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A number of graph coloring problems have their roots in a communication problem known as
the channel assignment problem. The channel assignment problem is the problem of assigning
channels (nonnegative integers) to the stations in an optimal way such that interference is
avoidedas reported by Hale (2005). Radio k-coloring of a graph is a special type of channel
assignment problem. Kchikech et al. (2005) have given a lower and an upper bound for radio
k-chromatic number of hypercubeQn, and an improvement of their lower bound was obtained by
Kola and Panigrahi (2010). In this paper, we further improve Kola et al.’s lower bound as well as
Kchikeck et al.’s upper bound. Also, our bounds agree for nearly antipodal number of Qn when
n ≡ 2 (mod 4).

1. Introduction

Radio coloring is derived from the assignment of radio frequencies (channels) to a set of
transmitters. The frequencies assigned depend on the geographical distance between the
transmitters: the closer two transmitters are, the greater the potential for interference between
their signals. Thus, when the distance between two transmitters is small, the difference in the
frequencies assigned must be relatively large, whereas two transmitters at a large distance
may be assigned relatively close frequencies.

Radio k-coloring of a graph is a variation of the channel assignment problem. For a
simple connected graph G of order n and diameter q, and a positive integer k with 1 � k � q,
a radio k-coloring f of G is an assignment of non-negative integers to the vertices of G such
that for every two distinct vertices u and v of G

∣
∣f(u) − f(v)

∣
∣ � k + 1 − d(u, v), (1.1)
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where d(u, v) is the distance between u and v inG. The span of a radio k-coloring f , spank(f),
is the maximum integer assigned to a vertex of G. The radio k-chromatic number of G, denoted
by rck(G), is defined by rck(G) = min{spank(f) : f is a radio k-coloring of G}. Since rc1(G)
is the chromatic number χ(G), radio k-colorings are a generalization of ordinary vertex
coloring of graphs. In the literature, rcq(G) is termed as radio number of G whereas rcq−1(G)
and rcq−2(G) are called antipodal and nearly antipodal number of G, respectively. Since the
problem is to find a radio k-coloring with minimum span, we use the least color 0 in every
radio k-coloring appearing in this paper.

Finding radio k-chromatic number of a graph is an interesting yet difficult
combinatorial problem with potential applications to FM channel assignment. The concept
of radio k-coloring was introduced by Chartrand et al. in [1]. But so far, radio k-chromatic
number is known for very limited classes of graphs and for specific values of k only. Radio
numbers of Cn and Pn [2], C2

n [3], and P 2
n [4] are known. Recently, radio numbers of complete

m-array trees have been found by Li et al. [5]. Radio number of hypercubes is determined
by Khennoufa and Tongi [6] and Kola and Panigrahi [7] independently. Khennoufa et al.
have also found antipodal number of Qn. For k = n − 1, n − 2, n − 3 and n − 4 the radio
k-chromatic number of path Pn has been determined in [4, 8–10], respectively. Juan and liu
[11] have determined the antipodal number of cycle Cn. Kchikech et al. [12] have given an
upper and a lower bound for radio k-chromatic number of cartesian product of two graphs
G and G′. Also, as a particular case, they have given an upper and a lower bounds for radio
k-chromatic number of hypercube Qn, but these bounds were very loose. Recently, Kola and
Panigrahi [7] have improved their lower bound for rck(Qn) and have shown that this bound
is exact for radio number ofQn. In this paper, we obtain an improvement of Kola et al.’s lower
bound as well as Kchikeck et al.’s upper bound. Further, we show that these bounds agree
for rcn−2(Qn), n ≡ 2 (mod 4).

2. Improved Lower Bound

In this section, we give an improved lower bound of rck(Qn) for 2 � k � n−2. For a hypercube
Qn of dimension n, the vertex set can be taken as binary n-bit strings and two vertices being
adjacent if the corresponding strings differ at exactly one bit.

Definition 2.1. For any two n-bit binary strings a = a0a1 · · ·an−1 and b = b0b1 · · · bn−1, the
Hamming distance dH(a, b) between a and b is the number of bits in which they differ. In
particular, if x, y ∈ {0, 1}, then dH(x, y) = 0 or 1 according as x = y or x /=y.

