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The present paper deals with the various g-Genocchi numbers and polynomials. We define a new
type of multiple generalized g-Genocchi numbers and polynomials with weight « and weak weight
p by applying the method of p-adic g-integral. We will find a link between their numbers and
polynomials with weight a and weak weight . Also we will obtain the interesting properties
of their numbers and polynomials with weight a and weak weight 3. Moreover, we construct a
Hurwitz-type zeta function which interpolates multiple generalized g-Genocchi polynomials with
weight a and weak weight f and find some combinatorial relations.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper Z,,Q,, C, and C, denote the ring
of p-adic rational integers, the field of p-adic rational numbers, the complex number field,
and the completion of the algebraic closure of Q,, respectively. Let N be the set of natural
numbers and Z, = NU {0}. Let v, be the normalized exponential valuation of C, with |p|, =
p~® = 1/p (see [1-21]). When one talks of g-extension, g is variously considered as an
indeterminate, a complex g € C, or a p-adic number q € C,. If g € C, then one normally
assumes |g| < 1. If g € C,, then we assume that |[g - 1], < 1.
Throughout this paper, we use the following notation:

;o Ixl, = 1-Ca) (1.1)

Hence limg .1 [x], = x for all x € Z, (see [1-14, 16, 18, 20, 21]).
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We say that g : Z, — C, is uniformly differentiable function at a point a € Z, and we
write g € UD(Z,) if the difference quotients @, : Z, x Z, — C, such that

8(x) -g(y)
D, (x,y) = T (1.2)
have a limit g'(a) as (x,y) — (a,a).
Let d be a fixed integer, and let p be a fixed prime number. For any positive integer N,
we set

z
X:Xdzlim<—>, Xy =7,
N \dpNZ ’
X* = (a+dpZ,),
(e av a3

(ap)=1

a+dpNz, = {xeX | an<mOddPN>}f

where a € Z liesin 0 < a < dp".
For any positive integer N,

g

us(a+dpNz,) = 1.4
1 ) @], (1.4

is known to be a distribution on X.

For ¢ € UD(Z,), Kim defined the g-deformed fermionic p-adic integral on Z:
(®) LS s 15)
I,(g)= f g(x)dp_g(x) = lim —— > g(x)(-q)". 1.5
1 Zy ! N—oo [pN] -q x=0
(see [1-13]), and note that
gy () = [ gy (). 16)
Z, X

We consider the case g € (-1,0) corresponding to g-deformed fermionic certain and
annihilation operators and the literature given there in [9, 13, 14].

In [9, 12, 14, 19], we introduced multiple generalized Genocchi number and
polynomials. Let y be a primitive Dirichlet character of conductor f € N. We assume that f
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is odd. Then the multiple generahzed Genocchi numbers, G}, and the multiple generalized

n,xs
Genocchi polynomials, anx(x), associated with y, are defined by

r ESS x(@)(=1) e t
F)(c)(t)=< Oeft+] > Zan 0

1 at "
F?@w:< S ) St

(1.7)

In the special case x = 0, G(r = G(r) ¢(0) are called the nth multiple generalized Genocchi
numbers attached to y.

Now, having discussed the multiple generalized Genocchi numbers and polynomials,
we were ready to multiple-generalize them to their g-analogues. In generalizing the
generating functions of the Genocchi numbers and polynomials to their respective g-
analogues; it is more useful than defining the generating function for the Genocchi numbers
and polynomials (see [12]).

Our aim in this paper is to define multiple generalized g-Genocchi numbers GeP) and

XA
polynomials Gilaxﬁ ,’;)(x) with weight a and weak weight . We investigate some properties

which are related to multiple generalized g-Genocchi numbers Gfl xﬂ q) and polynomials

G r)(x) with weight a and weak weight . We also derive the existence of a specific

X4
interpolation function which interpolate multiple generalized g-Genocchi numbers Gﬁf‘xﬂ [’;)

and polynomials Gif'xﬂ ,’;) (x) with weight a and weak weight f at negative integers.

