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We generalize the Euler numbers and polynomials by the generalized (q,w)-Euler numbers
En,q,w(a) and polynomials En,q,w(x : a). We observe an interesting phenomenon of “scattering”
of the zeros of the generalized (q,w)-Euler polynomials En,q,w(x : a) in complex plane.

1. Introduction

Recently, many mathematicians have studied in the area of the Euler numbers and
polynomials (see [1–15]). The Euler numbers and polynomials possess many interesting
properties and arising in many areas of mathematics and physics. In [14], we introduced
that Euler equation En(x) = 0 has symmetrical roots for x = 1/2 (see [14]). It is the aim of this
paper to observe an interesting phenomenon of “scattering” of the zeros of the generalized
(q,w)-Euler polynomials En,q,w(x : a) in complex plane. Throughout this paper, we use the
following notations. By Zp, we denote the ring of p-adic rational integers, Qp denotes the
field of p-adic rational numbers, Cp denotes the completion of algebraic closure of Qp, N

denotes the set of natural numbers, Z denotes the ring of rational integers, Q denotes the
field of rational numbers, C denotes the set of complex numbers, and Z+ = N ∪ {0}. Let νp
be the normalized exponential valuation of Cp with |p|p = p−νp(p) = p−1. When one talks of q-
extension, q is considered in many ways such as an indeterminate, a complex number q ∈ C,
or p-adic number q ∈ Cp. If q ∈ C one normally assume that |q| < 1. If q ∈ Cp, we normally
assume that |q − 1|p < p−1/(p−1) so that qx = exp(x log q) for |x|p ≤ 1

[x]q =
1 − qx
1 − q , [x]−q =

1 − (−q)x
1 + q

. (1.1)
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Compared with [1, 4, 5]. Hence, limq→ 1[x] = x for any x with |x|p ≤ 1 in the present p-adic
case. Let d be a fixed integer, and let p be a fixed prime number. For any positive integer N,
we set

X = lim
←
N

(
Z

dpNZ

)
,

X∗ =
⋃

0<a<dp
(a,p)=1

(
a + dpZp

)
,

a + dpNZp =
{
x ∈ X | x ≡ a

(
mod dpN

)}
,

(1.2)

where a ∈ Z lies in 0 ≤ a < dpN . For any positive integer N,

μq

(
a + dpNZp

)
=

qa
[
dpN

]
q

(1.3)

is known to be a distribution on X, compared with [1–10, 14]. For

g ∈ UD
(
Zp

)
=
{
g | g : Zp → Cp is uniformlydifferentiable function

}
. (1.4)

Kim defined the fermionic p-adic q-integral on Zp

I−q
(
g
)
=
∫

Zp

g(x)dμ−q(x) = lim
N→∞

1
[
pN

]
−q

∑

0≤x<pN
g(x)

(−q)x. (1.5)

From (1.5), we also obtain

qI−q
(
g1
)
+ I−q

(
g
)
= [2]qg(0), (1.6)

where g1(x) = g(x + 1) (see [1–3]).
From (1.6), we obtain

qnI−q
(
gn

)
+ (−1)n−1I−q

(
g
)
= [2]q

n−1∑

l=0

(−1)n−1−lqlg(l), (1.7)

where gn(x) = g(x + n).
As well-known definition, the Euler polynomials are defined by

F(t) =
2

et + 1
= eEt =

∞∑

n=0

En
tn

n!
,

F(t, x) =
2

et + 1
ext = eE(x)t =

∞∑

n=0

En(x)
tn

n!
,

(1.8)
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with the usual convention of replacing En(x) by En(x). In the special case, x = 0, En(0) = En

are called the n-th Euler numbers (cf. [1–15]).
Our aim in this paper is to define the generalized (q,w)-Euler numbers En,q,w(a) and

polynomials En,q,w(x : a). We investigate some properties which are related to the generalized
(q,w)-Euler numbers En,q,w(a) and polynomials En,q,w(x : a). Especially, distribution of roots
for En,q,w(x : a) = 0 is different from En(x) = 0

′
s. We also derive the existence of a specific

interpolation function which interpolate the generalized (q,w)-Euler numbers En,q,w(a) and
polynomials En,q,w(x : a).

