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Residuated lattices play an important role in the study of fuzzy logic based on 𝑡-norms. In this paper, we introduce some notions of
𝑛-fold filters in residuated lattices, study the relations among them, and compare themwith prime,maximal and primary, filters.This
work generalizes existing results in BL-algebras and residuated lattices,most notably theworks of Lele et al.,Motamed et al., Haveski
et al., Borzooei et al., Van Gasse et al., Kondo et al., Turunen et al., and Borumand Saeid et al., we draw diagrams summarizing the
relations between different types of 𝑛-fold filters and 𝑛-fold residuated lattices.

1. Introduction

Since Hájek introduced his basic fuzzy logics, (BL-logics in
short) in 1998 [1], as logics of continuous 𝑡-norms, amultitude
of research papers related to the algebraic counterparts of BL-
logics, has been published. In [2–5], the authors defined the
notions of 𝑛-fold (implicative, positive implicative, Boolean,
fantastic, obstinate, and normal) filters in BL-algebras and
studied the relation among them.

A close analysis of the situation reveals that themain drive
in all the previously mentioned works resides in the existence
of an adjoint pair of operations. Just as the foldness theory for
filters in BL-algebras generalizes filters introduced by Hájek,
our foldness theory for filters in residuated lattices builds on
recently published works on filters in residuated lattices by
Haveshki et al. [6], VanGasse et al. [7], Kondo andDudek [8],
Kondo and Turunen [9], Borumand Saeid and Pourkhatoun
in [10], and Zahiri and Farahani in [11].

More specifically, we introduce the notions of 𝑛-fold
(implicative, positive implicative, Boolean, fantastic, normal,
integral, and involutive) filters and 𝑛-fold Boolean filters of
the second kind in residuated lattices, notions that naturally
generalize the corresponding ones previously studied in
BL-algebras. Concurrently, we introduce the same foldness
concepts on residuated lattices. In each folding class, we

tie together the two concepts by characterizing the corre-
sponding residuated lattices using their filters. For instance,
it is shown (Proposition 20) that a residuated lattice is 𝑛-fold
implicative if and only if its trivial filter is 𝑛-fold implicative
if and only if all its filters are 𝑛-fold implicative. Examples
are included not only to illustrate the newly introduced
concepts but also to differentiate them from the existing ones.
Finally, diagrams summarizing all the relationships between
the above classes of filters and residuated lattices are given
(see Figures 1 and 2) for quick referencing. It should be
noted that when restricted to BL-algebras these diagrams
contain previously discovered relationships and also some
newly found ones.

2. Preliminaries

A residuated lattice is a nonempty set 𝐿 with four binary
operations ∧, ∨, ⊗, → , and two constants 0, 1 satisfying the
following properties:

L-1: (𝐿, ∧, ∨, 0, 1) is a bounded lattice.

L-2: (𝐿, ⊗, 1) is a commutative monoid.

L-3: 𝑥⊗𝑦 ≤ 𝑧 if and only if 𝑥 ≤ 𝑦 → 𝑧 (residuation).
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Figure 1: Diagram of 𝑛-fold filters.
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Figure 2: Diagrams of 𝑛-fold residuated lattices.

AMTL-algebra is a residuated lattice 𝐿which satisfies the
following condition:

L-4: (𝑥 → 𝑦) ∨ (𝑦 → 𝑥) = 1 (prelinearity).

A BL-algebra is a MTL-algebra 𝐿 which satisfies the
following condition:

L-5: 𝑥 ∧ 𝑦 = 𝑥 ⊗ (𝑥 → 𝑦) (divisibility).

A MV-algebra is a BL-algebra 𝐿 which satisfies the
following condition:

L-6: 𝑥 = 𝑥, where 𝑥 := 𝑥 → 0. Alternatively, a MV-
algebra can be defined as a residuated lattice 𝐿 which
satisfies the following condition:
L-7: (𝑥 → 𝑦) → 𝑦 = (𝑦 → 𝑥) → 𝑥.

A Heyting lattice is a residuated lattice 𝐿 which satisfies
the following condition:

L-8: 𝑥 ∧ 𝑦 = 𝑥 ⊗ 𝑦.
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A Boolean lattice is a residuated lattice 𝐿 which satisfies
the following condition:

L-9: 𝑥 ∨ 𝑥 = 1.

In this work, unless mentioned otherwise, (𝐿, ∧, ∨, ⊗, → ,

0, 1) will be a residuated lattice, which will often be referred
to by its support set 𝐿.

For any element 𝑥 ∈ 𝐿, we define 𝑥0 = 1 and 𝑥
𝑛+1

=

𝑥
𝑛
⊗ 𝑥 for any integer 𝑛 ≥ 0.

Proposition 1 (see [7, 9, 10, 12]). The following properties hold
in a residuated lattice.

(1) 𝑥 ≤ 𝑦 if and only if 𝑥 → 𝑦 = 1; 𝑥 ⊗ 𝑦 ≤ 𝑥 ∧ 𝑦.

(2) 𝑥 → (𝑦 → 𝑧) = (𝑥 ⊗ 𝑦) → 𝑧.

(3) 𝑥 → (𝑦 → 𝑧) = 𝑦 → (𝑥 → 𝑧).

(4) If 𝑥 ≤ 𝑦, then 𝑦 → 𝑧 ≤ 𝑥 → 𝑧 and 𝑧 → 𝑥 ≤ 𝑧 →

𝑦.

(5) 𝑥 ≤ 𝑦 → (𝑥 ⊗ 𝑦); 𝑥 ⊗ (𝑥 → 𝑦) ≤ 𝑦.

(6) 𝑦 ≤ (𝑥 → 𝑦); 𝑥 ≤ 𝑥, and 𝑥 = 𝑥.

(7) 𝑥 ⊗ 𝑦 = 0 if and only if 𝑥 ≤ 𝑦.

(8) If 𝑥 ≤ 𝑦, then 𝑥 ⊗ 𝑧 ≤ 𝑦 ⊗ 𝑧 and 𝑦 ≤ 𝑥.

(9) 𝑥 ⊗ 𝑦 = 𝑥 → 𝑦.

(10) 𝑥 ∨ 𝑦 = 1 implies 𝑥 ⊗ 𝑦 = 𝑥 ∧ 𝑦 and 𝑥𝑛 ∨ 𝑦
𝑛
=

1 for every 𝑛 ≥ 1.

(11) 𝑥 ⊗ (𝑦 ∨ 𝑧) = (𝑥 ⊗ 𝑦) ∨ (𝑥 ⊗ 𝑧).

(12) (𝑥∨𝑦) → 𝑧 = (𝑥 → 𝑧)∧(𝑦 → 𝑧); (𝑥 → 𝑧)∨(𝑦 →

𝑧) ≤ (𝑥 ∧ 𝑦) → 𝑧.

(13) 𝑥 ∨ 𝑦 ≤ ((𝑥 → 𝑦) → 𝑦) ∧ ((𝑦 → 𝑥) → 𝑥).

(14) 𝑥 → 𝑦 ≤ (𝑦 → 𝑧) → (𝑥 → 𝑧).

(15) 𝑥 → 𝑦 ≤ (𝑧 → 𝑥) → (𝑧 → 𝑦).

Let (𝐿, ∧, ∨, ⊗, → , 0, 1) and 𝐹 be a nonempty subset of
𝐿. Then, 𝐹 is called a filter if it satisfies the following two
conditions.

(F1): for every 𝑥, 𝑦 ∈ 𝐹, 𝑥 ⊗ 𝑦 ∈ 𝐹.

(F2): for every 𝑥, 𝑦 ∈ 𝐿, if 𝑥 ≤ 𝑦 and 𝑥 ∈ 𝐹, then
𝑦 ∈ 𝐹.

𝐹 is called a deductive system if 1 ∈ 𝐹, and for all 𝑥, 𝑦 ∈ 𝐿,
𝑥 → 𝑦 ∈ 𝐹 and 𝑥 ∈ 𝐹 implies 𝑦 ∈ 𝐹.

It is known that in a residuated lattice, filters and deduc-
tive systems coincide [7].

The residuated lattices listed below are not BL-algebras
andwill be used to illustrate the concepts treated in the paper.