2. The Generating Functions of Multiple Generalized g-Genocchi
Numbers and Polynomials with Weight « and Weak Weight

Many mathematicians constructed various kinds of generating functions of the g-Gnocchi
numbers and polynomials by using p-adic g-Vokenborn integral. First we introduce multiple

generalized g-Genocchi numbers and polynomials with weight a and weak weight f.

Let us define the generalized g-Genocchi numbers Gi{:’f ,)7 and polynomials Gg, xq(x)

with weight & and weak weight f3, respectively,

a, - a, tn x] «
FEP 0 = S0 = [ txeoetetdu g (0,
n=0 : X
(2.1)
(a,p) < (a,8) tn 4+
R0, = 2G0T = [ et e g ()
n=0 :

By using the Taylor expansion of e+, we have

()

< n t" (a, ﬂ)t (aﬁ & Gn+1,x,q t"
nZ:oJ‘X X(x) [x]q"‘d#—qﬂ(x)_‘ Zanq n! qu + nZ:O n+1 E (2'2)
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By comparing the coefficient of both sides of " /n!in (2.2), we get

()

;t:){q _ [ ]qﬂ fZ( 1) qﬂ“X(a)Z< > 1 aulm' (2.3)
From (2.2) and (2.3), we can easily obtain that
Sttty = 31t bl @) 5 = LSV P mel 2
Therefore, we obtain
FEP(0) = 21t 3 xellet = SGit s (25)
1=0 n=0

Similarly, we find the generating function of generalized g-Genocchi polynomials with
weight a and weak weight f:

(a.p)

G 0
a,p) n+1,y, n n
Goygg() =0, 2 = fXx(y) [ ylgediog () = Rl 2, (D' x D e + 115
(2.6)
From (2.6), we have
. [e’e] . N [¢’e] a, tn
Fei (t,%) = 21t (D' y (e = 3Gl 0 —. (2.7)
1=0 n=0 :

Observe that F )(:f )(t) =F )(ff ) (t,0). Hence we have G;axﬂ ,)7 Gﬁ“xﬂ ,)1(0). If g — 1into (2.7), then
we easily obtain F,(t, x).
First, we define the multiple generalized g-Genocchi numbers G,(fxﬁ (’;) with weight a

and weak weight p:

F)(Cf'f’)(t) Z (1)2,1kqﬂ2,1k<nx(k)> [ZF ki,

k... kr=

- tff [ e ) k)
X X .
—

r-times

< ~(apr) E"
:ZGHM al
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Then we have

n

S ) x s s x0) (e

n=0

L
r-times (29)
=) r-1 n-r =) G(uﬂr)
(wpn 7 " (@pr t mirq
G G + ,
- SOk = SO S e

where (") = (n+r)!/n!r!.
By comparing the coefficients on the both sides of (2.9), we obtain the following
theorem.

Theorem 2.1. Let g € C, with |1 - g, < 1and n € Z,. Then one has

G(“ﬂr) G(“ﬂr)

) (apr)
0,59 Lxqa — =G =0,

r-1,x.9

(apr)
Gn T, n
+7,X.9 - J‘ .. J‘ x(xl) .. 'X(xr)[xl 4o+ xr]qad#—qﬂ(xl) .. .d#_qﬂ(xr)
X X

(7!

r-times
- q)" ! i=1 1 (1+g/CP)"

= [2]] i fz_l el (1)t gp(Ei acefm) |r| ; 4 +
= 7 m q | x(ai) Zlal fm
Jores@r=0 i= i= g

(2.10)

n

From now on, we define the multiple generalized g-Genocchi polynomials G Xﬂq ) (x)
with weight a and weak weight p.

Fef () = 2158 Y] (1)Z’lkqﬁz‘lk<]_[x(k)> (B il

T R (LI R M B
X X '
~——

r-times

R PR ISMN
= 2.Gnyq ()5
n=0
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Then we have

2IX ”'J‘XX(%) o x(yr) [x+ h +"'+yf];l“dﬂ—q/’(yl) e dpg (yr)%n'

r-times (212)
< (a,pr) aﬁr) nr & G(if;)q(x) "

- G T ZGW 2T
poar n! n! ("Mt n!

where (") = (n+7r)!/nlr!.
By comparing the coefficients on the both sides of (2.12), we have the following
theorem.