2. The Generalized (q,w)-Euler Numbers and Polynomials

Our primary goal of this section is to define the generalized (q,w)-Euler numbers En,q,w(a)
and polynomials En,q,w(x : a). We also find generating functions of the generalized (q,w)-
Euler numbers En,q,w(a) and polynomials En,q,w(x : a). Let a be strictly positive real number.

The generalized (q,w)-Euler numbers and polynomials En,q,w(a), En,q,w(x : a) are
defined by

∞∑

n=0

En,q,w(a)
tn

n!
=
∫

Zp

waxeaxtdμ−q(x), (2.1)

∞∑

n=0

En,q,w(x : a)
tn

n!
=
∫

Zp

waye(ay+x)tdμ−q
(
y
)
, for t, w ∈ C, (2.2)

respectively.
From above definition, we obtain

En,q,w(a) =
∫

Zp

wax(ax)ndμ−q(x),

En,q,w(x : a) =
∫

Zp

way(x + ay
)n
dμ−q

(
y
)
.

(2.3)

Let g(x) = waxeaxt. By (1.6) and using p-adic q-integral on Zp, we have

qI−q
(
g1
)
+ I−q

(
g
)
=
∫

Zp

wa(x+1)ea(x+1)tdμ−q(x) +
∫

Zp

waxeaxtdμ−q(x)

=
(
qwaeat + 1

)
∫

Zp

waxeaxtdμ−q(x)

= [2]q.

(2.4)

Hence, by (2.1), we obtain

∞∑

n=0

En,q,w(a)
tn

n!
=

[2]q
qwaeat + 1

. (2.5)



4 International Journal of Mathematics and Mathematical Sciences

By (1.6), (2.2) and g(y) = waye(ay+x)t, we have

∞∑

n=0

En,q,w(x : a)
tn

n!
=

[2]q
qwaeat + 1

ext. (2.6)

After some elementary calculations, we obtain

∞∑

n=0

En,q,w(x : a)
tn

n!
= [2]q

∞∑

n=0
(−1)nqnwaneantext. (2.7)

From (2.6), we have

En,q,w(x : a) =
n∑

k=0

(
n
k

)
xn−kEk,q,w(a)

=
(
x + Eq,w(a)

)n
,

(2.8)

with the usual convention of replacing (Eq,w(a))
n by En,q,w(a).

3. Basic Properties for the Generalized (q,w)-Euler
Numbers and Polynomials

By (2.5), we have

∂

∂x

∞∑

n=0

En,q,w(x : a)
tn

n!
=

∂

∂x

(
[2]q

qwaeat + 1
ext

)

= t
∞∑

n=0

En,q,w(x : a)
tn

n!

=
∞∑

n=0

nEn−1,q,w(x : a)
tn

n!
.

(3.1)

By (3.1), we have the following differential relation.

Theorem 3.1. For positive integers n, one has

∂

∂x
En,q,w(x : a) = nEn−1,q,w(x : a). (3.2)

By Theorem 3.1, we easily obtain the following corollary.

Corollary 3.2 (integral formula). Consider that

∫q

p

En−1,q,w(x : a)dx =
1
n

(
En,q,w

(
q : a

) − En,q,w

(
p : a

))
. (3.3)
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By (2.5), one obtains

∞∑

n=0

En,q,w

(
x + y : a

) tn

n!
=

[2]q
qwaeat + 1

e(x+y)t

=
∞∑

n=0

En,q,w(x : a)
tn

n!

∞∑

k=0

yk t
k

k!

=
∞∑

n=0

(
n∑

k=0

(
n
k

)
Ek,q,w(x : a)yn−k

)
tn

n!
.

(3.4)

By comparing coefficients of tn/n! in the above equation, we arrive at the following
addition theorem.

Theorem 3.3 (addition theorem). For n ∈ Z+,

En,q,w

(
x + y : a

)
=

n∑

k=0

(
n
k

)
Ek,q,w(x : a)yn−k. (3.5)

By (2.5), form ≡ 1(mod 2), one has

∞∑

n=0

(

mn
[2]q
[2]qm

m−1∑

k=0

(−1)kqkwakEn,qm,wm

(
x + ak

m
: a

))
tn

n!

=
m−1∑

k=0

(−1)kqkwak

( ∞∑

n=0

En,qm,wm

(
x + ak

m
: a

))
(mt)n

n!

=
m−1∑

k=0

(

(−1)kqkwak
[2]q

qmwmaemat + 1
e(x+ak)t

)

=
[2]q

1 + qwaeat
ext

=
∞∑

n=0

En,q,w(x : a)
tn

n!
.