Example 2. Let 𝐿 = {0, 𝑎, 𝑏, 𝑐, 𝑑, 1} be a lattice such that 0 <
𝑎 < 𝑐, 0 < 𝑏 < 𝑐 < 𝑑 < 1, where 𝑎 and 𝑏 are not comparable.
Define the operations ⊗ and → by the two tables shown in
(1). Then 𝐿 is a residuated lattice which is not a MTL-algebra
since (𝑎 → 𝑏) ∨ (𝑏 → 𝑎) = 𝑐 ̸= 1:

⊗ 0 𝑎 𝑏 𝑐 𝑑 1

0 0 0 0 0 0 0

𝑎 0 𝑎 0 𝑎 𝑎 𝑎

𝑏 0 0 𝑏 𝑏 𝑏 𝑏

𝑐 0 𝑎 𝑏 𝑐 𝑐 𝑐

𝑑 0 𝑎 𝑏 𝑐 𝑐 𝑑

1 0 𝑎 𝑏 𝑐 𝑑 1

󳨀→ 0 𝑎 𝑏 𝑐 𝑑 1

0 1 1 1 1 1 1

𝑎 𝑏 1 𝑏 1 1 1

𝑏 𝑎 𝑎 1 1 1 1

𝑐 0 𝑎 𝑏 1 1 1

𝑑 0 𝑎 𝑏 𝑑 1 1

1 0 𝑎 𝑏 𝑐 𝑑 1

(1)

𝐹 = {1, 𝑏, 𝑐, 𝑑}; 𝐹
1
= {1, 𝑎, 𝑐, 𝑑}; 𝐹

2
= {1, 𝑐, 𝑑} are the proper

nontrivial filters of 𝐿.

Example 3. Let 𝐿 = {0, 𝑎, 𝑏, 𝑐, 𝑑, 1} be a lattice such that 0 <
𝑎 < 𝑐 < 𝑑 < 1 and 0 < 𝑏 < 𝑐 < 𝑑 < 1, where 𝑎 and 𝑏 are
not comparable. Define the operations ⊗ and → by the two
tables shown in (2). Then (𝐿, ∧, ∨, ⊗, → , 0, 1) is a residuated
lattice which is not a MTL-algebra, since (𝑎 → 𝑏) ∨ (𝑏 →

𝑎) = 𝑐 ∨ 𝑐 = 𝑐 ̸= 1:

⊗ 0 𝑎 𝑏 𝑐 𝑑 1

0 0 0 0 0 0 0

𝑎 0 0 0 0 𝑎 𝑎

𝑏 0 0 0 0 𝑏 𝑏

𝑐 0 0 0 0 𝑐 𝑐

𝑑 0 𝑎 𝑏 𝑐 𝑑 𝑑

1 0 𝑎 𝑏 𝑐 𝑑 1

󳨀→ 0 𝑎 𝑏 𝑐 𝑑 1

0 1 1 1 1 1 1

𝑎 𝑐 1 𝑐 1 1 1

𝑏 𝑐 𝑐 1 1 1 1

𝑐 𝑐 𝑐 𝑐 1 1 1

𝑑 0 𝑎 𝑏 𝑐 1 1

1 0 𝑎 𝑏 𝑐 𝑑 1

(2)

𝐹 = {1, 𝑑} is the only nontrivial filter of 𝐿.

Example 4. Let 𝐿 = {0, 𝑎, 𝑏, 𝑐, 1} be a lattice such that 0 < 𝑎 <
𝑏 < 𝑐 < 1. Define the operations ⊗ and → by the two tables
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shown in (3). Then (𝐿, ∧, ∨, ⊗, → , 0, 1) is a residuated lattice
which is not a BL-algebra, since 𝑐 ⊗ (𝑐 → 𝑏) = 𝑎 ̸= 𝑏 = 𝑐 ∧ 𝑏:

⊗ 0 𝑎 𝑏 𝑐 1

0 0 0 0 0 0

𝑎 0 𝑎 𝑎 𝑎 𝑎

𝑏 0 𝑎 𝑎 𝑎 𝑏

𝑐 0 𝑎 𝑎 𝑐 𝑐

1 0 𝑎 𝑏 𝑐 1

󳨀→ 0 𝑎 𝑏 𝑐 1

0 1 1 1 1 1

𝑎 0 1 1 1 1

𝑏 0 𝑐 1 1 1

𝑐 0 𝑏 𝑏 1 1

1 0 𝑎 𝑏 𝑐 1

(3)

𝐹
1
= {1}, 𝐹

2
= {1, 𝑐}, 𝐹

3
= {1, 𝑎, 𝑏, 𝑐} are filters of 𝐿.

Example 5. Let 𝐿 = {0, 𝑎, 𝑏, 𝑐, 1} be a lattice such that 0 <

𝑎 < 𝑐 < 1, 0 < 𝑏 < 𝑐 < 1, where 𝑎 and 𝑏 are not comparable.
Define the operations ⊗ and → by the two tables shown in
(4). Then (𝐿, ∧, ∨, ⊗, → , 0, 1) is a residuated lattice which is
not a BL-algebra, since (𝑎 → 𝑏) ∨ (𝑏 → 𝑎) = 𝑎 ∨ 𝑏 = 𝑐 ̸= 1:

⊗ 0 𝑎 𝑏 𝑐 1

0 0 0 0 0 0

𝑎 0 𝑎 0 𝑎 𝑎

𝑏 0 0 𝑏 𝑏 𝑏

𝑐 0 𝑎 𝑏 𝑐 𝑐

1 0 𝑎 𝑏 𝑐 1

󳨀→ 0 𝑎 𝑏 𝑐 1

0 1 1 1 1 1

𝑎 𝑏 1 𝑏 1 1

𝑏 𝑎 𝑎 1 1 1

𝑐 0 𝑎 𝑏 1 1

1 0 𝑎 𝑏 𝑐 1

(4)

𝐹
1
= {1}, 𝐹

2
= {1, 𝑐}, 𝐹

3
= {1, 𝑎, 𝑐}, 𝐹

4
= {1, 𝑏, 𝑐} are filters of

𝐿.

Example 6. Let 𝐿 = {0, 𝑎, 𝑏, 𝑐, 1} be a lattice such that 0 < 𝑎 <
𝑐 < 1, 0 < 𝑏 < 𝑐 < 1, where 𝑎 and 𝑏 are not comparable.
Define the operations ⊗ and → by the two tables shown in
(5). Then (𝐿, ∧, ∨, ⊗, → , 0, 1) is a residuated lattice which is
not a MTL-algebra, since (𝑎 → 𝑏) ∨ (𝑏 → 𝑎) = 𝑐∨ 𝑐 = 𝑐 ̸= 1:

⊗ 0 𝑎 𝑏 𝑐 1

0 0 0 0 0 0

𝑎 0 0 0 0 𝑎

𝑏 0 0 0 0 𝑏

𝑐 0 0 0 0 𝑐

1 0 𝑎 𝑏 𝑐 1

󳨀→ 0 𝑎 𝑏 𝑐 1

0 1 1 1 1 1

𝑎 𝑐 1 𝑐 1 1

𝑏 𝑐 𝑐 1 1 1

𝑐 𝑐 𝑐 𝑐 1 1

1 0 𝑎 𝑏 𝑐 1

(5)

𝐹 = {1} is the only proper filter of 𝐿.

Remark 7 (see [13]). It is well known that the class of
residuated lattices is a variety. So from the above examples,
wemay obtain infinite residuated lattices which are not𝑀𝑇𝐿-
algebras.

Definition 8 (see [14]). Let 𝐿 be a residuated lattice.

(i) 𝐿 is said to be locally finite if for every 𝑥 ̸= 1, there
exists an integer 𝑛 ≥ 1 such that 𝑥𝑛 = 0.

(ii) 𝐿 is said to be local if it has a unique maximal filter.