Theorem 2.2. Let q € C, with |1 - g|, < 1and n € Z,. Then one has

Gyt () = Gy () =+ = G2PY) (%) = 0,
(apr)
Gn T, (x) n
—e = || x ) x ) v+ e dig (v) - dpg (yr)
("r! X X 1
———

r-times

[2];;3 f-1 n n r (_1)Z+Zir=1 aiqalx+(ul+ﬁ) Sra

In (2.11), we simply identify that

;LIT%F)(C‘Z/;J) (t, x) = OTyT Z ( 1)21 1 ki (HX(k )>€(Z' | kitx)t

ki,.-.,kr=0 i=1
2 3170 (1) y(@e
— a=0 X etx — F)(Cr)(t .X')
1+eft e

So far, we have studied the generating functions of the multiple generalized g-
Genocchi numbers Giftxﬂ ,’;) and polynomials Gifxﬂ ,’;) (x) with weight a and weak weight S.

(2.14)
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3. Modified Multiple Generalized g-Genocchi Polynomials with
Weight a« and Weak Weight f

In this section, we will investigate about modified multiple generalized g-Genocchi numbers
and polynomials with weight & and weak weight p. Also, we will find their relations in
multiple generalized g-Genocchi numbers and polynomials with weight &« and weak weight
p.

Firstly, we modify generating functions of Giluxﬁ qr) and Gi,“xﬂ qr (x). We access some
relations connected to these numbers and polynomials with weight « and weak weight p.
For this reason, we assign generating function of modified multiple generalized g-Genocchi

. . . . . . . (e, B,r)
numbers and polynomials with weight a and weak weight  which are implied by G, ;4

and Gf,axﬂ qr) (x). We give relations between these numbers and polynomials with weight a and

weak weight f.
We modify (2.11) as follows:

(aﬂ r) (t, x) = F)((‘i’f,r) (q—uxt, x)’ (3.1)

where F( P )(t x) is defined in (2.11).
From the above we know that

m
(‘7‘ ﬂ r) (t x) Zq (n+r)uxG£1‘i‘)r([i:;) (x) ﬁ (32)

After some elementary calculations, we attain

(a ﬂ r (t X) —arxe(q’”[x]qa t)F)(:f'r) (t)/ (3.3)

where F(aﬁ r)(t) is defined in (2.8).
From the above, we can assign the modified multiple generalized g-Genocchi

polynomials sn ~b, )(x) with weight & and weak weight f as follows:

a,p,r a,p,r t"
S (%) = Zei)fq)(x)a. (3.4)
Then we have
gflﬂxﬁqr)(x) —(n+r)axG('X r)( ). (3.5)

Theorem 3.1. Forr € Nand n € Z.., one has

n
Eitaxﬂqr) (x) = q—(m—r)axz (:‘) aix [x]n lGI(E)'(ZV). (3.6)
i=0
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Corollary 3.2. Forr € Nand n € Z,, by using (3.7), one easily obtains

o n n-j .
a,p,r —(n+r)ax 2 n-—j+m-1 al(j+)x+m a,pr
Eilxﬂq (x) =gy <] In- ]—l>< ]m >(_1)lq o lGJ(',)(,ﬁq . 67)

m=0 j=0 [=0

Secandly, by using generating function of the multiple generalized g-Genocchi
polynomials with weight « and weak weight f, which is defined by (2.11), we obtain the
following identities.

By using (2.13), we find that

G@hn)
n+r ( ) < +r—-1 T atm
(n+):;rl [ ]qﬂz Z <m 7:1 >(_1)Zl:1

m=0 ay,...,a,=0

X qﬂ(ZIrzl ai+fm) < X(a1)> [Zai + fm + x]
i=1

i=1 a
. ! (3.8)
_ r - n a+X . ai fa(atn-D+p} 37, a;
- 21, ( >(_1) S aiglatasn .
qal,..%:o%gé al-an-1
x (lL[x(a)> LS
L i (1 q ) (1 +qf a(a+n-1)+p} )
Thus we have the following theorem.
Theorem 3.3. Let q € C, with [1 - g|, <1and r € N. Then one has
(a,pr) -1
G xq( x) r i L n +
mrnxqNTs — a+Xi ai {a(a+n— D+py > ai
(n;—r)r! [Z]quTWZa_olZ;)(al_an )( 1) ! q
" l (3.9)
r x|
X X(al)> !
<1_1[ (1-g%)' (1 + g/ latasn-Dep)y"
By using (2.13), we have
a,p,r roo c ( 1) alv [} Lai
R0 = S 3(7) e S (o
n=0 1=0 1- ) ai,...,a,=0
(3.10)

