
Research Article
Product of Locally Primitive Graphs

Amir Assari

Jundishapur University of Technology, Dezful 64616-18674, Iran

Correspondence should be addressed to Amir Assari; amirassari@jsu.ac.ir

Received 21 January 2014; Revised 2 April 2014; Accepted 16 April 2014; Published 4 May 2014

Academic Editor: Seppo Hassi

Copyright © 2014 Amir Assari. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Many large graphs can be constructed from existing smaller graphs by using graph operations, such as the product of two graphs.
Many properties of such large graphs are closely related to those of the corresponding smaller ones. In this paper we consider the
product of two locally primitive graphs and prove that only tensor product of them will also be locally primitive.

1. Introduction

Let Γ = (𝑉, 𝐸) be a simple graph, where𝑉 is the set of vertices
and 𝐸 is the set of edges of Γ. An edge joining the vertices 𝑢

and V is denoted by {𝑢, V}.The group of automorphisms of Γ is
denoted by Aut(Γ), which acts on vertices of Γ. Γ is called ver-
tex transitive if Aut(Γ) acts transitively on the set of vertices.
Γ is called 𝑋-locally transitive or 𝑋-locally primitive for 𝑋 ⩽

Aut(Γ) (or simply locally primitive or locally transitive when
𝑋 = Aut(Γ)) if 𝑋V acts transitively or primitively on Γ(V),
respectively, for each vertex V ∈ 𝑉(Γ), where Γ(V) is the set
of vertices which are adjacent to V and 𝑋V is the stabilizer of
V in 𝑋. It is known that 2-arc-transitive graphs form a proper
subclass of vertex transitive locally primitive graphs.

Let 𝐺 be a group and let 𝑆 be a nonempty subset of 𝐺.
The Cayley graph of 𝐺 with respect to 𝑆 is denoted by Γ =

Cay(𝐺, 𝑆) is defined as a graph with vertex set 𝐺 and {𝑥, 𝑦} is
an edge of Γ if and only if for some 𝑠 ∈ 𝑆 we have 𝑦 = 𝑠𝑥.

Many large graphs can be constructed by expanding of
small graphs; thus it is important to knowwhich properties of
small graphs can be transferred to the expanded one; for
example, Li et al. in [1] proved that the lexicographic product
of vertex transitive graphs is also vertex transitive as well as
the lexicographic product of edge transitive graphs, and
Jaradat et al. in [2] found the basis number of the semicompo-
sition product of two paths and a cycle with a path. Here we
consider seven products of graphs as the expander graph
which is described below, and hence when we talk about the
product of graphs, we mean that the product is one of the
following products.

Definition 1. Let Γ
1

= (𝑉
1
, 𝐸
1
) and Γ

2
= (𝑉
2
, 𝐸
2
) be two

graphs. Γ = (𝑉, 𝐸), the product of them, is a graph with vertex
set𝑉 = 𝑉

1
×𝑉
2
, and the vertex (𝑢

1
, 𝑢
2
) is adjacent to (V

1
, V
2
) in

Γ if one of the relevant conditions happens depending on the
product.

(1) Cartesian product: 𝑢
1
is adjacent to V

1
in Γ
1
and 𝑢

2
=

V
2
or 𝑢
1
= V
1
and 𝑢

2
is adjacent to V

2
in Γ
2
.

(2) Tensor product: 𝑢
1
is adjacent to V

1
in Γ
1
and 𝑢

2
is

adjacent to V
2
in Γ
2
.

(3) Strong product: 𝑢
1
is adjacent to V

1
in Γ
1
and 𝑢

2
= V
2

or 𝑢
1

= V
1
and 𝑢

2
is adjacent to V

2
in Γ
2
or 𝑢
1
is

adjacent to V
1
in Γ
1
and 𝑢

2
is adjacent to V

2
in Γ
2
.

(4) Lexicographic: 𝑢
1
is adjacent to V

1
in Γ
1
or 𝑢
1
= V
1
and

𝑢
2
is adjacent to V

2
in Γ
2
.

