} \text { for almost all } \alpha\right\} \tag{4.1}
\end{equation*}
$$

4.1. Results

Theorem 4.1 (the product of lattices/regular measures). One has

$$
\begin{equation*}
\prod_{\alpha \in \Lambda} \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{\alpha}\right)=\mathbf{I}_{\mathbf{R}}(\mathbf{L})=\mathbf{I}_{\mathbf{R}}\left(\prod_{\alpha \in \Lambda} \mathbf{L}_{\alpha}\right) \tag{4.2}
\end{equation*}
$$

Proof. We note that $\prod_{\alpha \in \Lambda} \mathbf{A}\left(\mathbf{L}_{\alpha}\right)=\mathbf{A}\left(\prod_{\alpha \in \Lambda} \mathbf{L}_{\alpha}\right)=\mathbf{A}(\mathbf{L})$ and that $\prod_{\alpha \in \Lambda} \mathbf{A}\left(\mathbf{L}_{\alpha}\right)$ is the collection of all finite cylinder sets which means that if $B \in \prod_{\alpha \in \Lambda} \mathbf{A}\left(\mathbf{L}_{\alpha}\right)$ then B is a cylinder set for which there exists a nonempty finite subset $F=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ of Λ and a subset $E_{F} \in \prod_{\alpha \in F} \mathbf{A}\left(\mathbf{L}_{\alpha}\right)$ such that $B=\mathrm{P}_{F}^{-1}\left(E_{F}\right)$ with

$$
\begin{equation*}
P_{F}: \prod_{\alpha \in \Lambda} \mathbf{X}_{\alpha} \longrightarrow \prod_{\alpha \in \Lambda} \mathbf{X}_{\alpha}=\mathbf{X}_{\alpha_{1}} \times \mathbf{X}_{\alpha_{2}} \times \cdots \times \mathbf{X}_{\alpha_{\mathrm{n}}}, \quad P_{\alpha}: \prod_{\alpha \in \Lambda} \mathbf{X}_{\alpha} \longrightarrow \mathbf{X}_{\alpha} \tag{4.3}
\end{equation*}
$$

Let $\mu_{\alpha} \in \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{\alpha}\right)$ for all $\alpha \in \Lambda$ with $\mu_{\alpha}: \mathbf{A}\left(\mathbf{L}_{\alpha}\right)$ and define

$$
\begin{equation*}
\mu=\prod_{\alpha \in \Lambda} \mu_{\alpha} \in \prod_{\alpha \in \Lambda} \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{\alpha}\right), \quad \mu: \prod_{\alpha \in \Lambda} \mathbf{A}\left(\mathbf{L}_{\alpha}\right) . \tag{4.4}
\end{equation*}
$$

Let $A \in \prod_{\alpha \in \Lambda} \mathbf{A}\left(\mathbf{L}_{\alpha}\right)$ with $\mu(A)=1$. Then $\left(\prod_{\alpha \in \Lambda} \mu_{\alpha}\right)(A)=\left(\prod_{\alpha \in \Lambda} \mu_{\alpha}\right)\left(P_{F}^{-1}\left(E_{F}\right)\right)=1$ that is

$$
\begin{equation*}
\prod_{\alpha \in F} A\left(L_{\alpha}\right) \xrightarrow{P_{F}^{-1}} \prod_{\alpha} A\left(L_{\alpha}\right) \xrightarrow{\prod_{\alpha} \mu_{\alpha}}\{0,1\} \tag{4.5}
\end{equation*}
$$

and for $E_{F} \in \prod_{\alpha \in F} \mathbf{A}\left(\mathbf{L}_{\alpha}\right)$ we have

$$
\begin{align*}
\left(\prod_{\alpha \in \Lambda} \mu_{\alpha} P_{F}^{-1}\right)\left(E_{F}\right) & =\left(\prod_{\alpha \in \Lambda} \mu_{\alpha}\right)\left(P_{F}^{-1}\left(E_{F}\right)\right)=\left(\prod_{\alpha \in F}\right)\left(E_{F}\right) \tag{4.6}\\
& =\left(\mu_{\alpha_{1}} \times \mu_{\alpha_{2}} \times \cdots \times \mu_{\alpha_{n}}\right)\left(E_{F}\right)=1 .
\end{align*}
$$