(3.6)

By comparing coefficients of tn/n! in the above equation, we arrive at the following
multiplication theorem.

Theorem 3.4 (multiplication theorem). For m,n ∈ N

En,q,w(x : a) = mn
[2]q
[2]qm

m−1∑

k=0

(−1)kqkwakEn,qm,wm

(
x + ak

m
: a

)
. (3.7)
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From (1.6), one notes that

[2]q =
∫

Zp

qwax+ae(ax+a)tdμ−q(x) +
∫

Zp

waxeaxtdμ−q(x)

=
∞∑

n=0

(

qwa

∫

Zp

wax(ax + a)ndμ−q(x) +
∫

Zp

wax(ax)ndμ−q(x)

)
tn

n!

=
∞∑

n=0

(
qwaEn,q,w(a : a) + En,q,w(a)

) tn

n!
.

(3.8)

From the above, we obtain the following theorem.

Theorem 3.5. For n ∈ Z+, we have

qwaEn,q,w(a : a) + En,q,w(a) =

{
[2]q, if n = 0,
0, if n > 0.

(3.9)

By (2.8) in the above, we arrive at the following corollary.

Corollary 3.6. For n ∈ Z+, one has

qwa(a + Eq,w(a)
)n + En,q,w(a) =

{
[2]q, if n = 0,
0, if n > 0,

(3.10)

with the usual convention of replacing (Eq,w(a))
n by En,q,w(a).

From (1.7), one notes that

∞∑

m=0

(

[2]q
n−1∑

l=0

(−1)n−1−lqlwal(al)m
)

tn

m!

= qn
∫

Zp

wax+ane(ax+an)tdμ−q(x) + (−1)n−1
∫

Zp

waxeaxtdμ−q(x)

=
∞∑

m=0

(

qnwan

∫

Zp

wax(ax + an)mdμ−q(x) + (−1)n−1
∫

Zp

wax(ax)mdμ−q(x)

)
tm

m!

=
∞∑

m=0

(
qnwanEm,w(an : a) + (−1)n−1Em,w(a)

) tm

m!
.

(3.11)

By comparing coefficients of tn/n! in the above equation, we arrive at the following theorem.
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Theorem 3.7. For n ∈ Z+, one has

qnwanEm,w(na : a) + (−1)n−1Em,w(a) = [2]q
n−1∑

l=0

(−1)n−1−lwalql(al)m. (3.12)

4. The Analogue of the q-Euler Zeta Function

By using the generalized (q,w)-Euler numbers and polynomials, the generalized (q,w)-Euler
zeta function and the generalized Hurwitz (q,w)-Euler zeta functions are defined. These
functions interpolate the generalized (q,w)-Euler numbers and (q,w)-Euler polynomials,
respectively. Let

Fq,w(x : a)(t) = [2]q
∞∑

n=0
(−1)nqnwaneantext =

∞∑

n=0

En,q,w(x : a)
tn

n!
. (4.1)

By applying derivative operator, dk/dtk|t=0 to the above equation, we have

dk

dtk
Fq,w(x : a)(t)

∣∣∣∣∣
t=0

= [2]q
∞∑

n=0
(−1)nqnwan(an + x)k, (k ∈ N), (4.2)

Ek,q,w(x : a) = [2]q
∞∑

n=0
(−1)nqnwan(an + x)k. (4.3)

By using the above equation, we are now ready to define the generalized (q,w)-Euler
zeta functions.

Definition 4.1. For s ∈ C, one defines

ζ
(a)
q,w(x : s) = 2

∞∑

n=1

(−1)nqnwan

(an + x)s
. (4.4)

Note that ζ(a)w (x, s) is a meromorphic function on C. Note that, if w → 1, w → 1, and
a = 1, then ζ

(a)
q,w(x : s) = ζ(x : s) which is the Hurwitz Euler zeta functions. Relation between

ζ
(a)
w (x : s) and Ek,w(x : a) is given by the following theorem.

Theorem 4.2. For k ∈ N, one has

ζ
(a)
q,w(x : −k) = Ek,w(x : a). (4.5)

By using (4.2), one notes that

dk

dtk
Fq,w(0 : a)(t)

∣∣∣∣∣
t=0

= [2]q
∞∑

n=0
(−1)nqnwan(an)k, (k ∈ N). (4.6)
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Hence, one obtains

Ek,q,w(a) = [2]q
∞∑

n=0
(−1)nqnwan(an)k. (4.7)

By using the above equation, one is now ready to define the generalized Hurwitz
(q,w)-Euler zeta functions.