(5) Conormal product: 𝑢
1
is adjacent to V

1
in Γ
1
or 𝑢
2
is

adjacent to V
2
in Γ
2
.

(6) Modular product: 𝑢
1
is adjacent to V

1
in Γ
1
and 𝑢

2
is

adjacent to V
2
in Γ
2
or 𝑢
1
is not adjacent to V

1
in Γ
1
and

𝑢
2
is not also adjacent to V

2
in Γ
2
.

(7) Rooted product with root ℎ
1
∈ 𝑉
2
: 𝑢
1
is adjacent to V

1

in Γ
1
and 𝑢
2
= V
2
= ℎ
1
or 𝑢
1
= V
1
and 𝑢
2
is adjacent to

V
2
in Γ
2
.

Locally primitive Cayley graphs and 2-arc-transitive
graphs have been extensively studied; see, for example, [3–8]
and references therein.Thesemotivated the author to investi-
gate if the product of two locally transitive or locally primitive
graphs has the property as well.

Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2014, Article ID 308718, 4 pages
http://dx.doi.org/10.1155/2014/308718



2 International Journal of Mathematics and Mathematical Sciences

2. Main Results

Theorem 2. Let Γ
1
= (𝑉
1
, 𝐸
1
) and Γ

2
= (𝑉
2
, 𝐸
2
) be two simple

graphs, let𝑋 be a subgroup of Aut(Γ
1
), and let 𝑌 be a subgroup

of Aut(Γ
2
). Then 𝑋 × 𝑌 is also a subgroup of Aut(Γ), where Γ is

the product of Γ
1
and Γ
2
.

Proof. Suppose 𝛼 = (𝜎, 𝛿) ∈ 𝑋 × 𝑌. Thus 𝜎 is an
automorphism of Γ

1
and 𝛿 is an automorphism of Γ

2
. 𝜎 is a

bijection of𝑉
1
and𝛿 is a bijection of𝑉

2
, which implies𝛼 is also

a bijection of 𝑉 = 𝑉
1
× 𝑉
2
, the vertex set of Γ. Now assume

(𝑢
1
, 𝑢
2
) and (V

1
, V
2
) are two arbitrary adjoint vertices of Γ. We

distinguish seven kinds of products as follows.
(1)Cartesian product: suppose Γ is the Cartesian product

of the graphs Γ
1
and Γ
2
. If (𝑢
1
, 𝑢
2
) and (V

1
, V
2
) are adjoint in the

Cartesian product, by the definition of Cartesian product, we
have 𝑢

1
= V
1
and 𝑢

2
is adjacent to V

2
in Γ
2
or vice versa.

For the case 𝑢
1
= V
1
, 𝑢
2
and V
2
are adjoint in Γ

2
. 𝜎 is amap;

thus 𝜎(𝑢
1
) = 𝜎(V

1
). 𝛿 is an automorphism of Γ

2
; hence 𝛿(𝑢

2
)

is adjacent to 𝛿(V
2
) in Γ

2
. Thus (𝜎(𝑢

1
), 𝛿(𝑢
2
)) is adjacent to

(𝜎(V
1
), 𝛿(V
2
)), which says 𝛼((𝑢

1
, 𝑢
2
)) is also adjacent to

𝛼((V
1
, V
2
)) in Γ.

Similar argument can be done for the case 𝑢
1
being adja-

cent to V
1
in Γ
1
and 𝑢
2
= V
2
as well, which says 𝛼 preserves the

edges of the graph Γ.
(2) Tensor product: suppose Γ is tensor product of the

graphs Γ
1
and Γ
2
. If (𝑢
1
, 𝑢
2
) and (V

1
, V
2
) are adjoint in the graph

Γ, by the definition of tensor product, we imply that (𝑢
1
, V
1
)

and (𝑢
2
, V
2
) are edges of Γ

1
and Γ
2
, respectively.