Clearly, a locally finite residuated lattice is local.
Given a filter 𝐹 of a residuated lattice 𝐿, there is a well-

known congruence ≡
𝐹
on 𝐿 defined by 𝑥 ≡

𝐹
𝑦 if and only

if (𝑥 → 𝑦 ∈ 𝐹 and 𝑦 → 𝑥 ∈ 𝐹); the quotient structure 𝐿/𝐹
is also a residuated lattice where 𝑥/𝐹∧𝑦/𝐹 = (𝑥∧𝑦)/𝐹; 𝑥/𝐹∨
𝑦/𝐹 = (𝑥∨𝑦)/𝐹; 𝑥/𝐹⊗𝑦/𝐹 = (𝑥⊗𝑦)/𝐹; 𝑥/𝐹 → 𝑦/𝐹 = (𝑥 →

𝑦)/𝐹.
One can easily verify the following result.

Proposition 9 (see [14]). For any filter 𝐹 of a residuated
lattices 𝐿, the following conditions are equivalent.

(i) 𝐹 is a maximal filter of 𝐿.
(ii) For any 𝑥 ∈ 𝐿, 𝑥 ∉ 𝐹 if and only if 𝑥𝑚 ∈ 𝐹 for some

𝑚 ≥ 1.
(iii) 𝐿/𝐹 is a locally finite residuated lattice.

Consequently, it is straightforward to see that 𝐿 is locally
finite if and only if {1} is a maximal filter, and 𝐿 is local if and
only if𝐷(𝐿) := {𝑥 ∈ 𝐿; 𝑥𝑚 ̸= 0 ∀ 𝑚 ≥ 1} is a proper filter.

Definition 10. Let 𝐿
1
and 𝐿

2
be two residuated lattices.

Then a map 𝑓 : 𝐿
1

→ 𝐿
2
is called a residuated lattice

homomorphism if it satisfies the following conditions.

(i) 𝑓(0) = 0.
(ii) 𝑓(𝑥 ⊗ 𝑦) = 𝑓(𝑥) ⊗ 𝑓(𝑦), for every 𝑥, 𝑦 ∈ 𝐿

1
.

(iii) 𝑓(𝑥 → 𝑦) = 𝑓(𝑥) → 𝑓(𝑦), for every 𝑥, 𝑦 ∈ 𝐿
1
.

If 𝑓 is bijective, the homomorphism 𝑓 is called a residuated
lattice isomorphism. In this case we write 𝐿

1
≅ 𝐿
2
.

Definition 11 (see [7, 9, 14, 15]). A proper filter 𝐹 is said to be:

(i) prime if, for all 𝑥, 𝑦 ∈ 𝐿, 𝑥 → 𝑦 ∈ 𝐹 or 𝑦 → 𝑥 ∈ 𝐹;
(ii) prime of the second kind if, for all 𝑥, 𝑦 ∈ 𝐿, 𝑥 ∨ 𝑦 ∈ 𝐹

implies 𝑥 ∈ 𝐹 or 𝑦 ∈ 𝐹;
(iii) prime of the third kind if, for all 𝑥, 𝑦 ∈ 𝐿, (𝑥 → 𝑦) ∨

(𝑦 → 𝑥) ∈ 𝐹;
(iv) boolean if, for all 𝑥 ∈ 𝐿, 𝑥 ∨ 𝑥 ∈ 𝐹;
(v) boolean of the second kind if, for all 𝑥 ∈ 𝐿, 𝑥 ∈ 𝐹 or

𝑥 ∈ 𝐹;
(vi) primary if, for all 𝑥, 𝑦 ∈ 𝐿: (𝑥 ⊗ 𝑦) ∈ 𝐹 implies 𝑥𝑛 ∈ 𝐹

or 𝑦𝑛 ∈ 𝐹, for some integer 𝑛 ≥ 0;
(vii) a semimaximal filter if Rad(𝐹) = 𝐹, where Rad(𝐹)

is the intersection of all maximal filters of 𝐿 which
contain 𝐹.
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Remark 12 (see [7, 9, 14, 15]). (i) Prime filters are prime filters
of the second kind.The converse is true if 𝐿 is aMTL-algebra.

(ii) Prime filters are prime filters of the third kind.
(iii) Boolean filters of the second kind are boolean filters.
(iv) If 𝐿 is a MTL-algebra, then maximal filters are prime

filters.
(v) If a filter is prime of the second kind and boolean, then

it is boolean of the second kind.
(vi) Maximal filters are semi maximal filters.

Lemma 13. Maximal filters are prime filters of the second kind.

Proof. Assume that 𝑃 is a maximal filter of 𝐿 and let 𝑃
1
, 𝑃
2
be

two proper filters of 𝐿 such that 𝑃
1
∩𝑃
2
= 𝑃. Then 𝑃 ⊆ 𝑃

1
and

𝑃 ⊆ 𝑃
2
; hence 𝑃 = 𝑃

1
and 𝑃 = 𝑃

2
since 𝑃 is a maximal filter

and 𝑃
1
, 𝑃
2
proper filters. From [14, Lemma 3], it follows that

𝑃 is prime of the second kind.

Proposition 14. Any prime filter of 𝐿 is a primary filter of 𝐿.

Proof. Using Definition 11(vi), the proof is as shown in the
case of pseudo-BL algebra [16].

Now, unlessmentioned otherwise, 𝑛 ≥ 1will be an integer
and 𝐹 ⊆ 𝐿.

A class F of filters of 𝐿 will be said to be closed under
extension if, for any filters 𝐹

1
and 𝐹
2
of 𝐿, 𝐹

1
∈ F and 𝐹

1
⊆ 𝐹
2

imply 𝐹
2
∈ F.

3. 𝑛-Fold Implicative Filter

Definition 15. Let 𝐿 be a residuated lattice.

(i) 𝐿 is said to be 𝑛-fold implicative if 𝑥𝑛+1 = 𝑥
𝑛 for all

𝑥 ∈ 𝐿.
(ii) A subset 𝐹 ⊆ 𝐿 is called an 𝑛-fold implicative filter if

1 ∈ 𝐹 and for all 𝑥, 𝑦, 𝑧 ∈ 𝐿, 𝑥𝑛 → (𝑦 → 𝑧) ∈ 𝐹 and
𝑥
𝑛
→ 𝑦 ∈ 𝐹 imply 𝑥𝑛 → 𝑧 ∈ 𝐹.

In particular, a 1-fold implicative filter is an implicative filter
[12].

By taking 𝑥 = 1 in the definition, we see that any 𝑛-fold
implicative filter is a filter.

Like in the case of 𝐵𝐿-algebras [8], a 1-fold implicative
residuated lattice may be called a Gödel residuated lattice.

Example 16. Let 𝑛 ≥ 1. The residuated lattice of Example 5 is
𝑛-fold implicative. But the residuated lattice of Example 6 is
not 1-fold implicative, since 𝑎2 = 0 ̸= 𝑎 = 𝑎

1.

Lemma 17. A filter 𝐹 of 𝐿 is 𝑛-fold implicative if and only if,
for all 𝑎 ∈ 𝐿, 𝐹

𝑎
:= {𝑏 ∈ 𝐿; 𝑎𝑛 → 𝑏 ∈ 𝐹} is a filter of 𝐿.

Proof. (⇒): Let 𝐹 be an 𝑛-fold implicative filter of 𝐿. Since
𝑎
𝑛
→ 1 = 1 ∈ 𝐹, we have 1 ∈ 𝐹

𝑎
. Let 𝑥, 𝑦 ∈ 𝐿 be such that

𝑥, 𝑥 → 𝑦 ∈ 𝐹
𝑎
; then 𝑎𝑛 → 𝑥 ∈ 𝐹 and 𝑎𝑛 → (𝑥 → 𝑦) ∈ 𝐹.

So, 𝑎𝑛 → 𝑦 ∈ 𝐹, and 𝑦 ∈ 𝐹
𝑎
, showing that 𝐹

𝑎
is a filter of 𝐿.

(⇐): Conversely, suppose that 𝐹
𝑎
is a filter of 𝐿, for all

𝑎 ∈ 𝐿. Let 𝑥, 𝑦, 𝑧 ∈ 𝐿 such that 𝑥𝑛 → (𝑦 → 𝑧) ∈ 𝐹 and

𝑥
𝑛
→ 𝑦 ∈ 𝐹. Then 𝑦, 𝑦 → 𝑧 ∈ 𝐹

𝑥
, and thus 𝑧 ∈ 𝐹

𝑥
, so,

𝑥
𝑛
→ 𝑧 ∈ 𝐹.