Definition 4.3. Let s ∈ C. One defines

ζ
(a)
q,w(s) = 2

∞∑

n=1

(−1)nqnwan

(an)s
. (4.8)

Note that ζ(a)q,w(s) is a meromorphic function on C. Obverse that, if w → 1, q → 1, and a = 1,

then ζ
(a)
w (s) = ζ(s) which is the Euler zeta functions. Relation between ζ

(a)
w (s) and Ek,w(s) is

given by the following theorem.

Theorem 4.4. For k ∈ N, one has

ζ
(a)
q,w(−k) = Ek,q,w(a). (4.9)

5. Zeros of the Generalized (q,w)-Euler Polynomials En,q,w(x : a)

In this section, we investigate the reflection symmetry of the zeros of the generalized (q,w)-
Euler polynomials En,q,w(x : a).

In the special case, w = 1 and q → 1, En,q,w(x : a) are called generalized Euler
polynomials En(x : a). Since

∞∑

n=0

En(a − x : a)
(−t)n
n!

=
2

e−at + 1
e(a−x)(−t)

=
2

eat + 1
ext =

∞∑

n=0

En(x : a)
tn

n!
,

(5.1)

we have

En(x : a) = (−1)nEn(a − x : a) forn ∈ N. (5.2)

We observe that En(x : a), x ∈ C has Re(x) = a/2 reflection symmetry in addition to the usual
Im(x) = 0 reflection symmetry analytic complex functions.
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Let

Fq,w(x : t) =
[2]q

qwaeat + 1
ext =

∞∑

n=0

En,q,w(x : a)
tn

n!
. (5.3)

Then, we have

Fq−1,w−1(a − x : −t) =
[2]q−1

q−1w−ae−at + 1
e(a−x)(−t)

= wa
[2]q

qwaeat + 1
ext

= wa
∞∑

n=0

En,q,w(x : a)
tn

n!
.

(5.4)

Hence, we arrive at the following complement theorem.

Theorem 5.1 (complement theorem). For n ∈ N,

En,q−1,w−1(a − x : a) = (−1)nwaEn,q,w(x : a). (5.5)

Throughout the numerical experiments, we can finally conclude that En,q,w(x : a), x ∈
C has not Re(x) = a/2 reflection symmetry analytic complex functions. However, we observe
that En,q,w(x : a), x ∈ C has Im(x) = 0 reflection symmetry (see Figures 1, 2, and 3). The
obvious corollary is that the zeros of En,q,w(x : a) will also inherit these symmetries.

If En,q,w(x0 : a) = 0, then En,q,w

(
x∗0 : a

)
= 0, (5.6)

where ∗ denotes complex conjugation (see Figures 1, 2, and 3).
We investigate the beautiful zeros of the generalized (q,w)-Euler polynomials

En,q,w(x : a) by using a computer. We plot the zeros of the generalized Euler polynomials
En,q,w(x : a) for n = 30, a = 1, 2, 3, 4, and x ∈ C (Figure 1). In Figure 1 (top-left), we choose
n = 30, q = 1/2, w = 1, and a = 1. In Figure 1 (top-right), we choose n = 30, q = 1/2, w = 2,
and a = 2. In Figure 1 (bottom-left), we choose n = 30, q = 1/2, w = 3, and a = 3. In Figure 1
(bottom-right), we choose n = 30, q = 1/2, w = 4, and a = 4.

We plot the zeros of the generalized Euler polynomials En,q,w(x : a) for n = 30, a =
2, w = 2, and x ∈ C (Figure 2).

In Figure 2 (top-left), we choose n = 30, q = 1/10, w = 2, and a = 2. In Figure 2 (top-
right), we choose n = 30, q = 3/10, w = 2, and a = 2. In Figure 2 (bottom-left), we choose n =
30, q = 7/10, w = 2, and a = 2. In Figure 2 (bottom-right), we choose n = 30, q = 9/10, w = 2
and a = 2.