𝜎 is an automorphism of the graph Γ
1
, implying (𝜎(𝑢

1
),

𝜎(V
1
)) is an edge of the graph Γ

1
. Being 𝛿 an automorphism of

the graph Γ
2
yields (𝛿(𝑢

2
), 𝛿(V
2
))will be an edge of Γ

2
; that is,

𝛼((𝑢
1
, 𝑢
2
)) and𝛼((V

1
, V
2
)) are also adjacent in the graph Γ; that

is, 𝛼 preserves the edges of the graph Γ.
(3) Strong product: from the case 1 and case 2 we can

deduce that in this case we can also say 𝛼 preserves the edges
of the graph Γ.

(4) Lexicographic product: if Γ is the lexicographic prod-
uct of the graphs Γ

1
and Γ
2
and (𝑢

1
, 𝑢
2
) and (V

1
, V
2
) are joint by

an edge in the graph Γ, by the definition of lexicographic
product, (𝑢

1
, V
1
) is an edge of Γ

1
, or 𝑢
1
= V
1
and 𝑢
2
is adjacent

to V
2
in Γ
2
.

If 𝑢
1
is adjacent to V

1
in Γ
1
, then 𝜎(𝑢

1
) is also adjacent to

𝜎(V
1
) in Γ
1
, since 𝜎 is an automorphism of the graph Γ

1
, and

hence by the definition of the lexicographic product, (𝜎(𝑢
1
),

𝛿(𝑢
2
)) is adjacent to (𝜎(V

1
), 𝛿(V
2
)) in the graph Γ; that is,

𝛼((𝑢
1
, 𝑢
2
)) and 𝛼((V

1
, V
2
)) are joined by an edge in the graph

Γ.
For the case 𝑢

1
= V
1
and 𝑢

2
being adjacent to V

2
in Γ
2
the

same argument in case 1 can be done to show that 𝛼((𝑢
1
, 𝑢
2
))

is also adjacent to 𝛼((V
1
, V
2
)) in the graph Γ.

(5)Conormal product: if Γ is the conormal product of the
graphs Γ

1
and Γ
2
and (𝑢

1
, 𝑢
2
) and (V

1
, V
2
) are joint by an edge

in the graph Γ, by the definition of conormal product we have
either (𝑢

1
, V
1
) ∈ 𝐸
1
or (𝑢
2
, V
2
) ∈ 𝐸
2
, where 𝐸

1
and 𝐸

2
are the

edge set of the graphs Γ
1
and Γ
2
, respectively.

For the first case, since 𝜎 is an automorphism of Γ
1
,

thus (𝜎(𝑢
1
), 𝜎(V
1
)) ∈ 𝐸

1
, and by the definition of conormal

product, (𝜎(𝑢
1
), 𝛿(𝑢
2
)) is adjacent to (𝜎(V

1
), 𝛿(V
2
)) in the

graph Γ.

And for the case (𝑢
2
, V
2
) ∈ 𝐸
2
wewill have (𝛿(𝑢

2
), 𝛿(V
2
)) ∈

𝐸
2
, since 𝛿 is an automorphism of the graph Γ

2
. And hence

(𝜎(𝑢
1
), 𝛿(𝑢
2
)) is adjacent to (𝜎(V

1
), 𝛿(V
2
)) in the graph Γ.

Therefore in both cases we have that 𝛼((𝑢
1
, 𝑢
2
)) and

𝛼((V
1
, V
2
)) are joint by an edge in the graph Γ; that is 𝛼

preserves the edges.
(6) Modular product: we have (𝑢

𝑖
, V
𝑖
) ∈ 𝐸

𝑖
for 𝑖 = 1, 2 if

and only if (𝜎(𝑢
1
), 𝜎(V
1
)) ∈ 𝐸

1
and (𝛿(𝑢

2
), 𝛿(V
2
)) ∈ 𝐸

2
,

because 𝜎 and 𝛿 are automorphisms of the graphs Γ
1
and Γ
2

respectively. Therefore (𝑢
𝑖
, V
𝑖
) ∉ 𝐸

𝑖
for 𝑖 = 1, 2 if and only if

(𝜎(𝑢
1
), 𝜎(V
1
)) ∉ 𝐸

1
and (𝛿(𝑢

2
), 𝛿(V
2
)) ∉ 𝐸

2
.