Proposition 18. The following conditions are equivalent for a
filter 𝐹 and 𝑛 ≥ 1.

(i) 𝐹 is 𝑛-fold implicative.
(ii) For all 𝑥 ∈ 𝐿, 𝑥𝑛 → 𝑥

2𝑛
∈ 𝐹.

(iii) For all 𝑥, 𝑦 ∈ 𝐿, 𝑥𝑛+1 → 𝑦 ∈ 𝐹 imply 𝑥𝑛 → 𝑦 ∈ 𝐹.

Moreover, the class of 𝑛-fold implicative filters is closed
under extension.

Proof. (i) ⇒ (ii): Let 𝑥 ∈ 𝐿; by Proposition 1(2), we have
𝑥
𝑛

→ (𝑥
𝑛

→ 𝑥
2𝑛
) = 𝑥

2𝑛
→ 𝑥

2𝑛
= 1 ∈ 𝐹 and

𝑥
𝑛
→ 𝑥
𝑛
= 1 ∈ 𝐹. Since 𝐹 is an 𝑛-fold implicative filter

of 𝐿, we have 𝑥𝑛 → 𝑥
2𝑛
∈ 𝐹.

(ii) ⇒ (i): Let 𝑥, 𝑦, 𝑧 ∈ 𝐿 such that 𝑥𝑛 → (𝑦 → 𝑧) ∈ 𝐹

and 𝑥𝑛 → 𝑦 ∈ 𝐹. By Proposition 1(5) we have 𝑥2𝑛 ⊗ (𝑥𝑛 →
𝑦) ⊗ [𝑥

𝑛
→ (𝑦 → 𝑧)] ≤ 𝑧, so ([𝑥𝑛 → (𝑦 → 𝑧)] ⊗ (𝑥

𝑛
→

𝑦)) ≤ 𝑥
2𝑛

→ 𝑧. (∗)
Since [𝑥𝑛 → (𝑦 → 𝑧)] ⊗ (𝑥

𝑛
→ 𝑦) ∈ 𝐹, we obtain

that 𝑥2𝑛 → 𝑧 ∈ 𝐹. Now, by Proposition 1(14), 𝑥𝑛 → 𝑥
2𝑛
≤

(𝑥
2𝑛

→ 𝑧) → (𝑥
𝑛
→ 𝑧). So, by the hypothesis and (∗), we

obtain 𝑥𝑛 → 𝑧 ∈ 𝐹.
(i) ⇒ (iii): Let 𝑥, 𝑦 ∈ 𝐿 be such that 𝑥𝑛+1 → 𝑦 ∈ 𝐹. By

Proposition 1(2), we have 𝑥𝑛 → (𝑥 → 𝑦) = 𝑥
𝑛+1

→ 𝑦 ∈ 𝐹

and 𝑥𝑛 → 𝑥 = 1 ∈ 𝐹; since 𝐹 is an 𝑛-fold implicative filter of
𝐿 we have 𝑥𝑛 → 𝑦 ∈ 𝐹.

(iii) ⇒ (ii):

Firstly, for 𝑛 = 1, 𝑥1+1 → 𝑥
2
= 1 ∈ 𝐹; from (iii), we

have 𝑥 → 𝑥
2
∈ 𝐹.

Secondly, for 𝑛 = 2, 𝑥2+1 → (𝑥
2−1

→ 𝑥
4
) = 𝑥
4
→

𝑥
4
∈ 𝐹; from (iii) we have 𝑥2 → (𝑥 → 𝑥

4
) ∈ 𝐹; that

is 𝑥3 → 𝑥
4
∈ 𝐹. From (iii) again, we obtain 𝑥2 →

𝑥
4
∈ 𝐹.

Finally for 𝑛 > 2, note that 𝑥𝑛+1 → (𝑥
𝑛−1

→ 𝑥
2𝑛
) =

𝑥
2𝑛

→ 𝑥
2𝑛

= 1 ∈ 𝐹. From (iii) we obtain 𝑥
𝑛
→

(𝑥
𝑛−1

→ 𝑥
2𝑛
) ∈ 𝐹; that is 𝑥𝑛+1 → (𝑥

𝑛−2
→ 𝑥
2𝑛
) ∈

𝐹. From (iii) again, we also have 𝑥𝑛 → (𝑥
𝑛−2

→

𝑥
2𝑛
) ∈ 𝐹.

By repeating the process 𝑛 times, we obtain 𝑥
𝑛

→

(𝑥
𝑛−𝑛

→ 𝑥
2𝑛
) = 𝑥
𝑛
→ 𝑥
2𝑛
∈ 𝐹.

Using Propositions 18 and 1, we can easily see that an
𝑛-fold implicative filter is (𝑛 + 1)-fold implicative. But the
converse is not true, as illustrated by Example 6, where the
filter {1} is 2-fold implicative but not 1-fold implicative, since
𝑎 → 𝑎

2
= 𝑎 → 0 = 𝑐 ∉ {1}.

Given a filter 𝐹 of 𝐿 and 𝑎 ∈ 𝐿, the congruence class of 𝑎
in 𝐿/𝐹 will sometimes be denoted by 𝑎

𝐹
.

Proposition 19. The following conditions are equivalent for a
filter 𝐹 of 𝐿 and 𝑛 ≥ 1.

(i) 𝐹 is 𝑛-fold implicative.
(ii) 𝐿/𝐹 is an 𝑛-fold implicative residuated lattice.
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Proof. (i) ⇒ (ii): Let𝑥 ∈ 𝐿 and 𝑛 ≥ 1. FromProposition 18(ii)
it follows that 𝑥𝑛 → 𝑥

2𝑛
∈ 𝐹, or equivalently (𝑥𝑛 →

𝑥
2𝑛
)
𝐹
= 1
𝐹
, or equivalently (𝑥𝑛)

𝐹
≤ (𝑥
2𝑛
)
𝐹
. But 𝑥2𝑛

𝐹
≤

(𝑥
𝑛+1

)
𝐹
≤ (𝑥
𝑛
)
𝐹
. Hence (𝑥𝑛+1)

𝐹
= (𝑥
𝑛
)
𝐹
for all 𝑥 ∈ 𝐿; that

is, (𝑥
𝐹
)
𝑛+1

= (𝑥
𝐹
)
𝑛 for all 𝑥 ∈ 𝐿.

(ii) ⇒ (i): Let 𝑥, 𝑦 ∈ 𝐿 such that 𝑥𝑛+1 → 𝑦 ∈ 𝐹;
then (𝑥

𝑛+1
→ 𝑦)

𝐹
= 1
𝐹
, or equivalently (𝑥𝑛+1)

𝐹
→ 𝑦
𝐹
= 1
𝐹
;

that is, (𝑥
𝐹
)
𝑛+1

→ 𝑦
𝐹
= 1
𝐹
. Since 𝐿/𝐹 is an 𝑛-fold implicative

residuated lattice, we have (𝑥
𝐹
)
𝑛
→ 𝑦
𝐹
= 1
𝐹
; thus (𝑥𝑛 →

𝑦)
𝐹
= 1
𝐹
, and 𝑥

𝑛
→ 𝑦 ∈ 𝐹.

From Propositions 19 and 18, we have the following.

Proposition 20. The following conditions are equivalent for a
residuated lattice 𝐿.

(i) 𝐿 is 𝑛-fold implicative.
(ii) {1} is an 𝑛-fold implicative filter of 𝐿.
(iii) Every filter of 𝐿 is 𝑛-fold implicative.
(iv) 𝑥𝑛 = 𝑥2𝑛 for all 𝑥 ∈ 𝐿.

Corollary 21. Any 1-fold implicative residuated lattice is a
Heyting lattice, and any Heyting lattice is an 𝑛-fold implicative
residuated lattice.

Proof. Assume that 𝐿 is a 1-fold implicative residuated
lattice. If 𝑎, 𝑏 ∈ 𝐿, we have 𝑎⊗𝑏 ≤ 𝑎∧𝑏 = (𝑎∧𝑏)⊗(𝑎∧𝑏) ≤ 𝑎⊗𝑏.
Hence 𝑎 ∧ 𝑏 = 𝑎 ⊗ 𝑏.

