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We give an optimality characterization of nonadditive generalizedmean-value entropies from suit-
able nonadditive and generalized mean-value properties of the measure of average length. The
results obtained cover many results obtained by other authors as particular cases, as well as the
ordinary length due to Shannon 1948. Themain instrument is the l(ni) function of the word lengths
in obtaining the average length of the code.

1. Introduction

Given a discrete random variableX taking a finite number of values (x1, x2, . . . , xn)with prob-
abilities P = (p1, p2, . . . , pn), pi ≥ 0,

∑n
i=1 pi = 1, the Shannon’s entropy of the probability

distribution is given by

H(P) = −
n∑

i=1

pi log
(
pi
)
, (1.1)

where the base of the logarithm is in general arbitrary.
Shannon entropy is a very useful and powerful measure, having very rich meanings.

Entropy has an important connection with noiseless coding. If X = (x1, x2, . . . , xn) represents
an information source with nmessages and input probabilities p1, p2, . . . , pn, as given above,
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that is encoded into words of lengths N = {n1, n2, . . . , nn} forming an instantaneous code,
then

n∑

i=1

D−ni ≤ 1, (1.2)

where D is the size of the code alphabet.
The average length L, for the instantaneous code is such that

L = pini ≥ −
n∑

i=1

pilogD
(
pi
)

(1.3)

with equality if and only if for each i

pi = D−ni . (1.4)

Result (1.4), (refer Shannon [5]), characterizes Shannon’s entropy as ameasure of opti-
mality of a linear function, namely, L, under the relation (1.2).

Several generalizations of Shannon’s entropy have been studied by many authors in
different ways. Here we will need the nonadditive generalized mean value measures such as

H
(
p1, p2, . . . , pn; 1, α, β

)
=
(
D(β−1)/α − 1

)−1[
D((β−1)/α)∑n

i=1 pilogDpi − 1
]
, α, β > 0, β /= 1,

(1.5)

H
(
p1, p2, . . . , pn;α, β

)
=
(
D(1−β)/α − 1

)−1
⎡

⎣

(
n∑

i=1

pαi

)(1/α)((β−1)/(α−1))
− 1

⎤

⎦,

β > 0, β /= 1, α > 0, α /= 1; α/= β.

(1.6)

These quantities satisfy the “nonadditivity”

H(P ∗Q) = H(P) +H(Q) +
(
D(1−β)/α − 1

)
H(P)H(Q). (1.7)

In this paper, we give an optimality characterization of entropies (1.5) and (1.6) from
suitable nonadditive and generalized mean-value properties of the measure of average
length. The results obtained cover many results obtained by other authors as particular cases,
as well as the result (1.3). The main instrument is the l(·) function of the word lengths in ob-
taining the average length of the code.
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2. Nonadditive Measure of Code Length

Let us consider two independent sources X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym} with
associated probability distribution P = (p1, p2, . . . , pn) andQ = (q1, q2, . . . , qm). Then the prob-
ability distribution of the product XY = {(xi, yi)} is P ∗ Q = (p1q1, p1q2, . . . , p1qm, . . . , pnqm).
Let the source Y be encoded with a code of lengthM = {m1, m2, . . . , mm} and the pair (xi, yj)
be represented by a sequence for xi and yj put side by side, so that the product source has
code length sequence:

N +M = {n1 +m1, . . . , n1 +mn, . . . , nn +mm}. (2.1)

The additive measure of mean length is required to satisfy the requirement, refer Campbell
[2],

L
(
P ∗Q, N +M, φ

)
= L
(
P,N, φ

)
+ L
(
Q,M,φ

)
, (2.2)

where

L
(
P,N, φ

)
= φ−1

(
n∑

i=1

piφ(ni)

)

, (2.3)

φ being a continuous strictly monotonic increasing function.
Campbell [3] proved a noiseless coding theorem for Renyi’s entropy of order α in

terms of mean length (2.3) defined for φ(ni) = Dni .
The mean length concerning Shannon’s entropy and order α entropy of Renyi are both

additive as they satisfy additivity of type (2.2).
Here we deal with nonadditive measures of length denoted by L∗ which satisfy “non-

additivity relation”

L∗(P +Q,N +M,φ
)
= L∗(P,N, φ

)
+ L∗(Q,M,φ

)
+ λL∗(P,N, φ

)
L∗(Q,M,φ

)
,

(2.4)

and the mean value property

L∗(P,N, φ
)
= φ−1

(∑n
i=1 piφ(l(ni))∑n

i=1 pi

)

, (2.5)

where l(ni) is the function of length of a single element with code word length ni, which is
nonadditive.