Now if Γ is the modular product of the graphs Γ
1
and Γ
2

and (𝑢
1
, 𝑢
2
) and (V

1
, V
2
) are joint by an edge in the graph Γ, by

the definition of modular product, we have (𝑢
𝑖
, V
𝑖
) ∈ 𝐸

𝑖
, or

(𝑢
𝑖
, V
𝑖
) ∉ 𝐸
𝑖
for 𝑖 = 1, 2, where 𝐸

𝑖
is the set of edges of Γ

𝑖
.

For the first case we have (𝜎(𝑢
1
), 𝜎(V
1
)) ∈ 𝐸

1
and (𝛿(𝑢

2
),

𝛿(V
2
)) ∈ 𝐸

2
, implying (𝜎(𝑢

1
), 𝛿(𝑢
2
)) is adjacent to (𝜎(V

1
),

𝛿(V
2
)) in the graph Γ.
For the latter case we have (𝜎(𝑢

1
), 𝜎(V
1
)) ∉ 𝐸

1
and (𝛿(𝑢

2
),

𝛿(V
2
)) ∉ 𝐸

2
; that is (𝜎(𝑢

1
), 𝛿(𝑢
2
)) is adjacent to (𝜎(V

1
), 𝛿(V
2
))

in the graph Γ.
And we conclude that Γ preserve the edges.
(7) Rooted product: similar argument of case (1) can be

done to prove that Γ, the rooted product of graphs Γ
1
and Γ
2
,

also preserve the edges, but we have considered that if Γ is
rooted product with root ℎ

1
, then the image of it with respect

to 𝛼 will be a rooted graph with root 𝛿(ℎ
1
).

Thus if Γ is one of the 7 kinds of products of Γ
1
and Γ
2
, then

𝑋 × 𝑌 will be a bijection on 𝑉 = 𝑉
1
× 𝑉
2
which preserves the

edges of the graph Γ, implying 𝑋 × 𝑌 is an automorphism of
the graph Γ.

Next lemma is simple to prove but useful in the literature.
Thus we mention it without proof.

Lemma 3. For two simple graphs Γ
1

= (𝑉
1
, 𝐸
1
) and Γ

2
=

(𝑉
2
, 𝐸
2
) and (𝑢

1
, 𝑢
2
) ∈ 𝑉 = 𝑉

1
×𝑉
2
, If Γ is the product of graphs

Γ
1
and Γ

2
, then the neighbourhood of vertex (𝑢

1
, 𝑢
2
) of the

vertex set of Γ is as follows.

(1) Cartesian product: Γ((𝑢
1
, 𝑢
2
)) = (Γ

1
(𝑢
1
)×{𝑢
2
})∪({𝑢

1
}×

Γ
2
(𝑢
2
)).

(2) Tensor product: Γ((𝑢
1
, 𝑢
2
)) = Γ

1
(𝑢
1
) × Γ
2
(𝑢
2
).

(3) Strong product: Γ((𝑢
1
, 𝑢
2
)) = (Γ

1
(𝑢
1
) × {𝑢

2
}) ∪ ({𝑢

1
} ×

Γ
2
(𝑢
2
)) ∪ (Γ

1
(𝑢
1
) × Γ
2
(𝑢
2
)).

(4) Lexicographic product: Γ((𝑢
1
, 𝑢
2
)) = (Γ

1
(𝑢
1
) × 𝑉
2
) ∪

({𝑢
1
} × Γ
2
(𝑢
2
)).