An 𝑛-fold implicative residuated lattice may not be a
Heyting lattice, as illustrated by Example 6, for 𝑛 ≥ 2.

4. 𝑛-Fold Boolean Filter

Definition 22. A filter of 𝐿 is said to be 𝑛-fold Boolean if 𝑥 ∨
𝑥
𝑛
∈ 𝐹 for all 𝑥 ∈ 𝐿.
In particular, any 1-fold Boolean filter is a Boolean filter.

[7]

From this definition, the class of 𝑛-fold boolean filters
is closed under extension. Moreover, in Example 4, 𝐹

3
=

{𝑎, 𝑏, 𝑐, 1} is an 𝑛-fold boolean filter and 𝐹
2
= {𝑐, 1} is not.

Proposition 23. The following conditions are equivalent for
any filter 𝐹 and any 𝑛 ≥ 1.

(i) 𝐹 is 𝑛-fold Boolean.
(ii) For all 𝑥 ∈ 𝐿, 𝑥𝑛 → 𝑥 ∈ 𝐹 implies 𝑥 ∈ 𝐹.
(iii) For all 𝑥, 𝑦 ∈ 𝐿, (𝑥𝑛 → 𝑦) → 𝑥 ∈ 𝐹 implies 𝑥 ∈ 𝐹.

Proof. (i) ⇒ (ii): Suppose that 𝐹 is 𝑛-fold Boolean. Let 𝑥 ∈ 𝐿
be such that 𝑥𝑛 → 𝑥 ∈ 𝐹; we must show that 𝑥 ∈ 𝐹. By
Proposition 1(12), we have (𝑥∨𝑥𝑛) → 𝑥 = (𝑥 → 𝑥)∧(𝑥

𝑛
→

𝑥) = 𝑥
𝑛
→ 𝑥 ∈ 𝐹; since 𝑥 ∨ 𝑥𝑛 ∈ 𝐹, we have 𝑥 ∈ 𝐹, as 𝐹 is a

filter.
(ii) ⇒ (i): Let 𝑥 ∈ 𝐿; we must show that 𝑡 = 𝑥 ∨ 𝑥

𝑛
∈ 𝐹.

Since 𝑥 ≤ 𝑡, we have 𝑥𝑛 ≤ 𝑡
𝑛 and then 𝑡𝑛 ≤ 𝑥

𝑛
≤ 𝑥
𝑛
∨ 𝑥 = 𝑡.

So 𝑡𝑛 → 𝑡 = 1 ∈ 𝐹; by (ii), we get that 𝑡 ∈ 𝐹.

(ii) ⇒ (iii): Let 𝑥, 𝑦 ∈ 𝐿 such that (𝑥𝑛 → 𝑦) → 𝑥 ∈ 𝐹;
we must show that 𝑥 ∈ 𝐹. By Proposition 1, we have 𝑥𝑛 →
𝑦 ≥ 𝑥

𝑛
→ 0 = 𝑥

𝑛, and then (𝑥𝑛 → 𝑦) → 𝑥 ≤ 𝑥
𝑛
→ 𝑥.

Since (𝑥𝑛 → 𝑦) → 𝑥 ∈ 𝐹, we have 𝑥𝑛 → 𝑥 ∈ 𝐹 and 𝑥 ∈ 𝐹
by (ii).

(iii) ⇒ (ii): This follows by setting 𝑦 = 0 in condition
(iii).

Remark 24. A filter 𝐹 satisfying Proposition 23(iii) is also
said to be 𝑛-fold positive implicative [5].

Proposition 25. Every filter of𝐿which is 𝑛-fold Boolean is also
𝑛-fold implicative.

Proof. Let 𝐹 be an 𝑛-fold Boolean filter of 𝐿 and 𝑥, 𝑦 ∈ 𝐿 such
that 𝑥𝑛+1 → 𝑦 ∈ 𝐹. We have (𝑥𝑛 ∨ 𝑥) ∈ 𝐹. By Proposition 1,
we have (𝑥𝑛 ∨ 𝑥) → (𝑥

𝑛
→ 𝑦) = (𝑥

𝑛
→ (𝑥

𝑛
→ 𝑦)) ∧

(𝑥
𝑛+1

→ 𝑦) = 𝑥
𝑛+1

→ 𝑦 ∈ 𝐹, since 𝑥𝑛 → (𝑥
𝑛
→ 𝑦) = 1 ∈

𝐹, so 𝑥𝑛 → 𝑦 ∈ 𝐹, and 𝐹 is 𝑛-fold implicative.

The converse of Proposition 25 is not true, as Example 5
shows. Indeed, for 𝑛 ≥ 1, 𝐹

1
= {1} is an 𝑛-fold implicative

filter which is not 𝑛-fold Boolean because 𝑏∨𝑏𝑛 = 𝑏∨𝑎 = 𝑐 ∉
𝐹
1
.

Definition 26. A residuated lattice 𝐿 is called 𝑛-fold
Boolean (or 𝑛-fold positive implicative) if 𝑥𝑛 ∨ 𝑥 = 1 for
each 𝑥 ∈ 𝐿.

Remark 27. Let 𝐿 be a residuated lattice.

(i) Since (𝑥 ∨ 𝑥𝑛) ≤ (𝑥 ∨ 𝑥
𝑛+1

), it is clear that every 𝑛-
fold Boolean filter is (𝑛 + 1)-fold Boolean, and 𝑛-fold
Boolean residuated lattices are (𝑛 + 1)-fold Boolean.

(ii) It is easy to check that the residuated lattice of
Example 6 is 𝑛-fold boolean for 𝑛 ≥ 2. But the
residuated lattice of Example 5 is not, since 𝑎 ∨ 𝑎𝑛 =
𝑐 ̸= 1.

As in the case of 𝑛-fold implicativeness, one easily verifies
that for a filter 𝐹 of a residuated lattice 𝐿, 𝐹 is 𝑛-fold boolean
if and only if 𝐿/𝐹 is an 𝑛-fold boolean residuated lattice.

Proposition 28. The following conditions are equivalent for a
residuated lattice 𝐿.

(i) 𝐿 is 𝑛-fold Boolean.
(ii) Every filter 𝐹 of 𝐿 is 𝑛-fold Boolean.
(iii) {1} is an 𝑛-fold Boolean filter.

So, 𝑛-fold Boolean residuated lattices are 𝑛-fold implica-
tive residuated lattices. But the converse is not true.

To end this section, we note that any 1-fold Boolean
residuated lattice is a Boolean lattice, and any Boolean lattice
is an 𝑛-fold Boolean residuated lattice, for 𝑛 ≥ 1.

However, for the residuated lattice of Example 6 and 𝑛 ≥
2, 𝐿 and 𝐿𝐸 are 𝑛-fold Boolean residuated lattices which are
not Boolean lattices since 𝑎 ∨ 𝑎 = 𝑐 ̸= 1 (here, 𝐸 is any
nonempty set). Also, 𝐿 and 𝐿𝐸 are not BL-algebras.
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5. 𝑛-Fold Normal Filter

Definition 29. A filter 𝐹 is 𝑛-fold normal if, for all 𝑥, 𝑦 ∈ 𝐿,
(𝑦
𝑛
→ 𝑥) → 𝑥 ∈ 𝐹 implies (𝑥 → 𝑦) → 𝑦 ∈ 𝐹.

Example 30. Let 𝑛 ≥ 1. In Example 5, simple computations
prove that𝐹

3
= {1, 𝑎, 𝑐} is an 𝑛-fold normal filter, but the filter

𝐹
1
= {1} is not 𝑛-fold normal, since (𝑐𝑛 → 𝑎) → 𝑎 = 1 ∈

{1} and ((𝑎 → 𝑐) → 𝑐) = 𝑐 ∉ {1}.

Definition 31. A residuated lattice 𝐿 is said to satisfy the weak
double negation if the following conditions hold for all,𝑦 ∈ 𝐿.

(i) 𝑥 ⊗ 𝑦 = 𝑥 ⊗ 𝑦.
(ii) 𝑥 → 𝑦 = 𝑥 → 𝑦.