If u and v are two vertices of Qn with a and b as the corresponding strings, then
dQn(u, v) = dH(a, b). Two n-bit binary strings may differ in at most n positions, so diameter
of Qn is n.

The results in the following lemma may be found in [7].

Lemma 2.2. For any three vertices x, y, and z of the hypercube Qn, the following holds:

(i) d(x, y) + d(y, z) + d(x, z) � 2n,

(ii) d(x, y) + d(y, z) + d(x, z) = 2n, if d(x, y) = n.

The following lower bound for rck(Qn) was determined by Kola and Panigrahi [7].
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Theorem 2.3 (see [7]). For the hypercubeQn of dimension n � 2 and for any positive integer k with
2 � k � n,

rck(Qn) �

⎧

⎪⎪⎪
⎨

⎪⎪⎪
⎩

(
3(k + 1) − 2n

2

)

2n−1 − k + 1
2

, if k is odd,

(
3(k + 1) − 2n + 1

2

)

2n−1 − k + 2
2

, if k is even.

(2.1)

In the theorem below, we give an improvement of the above lower bound of rck(Qn)
for all values of n and 2 � k � n − 2.

Theorem 2.4. For a hypercube Qn of dimension n � 2 and for any positive integer k with 2 � k �
n − 2,

rck(Qn) �
⌈
3(k + 1) − 2n

2

⌉(

2n−1 − 1
)

. (2.2)

Proof. Let f be any radio k-coloring of Qn and x1, x2, . . . , x2n be an ordering of the vertices of
Qn such that f(xj+1) � f(xj), 1 � j � 2n −1. Obviously, f(x1) = 0 and span(f) = f(x2n). Since
f is a radio k-coloring of Qn, for every iwith 0 � i � 2n − 2, we have the following:

f(xi+1) − f(xi) � k + 1 − d(xi+1, xi),

f(xi+2) − f(xi+1) � k + 1 − d(xi+2, xi+1),

f(xi+2) − f(xi) � k + 1 − d(xi+2, xi).

(2.3)

Adding (2.3)we get,

2
(

f(xi+2) − f(xi)
)

� 3(k + 1) − (d(xi, xi+1) + d(xi+2, xi+1) + d(xi+2, xi))

� 3(k + 1) − 2n (from (i) of Lemma 2.2).
(2.4)

From the above inequality, we have f(xi+2) − f(xi) � �(3(k + 1) − 2n)/2�, for all i =
1, 3, . . . , 2n − 3 and summing up these we get, f(x2n−1) � �(3(k + 1) − 2n)/2�(2n−1 − 1). From
this inequality and the fact that f(x2n) � f(x2n−1), we get the result.

3. Improved Upper Bound

In this section, we give an improved upper bound of rck(Qn). For better presentation, we
need the definition below.

Definition 3.1. For two positive integers n and lwith l < n, a binary (n, l)-Gray code is a listing
of all the n-bit binary strings such that the Hamming distance between two successive strings
is exactly l. Further, a quasi (n, l)-Gray code is a listing of all the n-bit binary strings such that
the Hamming distance between two successive strings is exactly l except between the two
items 2n−1 − 1 and 2n−1 for which it is l − 1 or l + 1.
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Notation 3.2. For any positive integer n, we define δ(n) as

δ(n) =

⎧

⎨

⎩

0, if n ≡ 2 (mod 4),

1, if n/≡ 2 (mod 4).
(3.1)

The following theorem gives a partition of the vertex set ofQn that will be used to find
the upper bound of rck(Qn).

Theorem 3.3. For a hypercubeQn of dimension n, there exists a partition of the vertex set ofQn with
the partite sets U1 = {xi : i = 0, 1, . . . , 2n−1 − 1} and U2 = {yi : i = 0, 1, . . . , 2n−1 − 1} satisfying the
followyng properties:

(a) d(xi, xi+1) = �n/2� = d(yi, yi+1), for all i = 0, 1, . . . , 2n−1 − 2 except i = 2n−2 − 1,

(b) d(xi, xi+1) = �n/2� − δ(n) or �n/2� + δ(n), for i = 2n−2 − 1,

(c) d(yi, yi+1) = �n/2� − δ(n) or �n/2� + δ(n), for i = 2n−2 − 1,

(d) d(xi, yi) = n, for all i = 0, 1, . . . , 2n−1 − 1,

where δ(n) is defined as in Notation 3.2.