(5) Conormal product: Γ((𝑢
1
, 𝑢
2
)) = (Γ

1
(𝑢
1
) × 𝑉
2
) ∪ (𝑉

1
×

Γ
2
(𝑢
2
)).

(6) Modular product: Γ((𝑢
1
, 𝑢
2
)) = (Γ

1
(𝑢
1
) × Γ
2
(𝑢
2
)) ∪

(Γ
1
(𝑢
1
)
𝑐
× Γ
2
(𝑢
2
)
𝑐
), where Γ

𝑖
(𝑢
𝑖
)
𝑐 is the complement set

of Γ
𝑖
(𝑢
𝑖
) in the vertex set 𝑉

𝑖
for 𝑖 = 1, 2.

(7) Rooted product with root {ℎ
1
}: Γ((𝑢

1
, ℎ
1
)) = (Γ

1
(𝑢
1
) ×

{ℎ
1
}) ∪ ({𝑢

1
} × Γ
2
(ℎ
1
)) and Γ((𝑢

1
, 𝑢
2
)) = {𝑢

1
} × Γ
2
(𝑢
2
),

for 𝑢
2

̸= ℎ
1
.

Now we focus on simple graphs, by which we mean an
undirected graph with no loops.
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Theorem 4. Let Γ
1

= (𝑉
1
, 𝐸
1
) and Γ

2
= (𝑉

2
, 𝐸
2
) be 𝑋-

and𝑌-locally transitive nonempty (nonedgeless) simple graphs,
respectively, then Γ, the product of Γ

1
and Γ
2
, is also𝑋×𝑌-locally

transitive graph if and only if Γ is the tensor product of them.

Proof. By the definition of locally transitive graph, we have to
determine if Γ is one of the seven kinds of graph product of Γ

1

and Γ
2
; (𝑋 × 𝑌)

𝑤
acts transitively on the set Γ(𝑤), where 𝑤 =

(𝑢
1
, 𝑢
2
) is any arbitrary element of the vertex set of Γ and (𝑋×

𝑌)
𝑤
is the stabilizer of 𝑤 in 𝑋 × 𝑌.
If 𝛼 = (𝜎, 𝛿) is in the stabilizer of 𝑤 = (𝑢

1
, 𝑢
2
) in 𝑋 × 𝑌,

then 𝛼(𝑤) = 𝑤 and we have

𝛼 (𝑤) = (𝜎, 𝛿) (𝑢
1
, 𝑢
2
) = (𝜎 (𝑢

1
) , 𝛿 (𝑢

2
)) = (𝑢

1
, 𝑢
2
) = 𝑤.

(1)

Thus 𝜎(𝑢
1
) = 𝑢
1
and 𝛿(𝑢

2
) = 𝑢
2
, implying 𝜎 ∈ 𝑋

𝑢
1

and 𝛿 ∈

𝑌
𝑢
2

; that is, 𝛼 = (𝜎, 𝛿) ∈ 𝑋
𝑢
1

× 𝑌
𝑢
2

. The converse is also true
which says

(𝑋 × 𝑌)
𝑤

= 𝑋
𝑢
1

× 𝑌
𝑢
2

. (2)

Let Γ be Cartesian product of Γ
1
and Γ
2
. Lemma 3 implies

that Γ(w) = (Γ
1
(𝑢
1
)×{𝑢
2
})∪({𝑢

1
}×Γ
2
(𝑢
2
)). Now for every 𝛼 =

(𝜎, 𝛿) ∈ (𝑋 × 𝑌)
𝑤
we have 𝜎(𝑢

1
) = 𝑢

1
, since 𝜎 is in the sta-

bilizer of 𝑢
1
in 𝑥. Similar argument shows that 𝛿(𝑢

2
) = 𝑢
2
. Γ
1

and Γ
2
both are edgeless and hence the sets Γ

1
(𝑢
1
) and Γ

2
(𝑢
2
)