y q(anﬁ)(z;1 a;) <1L[X(ai)> i (m +n1; — 1) (_qf(awﬂ))’":l_r:.
i=1 ‘

m=0
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Thus we have

f-1

Sionty i = S St a-a” 5 o

n=0 : n=0 1=0

X q(alJrﬂ)(Zir:l ai) (Hx(ai)> <1 + qf(ul+p)> =
i=1 ’

(3.11)

By comparing the coefficients of both sides of (n + r)!/#**" in the above, we arrive at the
following theorem.

Theorem 3.4. Let g € C, with |1 - gq|, <1, r € N. Then one has

(apyr)
Ginir,y,q(X) - o
(J;:)rC;i : z]qﬂz< )(_1)lqa1x<1 _ q:x) Z (- 1)21 1 @i
..... a,=0
(3.12)
% q(al+ﬂ)(2i':1 ai) <Hx(ai)> (1 + qf(lxl+ﬂ)>
i=1
From (2.12), we easily know that
apr Sy (MAT - " kopst ok T
YSHHCEEDE A EIDMCILTE S p
n=0 n=0 1 r k1,...,ky=0 i=1
(3.13)
tTH'T
X [x+Zk] Wl
From the above, we get the following theorem.
Theorem 3.5. Let r € N, k € Z,. Then one has
G@hr Gleh) (apor)
Gogg (¥) =G (¥) = =G (x) =0
( ) l+ r = T r ! (3'14)
Gl (x) = [2];ﬂ< ’ >r! D, (FnEakighRiak <Hx<ki>> [x + Zk,] :
ki ... ky =0 i=1 =1 g
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From (2.13), we have

ZG(flﬂT) ZG(aﬁs)( )_

1 .
_ [2];;%”5 f Z (m +r— 1) (—1) i ot GBS ait fm)

ai,...,a,=0 m=0 m
(3.15)
- (S, ai+ fmta] o & k+S S bitk
x ( [Tx(a) )e!*- Z > Den=
i=1 /bs=0 k=0
x qﬂ(ZL bi+fk) <ﬁX(bi)> ol Zia bit flax]gat
i=1
By using Cauchy product in (3.15), we obtain
G (a,B,r) (a,B,5)
Z Z( )szq (X)G,,. ixq( )_
n=0 j=0
HSiHSii i Ji <]+r— )(n—j+s—1>
1=0 j=0 ai,..,a;=0 by ... by=0 n=j (3.16)
x (_1)2{:1 ai+3 bi"’”qﬂ( 1 ait 31 bitfn) <HX(‘11)> (HX(b1)>
i=1 i=1
x ol i artfjrxlat (L bit f (n=j)+xlut
From (3.16), we have
SIS @B [ ~@6hs) L
Girq (0G5 (X)) —
%<%<]> jxa =i m!
© © n f-1 f-1 .
resgres jrr- n-j+s-1
ey 305 ()05
m=0 n=0 j=0 ay,...,a;=0 by,...,bs=0 (3 17)
x (—1)Zia ot Zia bi’fﬂqﬂ(Zfﬂ ai+ 37, bitfn) <ﬁx(ai)> (ﬁx(bﬁ)
i=1 i=1

4 . - . mtm
X <|:i_zla,-+f]+x]qa+ [;bi+f(n—])+x:|qa> e

By comparing the coefficients of both sides of #"***/(m + r + s)! in (3.17), we have the
following theorem.
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Theorem 3.6. Let r € Nand s € Z... Then one has

Zl+r+s < l+7+s > ;a)z(/;r)( )Gl:’li:)]x q(x)

(l+rl+s ) (1’ + S)!