3. Characterization of Nonadditive Measures of Code Length

We take the mean value nonadditive measures of length (2.5) to satisfy the relation (2.4),
where the expression and notations used there have their meanings explained earlier.
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First of all we will determine the nonadditive length function l of the code word length
in satisfying the nonadditivity relation

l(n +m) = l(n) + l(m) + λl(n)l(m), λ /= 0. (3.1)

This by taking f(n) = 1 + λl(n) gives

f(n +m) = f(n)f(m). (3.2)

The most general nonzero solution of (3.2) is

f(n) = D((1−β)/α)n, (3.3)

where α > 0, β /= 1 are arbitrary constants (we have taken baseDwith a purpose here). So that

l(n) =
D((1−β)/α)n − 1

λ
, λ /= 0, (3.4)

at this stage we make a proper choice of the constant λ. By analogy, its value is dictated as

λ =
(
D(1−β)/α − 1

)
, β /= 1 as λ/= 0. (3.5)

Another purpose served with this value of λ is that when it tends to zero, that is, when
β → 1, the function of length l(n) should reduce to additive one which is l(n) = n. This value
of λ can be obtained by imposing a boundary condition l(1) = 1 also.

So that finally we have

l(n) =
D((1−β)/α)n − 1
D(1−β)/α − 1

, β /= 1, α > 0. (3.6)

Next we proceed to determine L∗(P,N, φ) by first evaluating the values of φ. To achieve this
we put the value of l(n) from (3.6) in (2.5) and then use the relation (2.4)with λ = (D(1−β)/α −
1), β /= 1 to get

φ−1
(∑n

i=1
∑m

j=1 piqjφ
((
D((1−β)/α)(ni+mj ) − 1

)
/
(
D(1−β)/α − 1

))

∑n
i=1
∑m

j=1 piqj

)

= φ−1
(∑n

i=1 piφ
((
D((1−β)/α)ni − 1

)
/
(
D(1−β)/α − 1

))

∑n
i=1 pi

)

+ φ−1
(∑m

j=1 qjφ
((
D((1−β)/α)mj − 1

)
/
(
D(1−β)/α − 1

))

∑m
j=1 qj

)
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+
(
D(1−β)/α − 1

)
φ−1
(∑n

i=1 piφ
((
D((1−β)/α)ni − 1

)
/
(
D(1−β)/α − 1

))

∑n
j=1 pi

)

× φ−1
(∑m

j=1 qjφ
((
D((1−β)/α)mj − 1

)
/
(
D(1−β)/α − 1

))

∑m
j=1 qj

)

.

(3.7)

Now let us takeQ = {q} andM = {m} so that for P = (p1, p2, . . . , pn), pi ≥ 0,
∑n

i=1 pi = 1, (3.7)
gives after some simplification

φ−1
(

n∑

i=1

piφ

(
D((1−β)/α)(ni+m) − 1

D(1−β)/α − 1

))

= φ−1
(

n∑

i=1

piφ

(
D((1−β)/α)ni − 1
D(1−β)/α − 1

))

D((1−β)/α)m +
D((1−β)/α)m − 1
D(1−β)/α − 1

,

(3.8)

or

ψ−1
m

(
n∑

i=1

piψm

(
D((1−β)/α)ni − 1
D(1−β)/α − 1

))

= φ−1
(

n∑

i=1

piφ

(
D((1−β)/α)ni − 1
D(1−β)/α) − 1

))

D((1−β)/α)m +
D((1−β)/α)m − 1
D(1−β)/α − 1

,

(3.9)

where

ψm

(
D((1−β)/α)ni − 1
D(1−β)/α − 1

)

= φ

(
D((1−β)/α)(ni+m) − 1

D(1−β)/α − 1

)

. (3.10)

Now, refer Hardy et al. [4], there must be a linear relation between ψm and φ, that is,

ψm(n) = A(m)φ(n) + B(m), (3.11)

where A(m) and B(m) are independent of n.
Using (3.10) and (3.11), we have

g(n +m) = A(m)g(n) + B(m), (3.12)

where

g(n) = φ

(
D((1−β)/α)n − 1
D(1−β)/α − 1

)

, (3.13)
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or

G(n +m) = A(m)G(n) +G(m), (3.14)

where

G(n) = g(n) − g(0) = g(n) − a, a = g(0). (3.15)

From the symmetry of (3.14), we get

A(m)G(n) +G(m) = A(n)G(m) +G(n)

=⇒ G(n)
A(n) − 1

=
G(m)

A(m) − 1
=

1
K

(
say
)
.

(3.16)

Thus,

A(n) − 1 = K(G(n)) (3.17)

for all real values of n.
There are two cases, namely, K = 0 and K/= 0.
If K = 0, A(n) = 1, and (3.14) gives

G(n +m) = G(n) +G(m), (3.18)

the most general continuous solution of which is given by

G(n) = cn, (3.19)

where c is an arbitrary constant.
This, by (3.15) and (3.13), gives

φ

(
D((1−β)/α)n − 1
D(1−β)/α − 1

)

= a + cn (3.20)

which gives

φ(n) = a +
cα

1 − β logD
[
1 +
(
D(1−β)/α − 1

)
n
]
, β /= 1. (3.21)

Again if K/= 0, we have the relation obtained from (3.17) and (3.14):

A(n +m) = A(n)A(m), (3.22)
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the general continuous solution of which are

A(n) = 0
(
which we neglect

)
for all n,

A(n) = Dtn,
(3.23)

where t is an arbitrary nonzero constant.
This by using (3.17), (3.15) in (3.13), gives

φ

(
D((1−β)/α)n − 1
D(1−β)/α − 1

)