As in the finite case, we get $E_{F} \supset L_{\alpha_{1}} \times L_{\alpha_{2}} \times \cdots L_{\alpha_{n}}$ where $L_{\alpha_{i}} \in \mathbf{L}_{\alpha_{i}}$ and $\mu_{\alpha_{i}}\left(L_{\alpha_{i}}\right)=1$ for all $i=1,2, \ldots, n$. Then $A=P_{F}^{-1}\left(E_{F}\right) \supset P_{F}^{-1}\left(L_{\alpha_{1}} \times L_{\alpha_{2}} \times \cdots L_{\alpha_{n}}\right)$ and $P_{F}^{-1}\left(L_{\alpha_{1}} \times L_{\alpha_{2}} \times \cdots L_{\alpha_{n}}\right)=1$,
which shows that $\mu(A)=\sup \left\{\mu\left(P_{F}^{-1}\left(L_{\alpha_{1}} \times L_{\alpha_{2}} \times \cdots L_{\alpha_{n}}\right)\right) / P_{F}^{-1}\left(L_{\alpha_{1}} \times L_{\alpha_{2}} \times \cdots L_{\alpha_{n}}\right) \subset A\right.$ and $\left.P_{F}^{-1}\left(L_{\alpha_{1}} \times L_{\alpha_{2}} \times \cdots L_{\alpha_{n}}\right) \in \prod_{\alpha \in \Lambda} \mathbf{L}_{\alpha}=\mathbf{L}^{*}\right\}$; hence μ is L-regular.

Conversely, let $\mu \in \mathbf{I}_{\mathbf{R}}(\mathbf{L})=\mathbf{I}_{\mathbf{R}}\left(\prod_{\alpha \in \Lambda} \mathbf{L}_{\alpha}\right)$ and define μ_{α} on $\mathbf{A}\left(\mathbf{L}_{\alpha}\right)$ by

$$
\begin{equation*}
\mu_{\alpha}(A)=\mu\left(A \times \prod_{\beta \in \Lambda-\{\alpha\}} \mathbf{X}_{\beta}\right), \quad A \in \mathbf{A}\left(\mathbf{L}_{\alpha}\right), \text { that is, } \mu_{\alpha}(A)=\mu\left(P_{\alpha}^{-1}(A)\right) . \tag{4.7}
\end{equation*}
$$

Since μ is a zero-one valued measure on $\mathbf{A}\left(\prod_{\alpha \in \Lambda} \mathbf{L}_{\alpha}\right)$ it follows from the above definition that $\mu_{\alpha} \in \mathbf{I}\left(\mathbf{L}_{\alpha}\right)$. If $\mu_{\alpha}(A)=1$, then $\mu\left(P_{\alpha}^{-1}(A)\right)=1$, and since μ is \mathbf{L}-regular, there exists $\prod_{\beta \in \Lambda} L_{\beta}$ such that $P_{\alpha}^{-1}(A) \supset \prod_{\beta \in \Lambda} L_{\beta} \in L^{*}$ and $\mu\left(\prod_{\beta \in \Lambda} L_{\beta}\right)=1$.

Then $P_{\alpha}^{-1}\left(L_{\alpha}\right) \subset P_{\alpha}^{-1}(A)$ and $\mu_{\alpha}\left(L_{\alpha}\right)=\mu_{\alpha}\left(P_{\alpha}^{-1}\left(L_{\alpha}\right)\right)=1$.
Therefore $\mu_{\alpha}(A)=\sup \left\{\mu_{\alpha}\left(L_{\alpha}\right) / L_{\alpha} \subset A, L_{\alpha} \in \mathbf{L}_{\alpha}\right\}$, that is, $\mu_{\alpha} \in \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{\alpha}\right)$. Next, if $B \in$ L^{*}, we may consider $B=P_{F}^{-1}\left(L_{\alpha_{1}} \times L_{\alpha_{2}} \times \cdots L_{\alpha_{n}}\right)$ and then $\prod_{\alpha \in \Lambda} \mu_{\alpha}(B)=\prod_{\alpha \in \Lambda} \mu_{\alpha}\left(P_{F}^{-1}\left(L_{\alpha_{1}} \times\right.\right.$ $\left.\left.L_{\alpha_{2}} \times \cdots L_{\alpha_{n}}\right)\right)=\prod_{\alpha \in F} \mu_{\alpha}\left(L_{\alpha_{1}} \times L_{\alpha_{2}} \times \cdots L_{\alpha_{n}}\right)=\left(\mu_{\alpha_{1}} \times \mu_{\alpha_{2}} \times \cdots \times \mu_{\alpha_{n}}\right)\left(L_{\alpha_{1}} \times L_{\alpha_{2}} \times \cdots L_{\alpha_{n}}\right)=$ $\mu_{\alpha_{1}}\left(L_{\alpha_{1}}\right) \mu_{\alpha_{2}}\left(L_{\alpha_{2}}\right) \cdots \mu_{\alpha_{n}}\left(L_{\alpha_{n}}\right)=\mu\left(P_{\alpha_{1}}^{-1}\left(L_{\alpha_{1}}\right)\right) \cdots \mu\left(P_{\alpha_{n}}^{-1}\left(L_{\alpha_{n}}\right)\right)$. If $\prod_{\alpha \in \Lambda} \mu_{\alpha}(B)=1$, then $\mu\left(P_{\alpha_{i}}^{-1}\left(L_{\alpha_{i}}\right)\right)$ for all i; hence $\mu\left(\bigcap_{i=1}^{n} P_{\alpha_{i}}^{-1}\left(L_{\alpha_{i}}\right)\right)=1$ and $\mu\left(P_{F}^{-1}\left(L_{\alpha_{1}} \times L_{\alpha_{2}} \times \cdots L_{\alpha_{n}}\right)\right)=\mu\left(\prod_{\alpha} L_{\alpha}\right)=1$, that is, $\mu(B)=1$. Thus $\mu=\prod_{\alpha} \mu_{\alpha} \in \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}^{*}\right)$, and then $\mu=\prod_{\alpha} \mu_{\alpha}$ on $\prod_{\alpha} A\left(L_{\alpha}\right)$.