sii f}:l‘ fzi <]+r— )(n—j+s—1>
7=0 j=0 ay,...,a,=0 by,...,bs=0 n-j

(3.18)

x (_1)2;:1 ai+3 bi"’”qﬂ( 1 ait 3 bitfn) <HX(‘11)> (HX(bJ)

i=1 i=1
1
x I:Zai+fj+x] +|:Zbi+f(n—j)+x:| )
i=1 g Li=1 4
Corollary 3.7. In (3.18) setting s = 1, one has
Ler+l ((I+r (a,pr) (a,p1)
Z +r+ <l+ +1>G]X11 (x )Gl+r+1fi,x,q(x)
(B ) (r + 1)1
PR N\ < jHr-— i aitbitn B(SL ai+bi+fn)
=217 X D) (= g (3.19)
n=0 j=0 ay,...,a,=0 b;=0
1
X <x(b1)Hx(a,~)> <[Zai +fj+ x] + b1+ f(n—7j) +x]qa> .
i=1 i=1 g
By using (2.13) we have the following theorem.
Theorem 3.8. Distribution theorem is as follows:
a,p,r [f]nﬂ Vil roo r r aBr ap+---+a,
Gy = T X, (FD)TgfZiae <Hx<ai>>ci;f;,2 (),
[f ] —g 1,80 i=1 ! f

(3.20)

a, [f]" {1 ST a; /52 @ Bir) x+a+---+a,
Gt (x) = [f]_qm%-o( )% %gh 5 <1l‘1[x<al> n+,qf<—f ).

4. Interpolation Function of Multiple Generalized g-Genocchi
Polynomials with Weight « and Weak Weight

In this section, we see interpolation function of multiple generalized g-Genocchi polynomials
with weak weight a and find some relations.
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Let us define interpolation function of the G,(cif ’;) (x) as follows.

Definition 4.1. Let g,s € C with |g| <1 and 0 < x < 1. Then one defines

abr & ()Rl Sk (T (k)
b (5,2 = 21 S Tleox(e)) (4.1)
kl,,rO ['x+zzlk]
We call g(“” ) (s, x) the multiple generalized Hurwitz type g-zeta funtion.
In (4.1), setting » = 1, we have
o (_1\pl
() D x() _ @p
— = ,X). 4.2
(s,x)=1[2 ]ql’; e+ 11, v (8,%) (4.2)
Remark 4.2. Tt holds that
© -1 Siaki r ki
hl’I‘lg( ﬁr)(S, x) —or Z ( ) (HIJX( )) . (43)

ki, k=0 (x + X ki)s

Substituting s = —n, n € Z, into (4.1), then we have,

(“/ﬂ V)( -n, x) [2];/3 i (_1)2{:1 kiqﬂzl‘rﬂ ki <1L[X(kl)> [x + ikl] . (4.4)
i=1 q*

ki,....k,=0 i=1

Setting (3.14) into the above, we easily get the following theorem.

Theorem 4.3. Let r € N, n € Z,. Then one has

n‘ir ( )
W”) _ — Jmqs 4.5
( ) - (n+r)r| . ( )

References

[1] T. Kim, “New approach to g-Euler, Genocchi numbers and their interpolation functions,” Advanced
Studies in Contemporary Mathematics, vol. 18, no. 2, pp. 105-112, 2009.

[2] T.Kim, “Note on the g-Euler numbers of higher order,” Advanced Studies in Contemporary Mathematics,
vol. 19, no. 1, pp. 25-29, 2009.

[3] T. Kim, “The modified g-Euler numbers and polynomials,” Advanced Studies in Contemporary
Mathematics, vol. 16, no. 2, pp. 161-170, 2008.

[4] T. Kim, “New approach to g-Euler polynomials of higher order,” Russian Journal of Mathematical
Physics, vol. 17, no. 2, pp. 218-225, 2010.

[5] T.Kim, “Barnes-type multiple g-zeta functions and g-Euler polynomials,” Journal of Physics A, vol. 43,
no. 25, 11 pages, 2010.

[6] T.Kim, “On the multiple g-Genocchi and Euler numbers,” Russian Journal of Mathematical Physics, vol.
15, no. 4, pp. 481-486, 2008.