are nonempty for some 𝑢
1

∈ 𝑉
1
and 𝑢

2
∈ 𝑉
2
which are

disjoint from the sets {𝑢
1
} and {𝑢

2
}, respectively.Thus there is

not any 𝛼 ∈ (𝑋×𝑌)
𝑤
which sends (𝑢

1
, 𝑢
󸀠

2
) to (𝑢

󸀠

1
, 𝑢
2
) for some

𝑢
󸀠

1
∈ Γ
1
(𝑢
1
) and 𝑢

󸀠

2
∈ Γ
2
(𝑢
2
), implying Γ is not locally transi-

tive.
Similar argument shows that if Γ is strong product,

lexicographic product, conormal product, or rooted product
(consider Γ(𝑢

1
, ℎ
1
) for some 𝑢

1
in an edge of Γ

1
); then it is not

locally transitive graph.
For 𝜎 ∈ 𝑋

𝑢
1

and V ∈ Γ
1
(𝑢
1
) we have 𝜎(V) ∈ Γ

1
(V), which

implies 𝜎(V) can not be in Γ
1
(𝑢
1
)
𝑐; that is, modular product of

them can not be locally transitive.
If Γ is the tensor product of Γ

1
and Γ
2
, then by Lemma 3,

Γ(𝑤) = Γ
1
(𝑢
1
) × Γ
2
(𝑢
2
). Now if Γ

1
and Γ
2
are 𝑋- and 𝑌-locally

transitive, respectively, then 𝑋
𝑢
1

and 𝑌
𝑢
2

act transitively on
the set of Γ

1
(𝑢
1
) and Γ

2
(𝑢
2
), respectively, for every 𝑢

1
∈ 𝑉
1
and

𝑢
2

∈ 𝑉
2
, and we conclude that (𝑋 × 𝑌)

𝑤
acts transitively on

the set Γ(𝑤) for every𝑤 ∈ 𝑉
1
×𝑉
2
; that is, Γ is locally transitive.

Lemma 5. Let Γ
1

= (𝑉
1
, 𝐸
1
) and Γ

2
= (𝑉
2
, 𝐸
2
) be two simple

graphs which are 𝑋- and 𝑌-locally primitive, respectively; then
Γ is𝑋×𝑌-locally primitive graph, where Γ is the tensor product
of Γ
1
and Γ
2
.

Proof. By Theorem 2, 𝑋 × 𝑌 is a subgroup of the automor-
phism group of graph Γ.

Suppose (𝑢
1
, 𝑢
2
) ∈ 𝑉

1
× 𝑉
2
be an arbitrary vertex of the

graph Γ. By Lemma 3 we have Γ(𝑢
1
, 𝑢
2
) = Γ
1
(𝑢
1
) × Γ
2
(𝑢
2
).

𝛼 = (𝜎, 𝛿) is in stabilizer of (𝑢
1
, 𝑢
2
) in 𝑋 × 𝑌 if and only if

(𝜎, 𝛿)(𝑢
1
, 𝑢
2
) = (𝑢

1
, 𝑢
2
) if and only if 𝜎(𝑢

1
) = 𝑢
1
and 𝛿(𝑢

2
) =

𝑢
2
; that is, (𝑋 × 𝑌)

(𝑢
1
,𝑢
2
)
= 𝑋
𝑢
1

× 𝑌
𝑢
2

.

By assumption𝑋
𝑢
1

acts on Γ
1
(𝑢
1
)primitively aswell as𝑌

𝑢
2

on Γ
2
(𝑢
2
). Thus it is enough to show that𝑋

𝑢
1

×𝑌
𝑢
2

acts prim-
itively on Γ

1
(𝑢
1
) × Γ
2
(𝑢
2
). But transitivity of it arises from

Theorem 4, and hence we should prove that it does not have
any nontrivial block.