Theorem 4.2 (the product of normal lattices). Let \mathbf{L}_{α} be a lattice of subsets of \mathbf{X}_{α}. Then
(a) if $\mu=\prod_{\alpha} \mu_{\alpha} \in \mathbf{I}\left(\prod_{\alpha \in \Lambda} \mathbf{L}_{\alpha}\right)=\prod_{\alpha \in \Lambda} \mathbf{I}\left(\mathbf{L}_{\alpha}\right)$ we have $\mathbf{S}(\mu)=\prod_{\alpha \in \Lambda} \mathbf{S}\left(\mu_{\alpha}\right)$;
(b) if \mathbf{L}_{α} disjunctive for all $\alpha \in \Lambda$, then $\mathbf{L}=\mathbf{L}\left(\prod_{\alpha \in \Lambda} \mathbf{L}_{\alpha}\right)$ is a disjunctive lattice of subsets of $\prod_{\alpha \in \Lambda} \mathbf{X}_{\alpha} ;$
(c) suppose that \mathbf{L}_{α} is a normal lattice of subsets of \mathbf{X}_{α} for all $\alpha \in \Lambda$; then $\mathbf{L}=\mathbf{L}\left(\prod_{\alpha \in \Lambda} \mathbf{L}_{\alpha}\right)$ is a normal lattice of subsets of $\prod_{\alpha \in \Lambda} \mathbf{X}_{\alpha}$.

Proof. (a) We have $\mathbf{S}\left(\mu_{\alpha}\right)=\cap\left\{L_{\alpha} \in \mathbf{L}_{\alpha} / \mu_{\alpha}\left(L_{\alpha}\right)=\mu_{\alpha}\left(X_{\alpha}\right)=1\right\}$ and $\mathbf{S}(\mu)=\mathbf{S}\left(\prod_{\alpha \in \Lambda} \mu_{\alpha}\right)=$ $\cap\left\{\prod_{\alpha \in \Lambda} L_{\alpha} \in \prod_{\alpha \in \Lambda} \mathbf{L}_{\alpha} / \mu\left(\prod_{\alpha} L_{\alpha}\right)=\mu\left(\prod_{\alpha} X_{\alpha}\right)=1\right\}$. But $\mu\left(\prod_{\alpha} L_{\alpha}\right)=1$ implies $\prod_{\alpha} \mu_{\alpha}\left(\prod_{\alpha \in \Lambda} \mathbf{L}_{\alpha}\right)=1$. Then $\mathbf{S}(\mu)=\prod_{\alpha \in \Lambda} \mathbf{S}\left(\mu_{\alpha}\right)$.
(b) Let $x=\left(x_{\alpha}\right)_{\alpha \in \Lambda} \in \prod_{\alpha \in \Lambda} X_{\alpha}$ Since $\prod_{\alpha \in \Lambda} \mu_{x_{\alpha}}\left(\prod_{\alpha \in \Lambda} A_{\alpha}\right)=\mu_{x}\left(\prod_{\alpha \in \Lambda} A_{\alpha}\right)$ we get $\prod_{\alpha \in \Lambda} \mu_{x_{\alpha}}=\mu_{x}$.
\mathbf{L}_{α} disjunctive implies $\mu_{x_{\alpha}} \in \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{\alpha}\right)$ for all $\alpha \in \Lambda$ and then $\prod_{\alpha \in \Lambda} \mu_{x_{\alpha}} \in \prod_{\alpha \in \Lambda} \mathbf{I}_{\mathbf{R}}\left(\mathbf{L}_{\alpha}\right)=$ $\mathbf{I}_{\mathbf{R}}\left(\prod_{\alpha \in \Lambda} \mathbf{L}_{\alpha}\right)$; therefore $\mu_{x} \in \mathbf{I}_{\mathbf{R}}\left(\prod_{\alpha \in \Lambda} \mathbf{L}_{\alpha}\right)$ which proves that $\mathbf{L}=\mathbf{L}\left(\prod_{\alpha \in \Lambda} \mathbf{L}_{\alpha}\right)$ is disjunctive.
(c) Let $\mu \in \mathbf{I}(\mathbf{L})$ and $\nu, \rho \in \mathbf{I}_{R}(\mathbf{L})$ such that $\mu \leq \nu, \rho$ on \mathbf{L}.