(iii) (𝑥 → 𝑦) → 𝑦 = (𝑦 → 𝑥) → 𝑥.

Note. Any BL-algebra satisfies the weak double negation [17,
Proposition 2.6(17)].

Example 32. (i) By simple computation, one can show that
the lattice of Example 2 satisfies theweak double negation and
is not a BL-algebra.

(ii) The lattice of Example 3 does not satisfy the weak
double negation because 𝑎 → 𝑏 = 𝑐 ̸= 1 = 𝑎 → 𝑏.

It is easy to prove the following result.

Remark 33. If 𝐿 satisfies the weak double negation,
then (𝑥)

𝑛
= 𝑥
𝑛, for all 𝑛 ≥ 1.

Proposition34. Let𝐿 be a residuated latticewhich satisfies the
weak double negation and let 𝐹 be a filter of 𝐿. The following
conditions are equivalent.

(i) 𝐹 is 𝑛-fold normal.

(ii) For every 𝑥 ∈ 𝐿, if 𝑥𝑛 ∈ 𝐹, then 𝑥 ∈ 𝐹.
(iii) 𝐷𝑛({1}) ⊆ 𝐹, where 𝐷𝑛 is the operator defined by

𝐷
𝑛
(𝑋) := {𝑥 ∈ 𝐿 : 𝑥

𝑛
∈ 𝑋}.

Proof. (i) ⇒ (ii): Suppose that 𝐹 is 𝑛-fold normal, and let
𝑥 ∈ 𝐿 such that 𝑥𝑛 ∈ 𝐹. Then (𝑥𝑛 → 0) → 0 ∈ 𝐹, and since
𝐹 is 𝑛-fold normal, then (0 → 𝑥) → 𝑥 ∈ 𝐹; that is, 𝑥 ∈ 𝐹.

(ii) ⇒ (i): Suppose that (ii) holds, and let (𝑥𝑛 → 𝑦) →

𝑦 ∈ 𝐹. Since (𝑥𝑛 → 𝑦) → 𝑦 ≤ (𝑥 → 𝑦) → 𝑦,
we have (𝑥 → 𝑦) → 𝑦 ∈ 𝐹 and (𝑥 → 𝑦) → 𝑦 ∈ 𝐹.
Thus, (𝑦 → 𝑥) → 𝑥 ∈ 𝐹, since 𝐿 satisfies the weak double
negation. From this and the fact that 𝐹 is a filter, we have
((𝑦 → 𝑥) → 𝑥)

𝑛
∈ 𝐹. Thus we obtain that ((𝑦 → 𝑥) →

𝑥) ∈ 𝐹.
(ii) ⇒ (iii): Suppose that (ii) holds, and let 𝑥 ∈ 𝐷

𝑛
({1}),

that is, 𝑥𝑛 = 1, then 𝑥𝑛 ∈ 𝐹, and by (ii), 𝑥 ∈ 𝐹.Thus𝐷𝑛({1}) ⊆
𝐹 as needed.

(iii) ⇒ (ii): Suppose𝐷𝑛({1}) ⊆ 𝐹, and let 𝑥 ∈ 𝐿 such that
𝑥
𝑛
∈ 𝐹. Since 𝐿 satisfies the weak double negation, we have

[𝑥
𝑛
→ 𝑥]

𝑛
= (𝑥
𝑛
→ 𝑥)

𝑛
= 1
𝑛
= 1, so 𝑥𝑛 → 𝑥 ∈ 𝐷

𝑛
({1}) ⊆

𝐹. Hence, 𝑥 ∈ 𝐹.

Note. (1) From the definition, it is clear that an 𝑛-fold normal
filter is (𝑛 + 1)-fold normal.

(2) In [18, Theorem 8], the authors state a result (in the
case 𝑛 = 1) that was meant to be (i) ⇔ (ii) above, but there
seems to be a typo in the statement of their result. However,
we have a correct proof, and (iii) provides an answer to their
open problem. So, under the assumption of the weak double
negation, the class of 𝑛-fold normal filters is closed under
extension.

Nowwe give the definition of an 𝑛-fold normal residuated
lattice.

Definition 35. 𝐿 is an 𝑛-fold normal residuated lattice if it
satisfies the following condition. For all𝑥, 𝑦 ∈ 𝐿,𝑦𝑛 → 𝑥 ≤ 𝑥

implies 𝑥 → 𝑦 ≤ 𝑦.

As in the case of 𝑛-fold implicativeness, one easily sees
that, given a filter 𝐹 of 𝐿, 𝐹 is 𝑛-fold normal if and only if 𝐿/𝐹
is an 𝑛-fold normal residuated lattice.

Note that the residuated lattice of Example 6 is 𝑛-fold
normal, for 𝑛 ≥ 2.

6. 𝑛-Fold Fantastic Filter

Definition 36. Let 𝑛 ≥ 1. A subset 𝐹 of 𝐿 is an 𝑛-fold fantastic
filter if 1 ∈ 𝐹 and, for all 𝑥, 𝑦 ∈ 𝐿, 𝑦 → 𝑥 ∈ 𝐹 implies
[(𝑥
𝑛
→ 𝑦) → 𝑦] → 𝑥 ∈ 𝐹.

In particular a 1-fold fantastic filter is a fantastic filter.

Example 37. Let 𝑛 ≥ 2.

(1) Let 𝐿 be the residuated lattice of Example 6. It is easy
to check that {1} is an 𝑛-fold fantastic filter.

(2) For the residuated lattice of Example 2. {1} is not an
𝑛-fold fantastic filter since 0 → 𝑐 = 1 ∈ {1}, but
𝑐
𝑛
→ 𝑐 = 𝑐 → 𝑐 = 1 → 𝑐 = 𝑐 ∉ {1}.

The following result gives a simple characterization of 𝑛-
fold fantastic filters.

Proposition 38. Let 𝑛 ≥ 1 and let 𝐹 be a filter. 𝐹 is an 𝑛-fold
fantastic filter if and only if [(𝑥𝑛 → 𝑦) → 𝑦] → (𝑥∨𝑦) ∈ 𝐹,
for all 𝑥, 𝑦 ∈ 𝐿.

Thus the class of 𝑛-fold fantastic filters is closed under
extension.

Proof. Assume that 𝐹 is 𝑛-fold fantastic. Since 𝑦 → (𝑥∨𝑦) =

1 ∈ 𝐹, from the hypothesis, we obtain [((𝑥 ∨ 𝑦)𝑛 → 𝑦) →

𝑦] → (𝑥 ∨ 𝑦) ∈ 𝐹.
Since 𝑥 ≤ 𝑥 ∨ 𝑦, we have 𝑥𝑛 ≤ (𝑥 ∨ 𝑦)

𝑛 and [(𝑥 ∨ 𝑦)𝑛 →
𝑦) → 𝑦] → (𝑥 ∨ 𝑦) ≤ [(𝑥𝑛 → 𝑦) → 𝑦] → (𝑥 ∨ 𝑦). Thus
[(𝑥
𝑛
→ 𝑦) → 𝑦] → (𝑥 ∨ 𝑦) ∈ 𝐹.

Conversely, assume that [(𝑥𝑛 → 𝑦) → 𝑦] → (𝑥 ∨ 𝑦) ∈

𝐹, for 𝑥, 𝑦 ∈ 𝐿.
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Let 𝑥, 𝑦 ∈ 𝐿 be such that 𝑦 → 𝑥 ∈ 𝐹. By Proposition 1,
we have 𝑥 ∨ 𝑦 ≤ (𝑦 → 𝑥) → 𝑥, so [(𝑥𝑛 → 𝑦) → 𝑦] →

(𝑥 ∨ 𝑦) ≤ [(𝑥
𝑛
→ 𝑦) → 𝑦] → ((𝑦 → 𝑥) → 𝑥), and the

latter is (𝑦 → 𝑥) → [((𝑥
𝑛
→ 𝑦) → 𝑦) → 𝑥]; it follows

that [(𝑥𝑛 → 𝑦) → 𝑦] → 𝑥 ∈ 𝐹.

Proposition 39. Let 𝑛 ≥ 1. Then any 𝑛-fold Boolean filter is
𝑛-fold fantastic.