Plots of real zeros of En,q,w(x : a) for 1 ≤ n ≤ 25 structure are presented (Figure 3).
In Figure 3 (top-left), we choose q = 1/2, w = 1, and a = 2. In Figure 3 (top-right), we

choose q = 1/2, w = 2, and a = 2. In Figure 3 (bottom-left), we choose q = 1/2, w = 3, and
a = 2. In Figure 3 (bottom-right), we choose q = 1/2, w = 4, and a = 2.
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Figure 1: Zeros of En,q,w(x : a) for a = 1, 2, 3, 4.

Stacks of zeros of En,q,w(x : a) for 1 ≤ n ≤ 30, q = 1/2, w = 4, anda = 4 from a 3-D
structure are presented (Figure 4).

Our numerical results for approximate solutions of real zeros of the generalized
En,q,w(x : a) are displayed (Tables 1 and 2).

We observe a remarkably regular structure of the complex roots of the generalized
(q,w)-Euler polynomials En,q,w(x : a). We hope to verify a remarkably regular structure of
the complex roots of the generalized (q,w)-Euler polynomials En,q,w(x : a) (Table 1).

Next, we calculated an approximate solution satisfying En,q,w(x : a), q = 1/2, w =
2, a = 2, x ∈ R. The results are given in Table 2.

Figure 5 shows the generalized (q,w)-Euler polynomials En,q,w(x : a) for real −9/10 ≤
q ≤ 9/10 and −5 ≤ x ≤ 5, with the zero contour indicated in black (Figure 5). In Figure 5 (top-
left), we choose n = 1, w = 2, and a = 2. In Figure 5 (top-right), we choose n = 2, w = 2, and
a = 2. In Figure 5 (bottom-left), we choose n = 3,w = 2, and a = 2. In Figure 5 (bottom-right),
we choose n = 4, w = 2, and a = 2.

Finally, we will consider the more general problems. How many roots does En,q,w(x :
a) have? This is an open problem. Prove or disprove: En,q,w(x : a) = 0 has n distinct solutions.
Find the numbers of complex zeros CEn,q,w(x:a) of En,q,w(x : a), Im(x : a)/= 0. Since n is
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Figure 2: Zeros of En,q,w(x : a) for q = 1/10, 3/10, 7/10, 9/10.

Table 1: Numbers of real and complex zeros of En,q,w(x : a).

n
q = 1/2, w = 2, a = 2 q = 1/2, w = 4, a = 4

Real zeros Complex zeros Real zeros Complex zeros
1 1 0 1 0
2 2 0 2 0
3 3 0 1 2
4 2 2 2 2
5 3 2 1 4
6 4 2 2 4
7 3 4 3 4
8 4 4 2 6
9 3 6 3 6
10 4 6 2 8
11 5 6 3 8
12 6 6 4 8
13 5 8 3 10
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Figure 3: Real zeros of En,q,w(x : a) for 1 ≤ n ≤ 25.
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Figure 4: Stacks of zeros of En,q,w(x : a) for 1 ≤ n ≤ 30.
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Table 2: Approximate solutions of En,q,w(x : a) = 0, x ∈ R.

n x

1 1.3333
2 0.3905, 2.2761
3 −0.4011, 1.560, 2.841
4 −1.0546, 0.6907
5 −1.5732,−0.17085, 1.829
6 −1.9151,−1.0557, 0.9680, 2.94
7 0.10585, 2.106, 3.68
8 −0.7557, 1.2442, 3.26, 4.00
9 −1.6091, 0.3825, 2.382
10 −2.392,−0.4793, 1.521, 3.52
11 −3.013,−1.3411, 0.6590, 2.66, 4.4
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Figure 5: Zero contour of En,q,w(x : a).
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the degree of the polynomial En,q,w(x : a), the number of real zeros REn,q,w(x:a) lying on the real
plane Im(x : a) = 0 is then REn,q,w(x:a) = n − CEn,q,w(x:a), where CEn,q,w(x:a) denotes complex zeros.
See Table 1 for tabulated values of REn,q,w(x:a) and CEn,q,w(x:a). We plot the zeros of En,q,w(x :
a), respectively (Figures 1–5). These figures give mathematicians an unbounded capacity to
create visual mathematical investigations of the behavior of the roots of the En,q,w(x : a).
Moreover, it is possible to create a new mathematical ideas and analyze them in ways that
generally are not possible by hand. The authors have no doubt that investigation along this
line will lead to a new approach employing numerical method in the field of research of
(q,w)-Euler polynomials En,q,w(x : a) to appear in mathematics and physics.
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