Suppose not, and take somenontrivial block𝐵 of𝑋
𝑢
1

×𝑌
𝑢
2

in Γ
1
(𝑢
1
)×Γ
2
(𝑢
2
). Set𝐴 = 𝜋

−1

1
(𝐵) and𝐶 = 𝜋

−1

2
(𝐵), where 𝜋

𝑖
is

the projective map of 𝑖th coordinate.
For 𝜎 ∈ 𝑋

𝑢
1

, if 𝐴𝜎 ∩ 𝐴 ̸= 0, that is, 𝑠󸀠 ∈ 𝐴 exists such that
for some 𝑠 ∈ 𝐴 we have 𝑠

𝜎
= 𝑠
󸀠, then for some 𝑡, 𝑡

󸀠
∈ Γ
2
(𝑢
2
),

both of (𝑠, 𝑡) and (𝑠
󸀠
, 𝑡
󸀠
) belong to 𝐵.

We also know𝑌
𝑢
2

acts on Γ
2
(𝑢
2
) primitively and so transi-

tively; thus we can say, for some 𝛿 ∈ 𝑌
𝑢
2

, (𝑠, 𝑡)𝛼 = (𝑠
󸀠
, 𝑡
󸀠
); that

is (𝑠
󸀠
, 𝑡
󸀠
) ∈ 𝐵∩𝐵

𝛼 for some 𝛼 ∈ 𝑋
𝑢
1

×𝑌
𝑢
2

, and by permittivity
condition 𝐵 should be the same as 𝐵

𝛼; thus, for every 𝑠 ∈ 𝐴,
some 𝑡 ∈ Γ

2
(𝑢
2
) exists such that (𝑠, 𝑡) ∈ 𝐵 implies (𝑠, 𝑡)

𝛼
=

(𝑠
𝜎
, 𝑡
𝛼
) ∈ 𝐵
𝛼

= 𝐵; therefore 𝑠
𝜎 should belong to 𝐴, and thus

𝐴
𝜎

⊆ 𝐴. But 𝜎 is bijection and so 𝐴
𝜎

= 𝐴; that is, 𝐴 is a block
for Γ
1
(𝑢
1
).

Similarly,𝐶 is also a block for Γ
2
(𝑢
2
).Thus if𝐵 is a nontriv-

ial block, then either𝐴 or 𝐶 should also be a nontrivial block
which is a contradiction to the assumption.

By the definition of locally permittivity and Lemma 5 and
Theorem 4 we conclude the following theorem.

Theorem 6. Let Γ
1

= (𝑉
1
, 𝐸
1
) and Γ

2
= (𝑉
2
, 𝐸
2
) be two non-

empty simple graphs which are 𝑋- and 𝑌-locally primitive,
respectively, then Γ, the product of Γ

1
and Γ
2
, is 𝑋 × 𝑌-locally

primitive if and only if Γ is the tensor product.

In [9], the authors proved the following lemma for
semigroups and hence we can conclude it is valid for groups.

Lemma 7. Let 𝐻 and 𝐾 be two groups and let 𝑆 and 𝑇 be
inverse closed subsets of them, respectively, which does not
contain the identity element. If Γ

1
= 𝐶𝑎𝑦(𝐻, 𝑆) and Γ

2
=

𝐶𝑎𝑦(𝐾, 𝑇), then Γ the tensor product of the graphs Γ
1
and Γ
2
is

also a Cayley graph of the group𝐻×𝐾with respect to the subset
𝑆 × 𝑇.

Now by theTheorem 6 and Lemma 7 we can conclude the
following theorem.

Theorem 8. Let 𝐻 and 𝐾 be two groups, let 𝑆 be an inverse
closed subset of𝐻, and let𝑇 be an inverse closed subset of𝐾 and
none of them have the identity. If Γ

1
= 𝐶𝑎𝑦(𝐻, 𝑆) is 𝑋-locally

primitive and Γ
2

= 𝐶𝑎𝑦(𝐾, 𝑇) is 𝑌-locally primitive Cayley
graph, then Γ = 𝐶𝑎𝑦(𝐻 × 𝐾, 𝑆 × 𝑇) is 𝑋 × 𝑌 locally primitive
Cayley graph.
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