Proof. Assume that 𝐹 is 𝑛-fold Boolean. Let 𝑥, 𝑦 ∈ 𝐿 be such
that 𝑦 → 𝑥 ∈ 𝐹.

We have 𝑥 ≤ [((𝑥𝑛 → 𝑦) → 𝑦) → 𝑥], so 𝑥𝑛 ≤ [((𝑥𝑛 →
𝑦) → 𝑦) → 𝑥]

𝑛 and (𝑥𝑛 → 𝑦) ≥ [((𝑥
𝑛
→ 𝑦) → 𝑦) →

𝑥]
𝑛
→ 𝑦. (∗)
We also have
y 󳨀→ 𝑥

≤ ((𝑥
𝑛
󳨀→ 𝑦) 󳨀→ 𝑦) 󳨀→ ((𝑥

𝑛
󳨀→ 𝑦) 󳨀→ 𝑥) ,

by Proposition 1(15)

= (𝑥
𝑛
󳨀→ 𝑦) 󳨀→ [((𝑥

𝑛
󳨀→ 𝑦) 󳨀→ 𝑦) 󳨀→ 𝑥]

≤ ([((𝑥
𝑛
󳨀→ 𝑦) 󳨀→ 𝑦) 󳨀→ 𝑥]

𝑛
󳨀→ 𝑦)

󳨀→ [((𝑥
𝑛
󳨀→ 𝑦) 󳨀→ 𝑦] 󳨀→ 𝑥] , by (∗) .

(6)

Since 𝐹 is 𝑛-fold positive implicative, we obtain [[((𝑥𝑛 →
𝑦) → 𝑦] → 𝑥]] ∈ 𝐹. Hence 𝐹 is an 𝑛-fold fantastic filter.

Proposition 40. Let 𝑛 ≥ 1. Any 𝑛-fold fantastic filter is 𝑛-fold
normal.

Proof. Assume that 𝐹 is an 𝑛-fold fantastic filter. Let 𝑥, 𝑦 ∈ 𝐿
be such that (𝑥𝑛 → 𝑦) → 𝑦 ∈ 𝐹. We must show that
𝑡 = (𝑦 → 𝑥) → 𝑥 ∈ 𝐹.

Now, 𝑥 ≤ 𝑡 implies (𝑡𝑛 → 𝑦) → 𝑦 ∈ 𝐹, and 𝑦 ≤ 𝑡

implies (𝑥𝑛 → 𝑦) → 𝑡 ∈ 𝐹. Since 𝐹 is 𝑛-fold fantastic, we
have [(𝑡𝑛 → (𝑥

𝑛
→ 𝑦)) → (𝑥

𝑛
→ 𝑦)] → 𝑡 ∈ 𝐹 (∗).

Moreover, 𝑥𝑛 ⊗ (𝑡𝑛 → (𝑥
𝑛
→ 𝑦)) = 𝑥

𝑛
⊗ (𝑥
𝑛
→ (𝑡
𝑛
→

𝑦)) ≤ 𝑡
𝑛
→ 𝑦, so byProposition 1 (14), we have (𝑡𝑛 → 𝑦) →

𝑦 ≤ [(𝑥
𝑛
⊗ (𝑡
𝑛
→ (𝑥

𝑛
→ 𝑦))] → 𝑦 = (𝑡

𝑛
→ (𝑥

𝑛
→

𝑦)) → (𝑥
𝑛
→ 𝑦), so the latter is in 𝐹, and by (∗) we obtain

𝑡 ∈ 𝐹.

Let us note that if 𝑎, 𝑏, 𝑐 ∈ 𝐿, then 𝑎 → 𝑏 ≤ (𝑏 → 𝑐) →

(𝑎 → 𝑐); thus

(𝑎 󳨀→ 𝑏) ⊗ (𝑏 󳨀→ 𝑐)

≤ [(𝑏 󳨀→ 𝑐) 󳨀→ (𝑎 󳨀→ 𝑐)] ⊗ (𝑏 󳨀→ 𝑐)

≤ 𝑎 󳨀→ 𝑐.

(7)

Theorem 41. Let 𝑛 ≥ 1. A filter 𝐹 of 𝐿 is 𝑛-fold Boolean if and
only if it is 𝑛-fold fantastic and 𝑛-fold implicative.

Proof. (⇒): This follows from Propositions 25 and 39.
(⇐): Let 𝐹 be 𝑛-fold fantastic and 𝑛-fold implicative, and

let 𝑥, 𝑦 ∈ 𝐿 be such that (𝑥𝑛 → 𝑦) → 𝑥 ∈ 𝐹. We must show
that 𝑥 ∈ 𝐹.

Since 𝐹 is 𝑛-fold fantastic and (𝑥𝑛 → 𝑦) → 𝑥 ∈ 𝐹, we
have [(𝑥𝑛 → (𝑥

𝑛
→ 𝑦)) → (𝑥

𝑛
→ 𝑦)] → 𝑥 ∈ 𝐹.

From the observation above, we have (𝑥𝑛 → 𝑥
2𝑛
) ≤

(𝑥
2𝑛

→ 𝑦) → (𝑥
𝑛
→ 𝑦), = [(𝑥

𝑛
→ (𝑥

𝑛
→ 𝑦)] →

(𝑥
𝑛
→ 𝑦). So [(𝑥𝑛 → 𝑥

2𝑛
) → 𝑥] ≥ [[𝑥

𝑛
→ (𝑥

𝑛
→ 𝑦)] →

(𝑥
𝑛
→ 𝑦)] → 𝑥. Thus (𝑥𝑛 → 𝑥

2𝑛
) → 𝑥 ∈ 𝐹, and 𝑥 ∈ 𝐹,

since 𝐹 is 𝑛-fold implicative.

Definition 42. A residuated lattice 𝐿 is said to be 𝑛-fold
fantastic if for all 𝑥, 𝑦 ∈ 𝐿, 𝑦 → 𝑥 = [(𝑥

𝑛
→ 𝑦) → 𝑦] →

𝑥.

Example 43. Let 𝑛 ≥ 2.

(1) The residuated lattice of Example 6 is 𝑛-fold fantastic.
(2) The residuated lattice of Example 2 is not 𝑛-fold

fantastic, since 𝑎 → 𝑐 = 1 ̸= 𝑐 = [(𝑐
𝑛
→ 𝑎) →

𝑎] → 𝑐.

Here is a characterization of 𝑛-fold fantastic residuated
lattices.

Proposition 44. The residuated lattice 𝐿 is 𝑛-fold fantastic if
and only if the inequality (𝑥𝑛 → 𝑦) → 𝑦 ≤ (𝑦 → 𝑥) →

𝑥 holds, for all 𝑥, 𝑦 ∈ 𝐿.

Proof. (⇒): Assume that 𝐿 is an 𝑛-fold fantastic residuated
lattice. Let 𝑥, 𝑦 ∈ 𝐿.

We have [(𝑥𝑛 → 𝑦) → 𝑦] → [(𝑦 → 𝑥) → 𝑥] =

(𝑦 → 𝑥) → [(𝑥
𝑛
→ 𝑦) → 𝑦] → 𝑥 = 1. So [(𝑥𝑛 →

𝑦) → 𝑦] ≤ [(𝑦 → 𝑥) → 𝑥], by Proposition 1(1).
(⇐): Suppose conversely that the inequality (𝑥

𝑛
→

𝑦) → 𝑦 ≤ (𝑦 → 𝑥) → 𝑥 holds for all 𝑥, 𝑦 ∈ 𝐿. Then
(𝑦 → 𝑥) → [[(𝑥

𝑛
→ 𝑦) → 𝑦] → 𝑥] = [(𝑥

𝑛
→

𝑦) → 𝑦] → [(𝑦 → 𝑥) → 𝑥] = 1. So 𝑦 → 𝑥 ≤

((𝑥
𝑛
→ 𝑦) → 𝑦) → 𝑥. Now, 𝑦 ≤ (𝑥

𝑛
→ 𝑦) → 𝑦 implies

that 𝑦 → 𝑥 ≥ ((𝑥
𝑛
→ 𝑦) → 𝑦) → 𝑥, and whence the

equality.

Proposition 45. The following conditions are equivalent for a
residuated lattice 𝐿.