Proof. Let Q′
n−1 and Q′′

n−1 be two copies of Qn−1 induced by all the n-bit strings with starting
bit 0 and 1, respectively. Let x0, x1, . . . , x2n−1−1 be the ordering of the vertices of Q′

n−1 which
induce a quasi (n − 1, �n/2�)-Gray code if n/≡ 2 (mod 4) and a (n − 1, n/2)-Gray code if n ≡
2 (mod 4); (such code exists, see [6]). We take yi = xi, i = 1, 2, . . . , 2n−1 − 1, that is, xi is
obtained from xi by changing 0s to 1s and vice versa. Now, y0, y1, . . . , y2n−1−1 is an ordering of
the vertices of Q′′

n−1 which induces the same Gray code as in the above. By taking U1 = {xi :
i = 0, 1, . . . , 2n−1 − 1} and U2 = {yi : i = 0, 1, . . . , 2n−1 − 1}, we get the result.

The following upper bound for rck(Qn)was determined by Kchikech et al. in [12].

Theorem 3.4 (see [12]). For the hypercube Qn of dimension n � 2 and for any k � 2,

rck(Qn) � (2n − 1)k − 2n−1 + 1. (3.2)

The theorem below gives an improvement of this upper bound of rck(Qn).

Theorem 3.5. For the hypercubeQn of dimension n � 2 and for any positive integer k, 2 � k � n−2,

rck(Qn) �

⎧

⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪
⎩

(

2n−1 − 1
)(

k + 1 −
⌊n

2

⌋)

+ δ(n), if 2
⌊n

2

⌋

− 2 � k � n − 2,

k2n−2 −
⌈
k

2

⌉

+ δ(n), if
⌊n

2

⌋

− 1 � k � 2
⌊n

2

⌋

− 3,

k2n−2 − k, if 2 � k �
⌊n

2

⌋

− 2,

(3.3)

where δ(n) is defined as in Notation 3.2.
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Table 1

u, v ∈ U1 ∪U2 Value of |i − j| d(u, v) k + 1 − d(u, v) |f(u) − f(v)|
xi, xj ∈ U1, or yi, yj ∈ U2

|i − j| = 1 �n/2� k + 1 − �n/2� k + 1 − �n/2�
|i − j| � 2 � 1 � k � k

xi ∈ U1, yj ∈ U2

i − j = 0 n � 0 0
|i − j| = 1 � �n/2� � k + 1 − �n/2� � k + 1 − �n/2�
|i − j| � 2 � 1 � k � k

Proof. Here, we consider the same partition of V (Qn) as in Theorem 3.3. We first take 2�n/2�−
2 � k � n − 2. For these values of k, we define a coloring f of V (Qn)with f(x0) = 0 and

f(xi) = f(xi−1) + k + 1 −
⌊n

2

⌋

, i = 1, 2, . . . , 2n−1 − 1, except i = 2n−2,

f(x2n−2) = f(x2n−2−1) + k + 1 −
⌊n

2

⌋

+ δ(n),

f
(

yi

)

= f(xi), i = 0, 1, 2, . . . , 2n−1 − 1.

(3.4)

We first check the radio condition for the vertex x2n−2 with all other vertices. Let
v ∈ V (Qn) − {x2n−2}. From the definition of f , |f(x2n−2) − f(u)| � k, except
v ∈ {x2n−2−1, y2n−2−1, y2n−2 ,x2n−2+1, y2n−2+1}. From Theorem 3.3(b) and Lemma 2.2(ii), we have
d(x2n−2−1, x2n−2), d(y2n−2−1, x2n−2) � �n/2� − δ(n) and therefore f(x2n−2) − f(v) = k + 1 + δ(n) −
�n/2� � k + 1 − d(x2n−2 , v), for v = x2n−2−1 or y2n−2−1. Similarly, for v = x2n−2+1 or y2n−2−1, we
show f(x2n−2) − f(u) � k + 1 − d(x2n−2 , u). Since f(x2n−2) = f(y2n−2) and d(x2n−2 , y2n−2) = n,
radio condition is trivially true for the pair (x2n−2 , y2n−2). In a similar manner one can show
that |f(y2n−2) − f(v)| � k + 1 − d(y2n−2 , v), for all v ∈ V (Qn) − {y2n−2}. For the rest of the pairs
of vertices in V (Qn), checking radio condition is straightforward from the definition of f .
However, in Table 1, we compute the values of |f(u) − f(v)| and k + 1 − d(u, v) for every pair
of vertices u, v ∈ V (Qn) − {x2n−2 , y2n−2}.