But $\mu=\prod_{\alpha} \mu_{\alpha} \in \prod_{\alpha \in \Lambda} I\left(L_{\alpha}\right)$ and both $v=\prod_{\alpha \in} v_{\alpha}, \rho=\prod_{\alpha \in} \rho_{\alpha} \in \prod_{\alpha \in \Lambda} I_{R}\left(L_{\alpha}\right)$ and then $\prod_{\alpha} \mu_{\alpha} \leq \prod_{\alpha \in} v_{\alpha}$ and $\prod_{\alpha} \mu_{\alpha} \leq \prod_{\alpha \in} \rho_{\alpha}$ on \mathbf{L} with $\mu_{\alpha}\left(A_{\alpha}\right)=\mu\left(P_{\alpha}^{-1}\left(A_{\alpha}\right)\right), v_{\alpha}\left(A_{\alpha}\right)=$ $v\left(P_{\alpha}^{-1}\left(A_{\alpha}\right)\right)$ for $A_{\alpha} \in A\left(L_{\alpha}\right)$. By the previous work we get $\mu_{\alpha} \leq \nu_{\alpha}$ and $\mu_{\alpha} \leq \rho_{\alpha}$ on \mathbf{L}_{α}.
Since each \mathbf{L}_{α} is normal it follows that $v_{\alpha}=\rho_{\alpha}$ for all $\alpha \in \Lambda$, and therefore $v=$ $\left(v_{\alpha}\right)_{\alpha \in \Lambda}=\left(\rho_{\alpha}\right)_{\alpha \in \Lambda}=\rho$ which proves that \mathbf{L} is a normal lattice.

4.2. Examples

(3) Let \mathbf{X}_{α} be a topological $\mathbf{T}_{3.5}$-spaces and let $\mathbf{L}_{\alpha}=\mathbf{Z}_{\alpha}$ be the replete lattices of zero sets of continuous functions of \mathbf{X}_{α} for all $\alpha \in A$.
Then each \mathbf{X}_{α} is said to be realcompact.

Consider a lattice \mathbf{Z} of subsets of $\prod_{\alpha \in A} \mathbf{X}_{\alpha}$ such that

$$
\begin{equation*}
\prod_{\alpha \in A} \mathrm{Z}_{\alpha} \subset t\left(\prod_{\alpha \in A} \mathrm{Z}_{\alpha}\right) \tag{4.8}
\end{equation*}
$$

Then \mathbf{Z} is replete, and $\prod_{\alpha \in A} \mathbf{X}_{\alpha}$ is realcompact.
(4) Let \mathbf{X}_{α} be a T_{2} and 0-dimensional space and let $\mathbf{L}_{\alpha}=\mathbf{C}_{\alpha}$ be the replete lattice of clopen sets for all $\alpha \in A$. Then each \mathbf{X}_{α} is said to be \mathbf{N}-compact. Consider any lattice \mathbf{C} of subsets of $\prod_{\alpha \in A} \mathbf{X}_{\alpha}$ such that $\prod_{\alpha \in A} \mathbf{C}_{\alpha} \subset t\left(\prod_{\alpha \in A} \mathbf{C}_{\alpha}\right) \subset t\left(\prod_{\alpha \in A} \mathbf{Z}_{\alpha}\right)=\mathbf{F}$ and \mathbf{C} is replete and $\prod_{\alpha \in A} \mathbf{X}_{\alpha}$ is \mathbf{N}-compact.

Acknowledgment

The author is grateful to the late Dr. George Bachman for suggesting this research.

References

[1] G. Bachman and P. D. Stratigos, "On measure repleteness and support for lattice regular measures," International Journal of Mathematics and Mathematical Sciences, vol. 10, no. 4, pp. 707-724, 1987.
[2] Z. Frolík, "Realcompactness is a Baire-measurable property," Bulletin de l'Académie Polonaise des Sciences, vol. 19, pp. 617-621, 1971.
[3] H. Herrlich, "E゙-kompakte Räume," Mathematische Zeitschrift, vol. 96, pp. 228-255, 1967.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