= a +
Dtn − 1
K

(3.24)

which gives

φ(n) = a +

((
D(1−β)/α − 1

)
n + 1

)tα/(1−β) − 1
K

, β /= 1, t /= 0, α > 0.
(3.25)

The value of φ given by (3.21) and (3.25) determine the following two nonadditive measures
of length defined by (2.5), that is,

L∗(P,N; 1, α, β
)
=
(
D(1−β)/α − 1

)−1[
D((1−β)/α)∑n

i=1 pini − 1
]
, (3.26)

L∗(P,N; t, α, β
)
=
(
D(1−β)/α − 1

)−1[
D((1−β)/αt)logD

∑n
i=1 piD

nit − 1
]
. (3.27)

These code lengths denoted by L∗(P,N; 1, α, β) and L∗(P,N; t, α, β)may be named as nonad-
ditive type (α, β) lengths of order 1 and t, respectively.

These results are contained in the following theorem.

Theorem 3.1. The mean length given by (2.5) of a sequence of lengths ni, i = 1, 2, . . . , n formed of
the code alphabet of size D of a probability distribution P = (p1, p2, . . . , pn), pi ≥ 0,

∑n
i=1 pi = 1 sat-

isfying
∑n

i=1D
−ni ≤ 1 and nonadditivity relation can be only of one of the two forms given in (3.26)

and (3.27).

3.1. Limiting and Particular Cases

It is immediate to see the following.
(1)

lim
t→ 0

L∗(P,N; t, α, β
)
= L∗(P,N; 1, α, β

)
. (3.28)

(2)

lim
β→ 1

L∗(P,N; 1, α, β
)
=

n∑

i=1

pini = L, (3.29)

the ordinary mean length due to Shannon [5].
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(3)

lim
β→ 1

L∗(P,N; t, α, β
)
=

1
t
log

n∑

i=1

piD
tni , (3.30)

length of order t defined by Campbell [2].

(4) For n1 = n2 = · · · = nn = n(say), both the expressions for length given by (3.26) and
(3.27) reduce to

(
D((1−β)/α) − 1

)−1[
D((1−β)/α)n − 1

]
, (3.31)

which in the limiting case, when β approaches unity, reduces to n.

(5) For α = β, the expression (3.26) becomes

L∗(P,N; 1, α) =
(
D(1−α)/α − 1

)−1[
D((1−α)/α)∑n

i=1 pini − 1
]
. (3.32)

(6) For α = β, the expression (3.27) becomes

L∗(P,N; t, α) =
(
D(1−α)/α − 1

)−1[
D((1−α)/αt)logD

∑n
i=1 piD

nit − 1
]
. (3.33)

(7) For α → 1 the expression (3.32) and (3.33) reduces to
∑n

i=1 pini = L and
(1/t) log

∑n
i=1 piD

tni , respectively.

Thus, we have shown that L∗(P,N; 1, α, β) and L∗(P,N; t, α, β) are type α and β gen-
eralizations of

L =
n∑

i=1

pini, L(t) =
1
t
logD

n∑

i=1

piD
tni , (3.34)

respectively. We now prove the following theorem.

Theorem 3.2. If n1 = n2 = · · · = nn = n denote the lengths of an instantaneous/uniquely decipherable
code formed of code alphabet of size D.

(i)

L∗(P,N; 1, α, β
) ≥ H(P ; 1, α, β), (3.35)

with equality if and only if ni = −logDpi for all i,
(ii)

L∗(P,N; t, α, β
) ≥ H(P ;α, β), (3.36)
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with equality if and only if

ni = −αlogDpi + logD

(
n∑

i=1

pαi

)

, (3.37)

where α = (1 + t)−1.

Proof. As in Shannon’s case, refer Feinstien [6],

n∑

i=1

pini ≥ −
n∑

i=1

pilogDpi. (3.38)

Now (D(1−β)/α − 1) ≷ 0 according as β ≶ 1.
Therefore, from the above after suitable manipulation, we get the inequality

D(1−β)/α∑n
i=1 pini − 1

D(1−β)/α − 1
≥ D(β−1)/α∑n

i=1 pilogDpi − 1
D(1−β)/α − 1

, β /= 1, (3.39)

which is the result (3.35).
The case of equality can be discussed, as for Shannon’s, which holds only when ni =

−logDpi, for each i.
We now proceed to part (ii). If t = 0, the result is the same proved in part (i). For other

values, we use Holder’s inequality

(
n∑

i=1

x
p

i

)1/p

·
(

n∑

i=1

y
q

i

)

≤ xiyi, (3.40)

where p−1 + q−1 = 1 and p < 1.
Making the substitutions p = −t, q = (1−α), xi = p(−1)/ti D−ni and yi = p

1/t
i in (3.40), we

get after suitable manipulations

(
n∑

i=1

piD
tni

)1/t

≥
(

n∑

i=1

pαi

)1/(1−α)
(3.41)

with α = (1 + t)−1

Raising the power to (1−β)/α of both sides of (3.41) and using that (D((1−β)/α) −1) ≷ 0
according as β ≶ 1, we get result (3.36) after simple manipulation.

Hence, the theorem is proved.
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