Therefore, f is a radio k-coloring ofQn and the span of f is (2n−1−1)(k+1−�n/2�)+δ(n).
Next, we consider the value of k as �n/2� � k � 2�n/2� − 3 and define a coloring f with
f(x0) = 0, and

f(xi+1) = f(xi) +
⌊
k

2

⌋

, if i is even and i /= 2n−2 − 1,

f(xi+1) = f(xi) +
⌈
k

2

⌉

, if i is odd,

f(xi+1) = f(xi) +
⌊
k

2

⌋

+ δ(n), i = 2n−2 − 1,

f
(

yi

)

= f(xi), i = 0, 1, 2, . . . , 2n−1 − 1.

(3.5)

By a similar way as in the above, one can check that f is a radio k-coloring of Qn with the
span f(x2n−1−1) = 2n−2�k/2� + (2n−2 − 1)�k/2� + δ(n) = k2n−2 − �k/2� + δ(n).

Finally, we take 2 � k � �n/2� − 2. From Theorem 2.4, we have d(xi, xi+1), d(xi, yi),
d(xi, yi+1), d(xi+1, yi), d(yi, yi+1) � k + 1. So, we use the same color for the vertices xi, xi+1, yi
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and yi+1. In this case, we define a coloring f as f(xi) = (i/2)k = f(yi), f(xi+1) = f(xi),
f(yi+1) = f(yi), i = 0, 2, . . . , 2n−1 − 2. It is easy to show that f is a radio k-coloring of Qn with
the span k2n−2 − k.

Observe that the bounds given in Theorems 2.4 and 3.5 agree for k = n − 2 with n ≡ 2
(mod 4). Therefore we have determined the nearly antipodal number ofQn which is given in
the theorem below.

Theorem 3.6. For n ≡ 2 (mod 4), the nearly antipodal number rcn−2(Qn) of the hypercube Qn is
(2n−1 − 1)(n − 2)/2.

4. Concluding Remarks

Improved lower and upper bounds of rck(Qn) have been obtained in Theorems 2.4 and 3.5,
respectively. It is easy to verify that the bound given in Theorem 3.5 is an improvement over
the bound in Theorem 3.4. However, below, we check that lower bound given in Theorem 2.4
is really an improvement over the bound in Theorem 2.3. From Theorem 2.4, we have

rck(Qn) �

⎧

⎪⎪⎪
⎨

⎪⎪⎪
⎩

(
3(k + 1) − 2n

2

)
(

2n−1 − 1
)

, if k is odd,

(
3(k + 1) − 2n + 1

2

)
(

2n−1 − 1
)

, if k is even,

=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

(
3(k + 1) − 2n

2

)

2n−1 + n − 3(k + 1)
2

, if k is odd,

(
3(k + 1) − 2n + 1

2

)

2n−1 + n − 3k + 4
2

, if k is even.

(4.1)

For odd integer k,

[(
3(k + 1) − 2n

2

)

2n−1 + n − 3(k + 1)
2

]

−
[(

3(k + 1) − 2n
2

)

2n−1 − k + 1
2

]

= n − k − 1 � 1, if 2 � k � n − 2.

(4.2)

Again, if k is an even integer, then

[(
3(k + 1) − 2n + 1

2

)

2n−1 + n − 3k + 4
2

]

−
[(

3(k + 1) − 2n + 1
2

)

2n−1 − k + 2
2

]

= n − k − 1 � 1, if 2 � k � n − 2.

(4.3)

Theorem 3.6 gives the nearly antipodal number of Qn for n ≡ 2 (mod 4). From Theorems 2.4
and 3.5, one gets that the difference between the lower and upper bound of rcn−2(Qn), n ≡ 0
(mod 4), is equal to one, that is, (2n−1 − 1)(n − 2)/2 � rcn−2(Qn) � (2n−1 − 1)(n − 2)/2 + 1.
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