[7] T. Kim, J. Choi, Y. H. Kim, and C. S. Ryoo, “A note on the weighted p-adic g-Euler measure on Zyp,”
Advanced Studies in Contemporary Mathematics, vol. 21, no. 1, pp. 3540, 2011.



International Journal of Mathematics and Mathematical Sciences 13

[8] C. S. Ryoo, “Some identities of the twisted g-Euler numbers and polynomials associated with g-
Bernstein polynomials,” Proceedings of the Jangjeon Mathematical Society, vol. 14, no. 2, pp. 239-248,
2011.

[9] C.S. Ryoo, “On the generalized Barnes type multiple g-Euler polynomials twisted by ramified roots
of unity,” Proceedings of the Jangjeon Mathematical Society, vol. 13, no. 2, pp. 255-263, 2010.

[10] C.S. Ryoo, “Some relations between twisted g-Euler numbers and Bernstein polynomials,” Advanced
Studies in Contemporary Mathematics, vol. 21, no. 2, pp. 217-223, 2011.

[11] C. S. Ryoo, “A numerical computation on the structure of the roots of g-extension of Genocchi
polynomials,” Applied Mathematics Letters, vol. 21, no. 4, pp. 348-354, 2008.

[12] C.S.Ryoo, T. Kim, J. Choi, and B. Lee, “On the generalized g-Genocchi numbers and polynomials of
higher-order,” Advances in Difference Equations, vol. 2011, Article ID 424809, 8 pages, 2011.

[13] L.-C. Jang, “A study on the distribution of twisted g-Genocchi polynomials,” Advanced Studies in
Contemporary Mathematics, vol. 18, no. 2, pp. 181-189, 2009.

[14] L.-C. Jang, “On multiple generalized w-Genocchi polynomials and their applications,” Mathematical
Problems in Engineering, vol. 2010, Article ID 316870, 8 pages, 2010.

[15] A. Bayad and T. Kim, “Identities for the Bernoulli, the Euler and the Genocchi numbers and
polynomials,” Advanced Studies in Contemporary Mathematics, vol. 20, no. 2, pp. 247-253, 2010.

[16] A.Bayad and T. Kim, “Identities involving values of Bernstein, g-Bernoulli, and g-Euler polynomials,”
Russian Journal of Mathematical Physics, vol. 18, no. 2, pp. 133-143, 2011.

[17] B. Kurt, “The multiplication formulae for the Genocchi polynomials,” Proceedings of the Jangjeon
Mathematical Society, vol. 13, no. 1, pp. 89-96, 2010.

[18] M. Cenkci, M. Can, and V. Kurt, “g-adic interpolation functions and Kummer-type congruences for
g-twisted and g-generalized twisted Euler numbers,” Advanced Studies in Contemporary Mathematics,
vol. 9, no. 2, pp. 203-216, 2004.

[19] M. Domaratzki, “Combinatorial interpretations of a generalization of the Genocchi numbers,” Journal
of Integer Sequences, vol. 7, no. 3, article 04.3.6, 2004.

[20] Y. Simsek, I. N. Cangul, V. Kurt, and D. Kim, “g-Genocchi numbers and polynomials associated with
g-Genocchi-type I-functions,” Advances in Difference Equations, vol. 2008, Article ID 815750, 12 pages,
2008.

[21] D. V. Dolgy, T. Kim, B. Lee, and C. S. Ryoo, “On the g-analogue of Euler measure with weight a,”
Advanced Studies in Contemporary Mathematics, vol. 21, no. 4, pp. 429-435, 2011.



Advances in

Operations Research

Advances in

Decision SC|ences

Journal of

Applied Mathematics

Journal of
Probability and Statistics

The Scientific
\{\(orld Journal

International Journal of

Combinatorics

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi

Submit your manuscripts at

http://www.hindawi.com

Journal of

Mathematics

Journal of

Illsmelth alhemaics

Mathematical Problems
in Engineering

Journal of

Function Spaces

Abstract and
Applied Analysis

Stochastic A nalysws

,;,,\K J :1?"
#(ﬁ)}?ﬂ(ﬂﬁf
f. \') :

International Journal of

Differential Equations

ces In

I\/\athemamcal Physics

Discrete Dynamics in
Nature and Society

Journal of

Optimization