(i) 𝐿 is 𝑛-fold fantastic.
(ii) Every filter 𝐹 of 𝐿 is 𝑛-fold fantastic.
(iii) {1} is an 𝑛-fold fantastic filter of 𝐿.

Proof. (i) ⇒ (ii): Follows from the definitions of 𝑛-fold
fantastic filter and 𝑛-fantastic residuated lattice.

(ii) ⇒ (iii): Follows from the fact that {1} is a filter of 𝐿.
(iii) ⇒ (i): Assume that {1} is 𝑛-fold fantastic. Let 𝑥, 𝑦 ∈

𝐿 and 𝑡 = (𝑦 → 𝑥) → 𝑥. By Proposition 1, 𝑦 ≤ 𝑡. So 𝑦 →

𝑡 = 1 and by the hypothesis, we have [(𝑡𝑛 → 𝑦) → 𝑦] →

𝑡 = 1; that is, [(𝑡𝑛 → 𝑦) → 𝑦] ≤ 𝑡. (∗)
On the other hand, 𝑥 ≤ 𝑡 implies 𝑥𝑛 ≤ 𝑡

𝑛, and hence
[(𝑥
𝑛
→ 𝑦) → 𝑦] ≤ (𝑡

𝑛
→ 𝑦) → 𝑦. Then, it follows from

(∗) that [(𝑥𝑛 → 𝑦) → 𝑦] ≤ 𝑡 = (𝑦 → 𝑥) → 𝑥. Hence by
Proposition 44, 𝐿 is 𝑛-fold fantastic.

So, a filter 𝐹 of 𝐿 is 𝑛-fold fantastic if and only if 𝐿/𝐹 is an
𝑛-fold fantastic residuated lattice.
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Combining Propositions 45, 28, and 20 and Theorem 41,
we have the following result.

Corollary 46. Let 𝑛 ≥ 1. A residuated lattice 𝐿 is 𝑛-
fold Boolean if and only if it is 𝑛-fold fantastic and 𝑛-fold
implicative.

To end this section, we note that:

(i) 𝑛-fold fantastic residuated lattices are 𝑛-fold normal;
(ii) 1-fold fantastic residuated lattices are 𝑀𝑉-algebras,

and any𝑀𝑉-algebra is an 𝑛-fold fantastic residuated
lattice, for 𝑛 ≥ 1;

(iii) however, an 𝑛-fold fantastic residuated latticemay not
be a 𝐵𝐿-algebra, as illustrated by Example 6 for 𝑛 ≥ 2.

7. 𝑛-Fold Obstinate Filter

Definition 47. Let 𝑛 ≥ 1. A proper filter 𝐹 of 𝐿 is said to be 𝑛-
fold obstinate if for all 𝑥, 𝑦 ∈ 𝐿, 𝑥, 𝑦 ∉ 𝐹 implies 𝑥𝑛 → 𝑦 ∈ 𝐹

and 𝑦𝑛 → 𝑥 ∈ 𝐹.
In particular a 1-fold obstinate filter is an obstinate filter.

The following result gives a characterization of 𝑛-fold
obstinate filter.

Lemma 48. Let 𝑛 ≥ 1; a proper filter 𝐹 is 𝑛-fold obstinate if
and only if, for all 𝑥 ∈ 𝐿, 𝑥 ∉ 𝐹 implies 𝑥𝑛 ∈ 𝐹.

Proof. (⇒): Let 𝑥 ∈ 𝐿 with 𝑥 ∉ 𝐹. By setting 𝑦 = 0 in the
definition, we have 𝑥𝑛 → 0 ∈ 𝐹; that is, 𝑥𝑛 ∈ 𝐹.

(⇐): Conversely, let 𝑥, 𝑦 ∉ 𝐹; then 𝑥𝑛, 𝑦𝑛 ∈ 𝐹. But 𝑥𝑛 =
𝑥
𝑛
→ 0 ≤ 𝑥

𝑛
→ 𝑦, so, 𝑥𝑛 → 𝑦 ∈ 𝐹. Similarly, 𝑦𝑛 → 𝑥 ∈

𝐹.

Remark 49. (i) An 𝑛-fold obstinate filter is also called an 𝑛-
fold Boolean filter of the second kind.

(ii) Since 𝑥𝑛 ≤ 𝑥
𝑛+1, any 𝑛-fold obstinate filter is (𝑛 + 1)-

fold obstinate.

Example 50. Let 𝐿 be the lattice of Example 2 and 𝑛 ≥ 1.

(i) The filter 𝐹 = {𝑏, 𝑐, 𝑑, 1} is 𝑛-fold obstinate.
(ii) The filter 𝐹

2
= {𝑐, 𝑑, 1} is not 𝑛-fold obstinate, since

𝑎 ∉ 𝐹
2
and 𝑎𝑛 = 𝑏 ∉ 𝐹.

Proposition 51. The following conditions are equivalent for
any proper filter 𝐹 and any 𝑛 ≥ 1.

(i) 𝐹 is 𝑛-fold obstinate.
(ii) 𝐹 is maximal and 𝑛-fold Boolean.
(iii) 𝐹 is maximal and 𝑛-fold implicative.
(iv) 𝐹 is prime of the second kind and 𝑛-fold Boolean.

Proof. (i) ⇒ (ii): Assume that 𝐹 is an 𝑛-fold obstinate filter.
We first show that 𝐹 is maximal. Let 𝑥 ∉ 𝐹; since 𝐹 is 𝑛-fold
obstinate, by Lemma 48, 𝑥𝑛 ∈ 𝐹. Let 𝑥 ∈ 𝐿 such that 𝑥𝑛 ∈ 𝐹;
since 0 ∉ 𝐹, it is clear that 𝑥𝑛 ∉ 𝐹 and then 𝑥 ∉ 𝐹. From this,

we get that, for all 𝑥 ∈ 𝐿, 𝑥 ∉ 𝐹 if and only if 𝑥𝑛 ∈ 𝐹; hence
by Proposition 9, 𝐹 is a maximal filter.

On the other hand, let𝑥 ∈ 𝐿 such that𝑥𝑛 → 𝑥 ∈ 𝐹. If𝑥 ∉
𝐹, then 𝑥𝑛 ∉ 𝐹, a contradiction, since 𝐹 is 𝑛-fold obstinate.
Thus 𝑥 ∈ 𝐹.

(ii) ⇒ (iii): Follows from Proposition 25.
(iii) ⇒ (i): Assume that 𝐹 is a maximal and 𝑛-fold

implicative filter of 𝐿. Let 𝑥, 𝑦 ∈ 𝐿 be such that 𝑥, 𝑦 ∉ 𝐹.
By Lemma 17, 𝐹

𝑥
= {𝑏 ∈ 𝐿 : 𝑥

𝑛
→ 𝑏 ∈ 𝐹} is a filter of 𝐿 and

so is 𝐹
𝑦
= {𝑏 ∈ 𝐿 : 𝑦

𝑛
→ 𝑏 ∈ 𝐹}.

Let 𝑧 ∈ 𝐹; since 𝑧 ≤ 𝑥
𝑛
→ 𝑧, we have 𝑥𝑛 → 𝑧 ∈ 𝐹,

and hence 𝑧 ∈ 𝐹
𝑥
and we obtain 𝐹 ⊆ 𝐹

𝑥
. On the other hand,

𝑥
𝑛
→ 𝑥 = 1 ∈ 𝐹, since 𝑥𝑛 ≤ 𝑥, and hence 𝑥 ∈ 𝐹

𝑥
. By

hypothesis, 𝑥 ∉ 𝐹. So 𝐹 ⊊ 𝐹
𝑥
⊆ 𝐿. Since 𝐹 is a maximal

filter of 𝐿, we get 𝐹
𝑥
= 𝐿. Therefore, 𝑦 ∈ 𝐹

𝑥
, or equivalently

𝑥
𝑛
→ 𝑦 ∈ 𝐹. Similarly, we get 𝑦𝑛 → 𝑥 ∈ 𝐹. Hence 𝐹 is an

𝑛-fold obstinate filter of 𝐿.
(ii) ⇒ (iv): Follows from Lemma 13.
(iv) ⇒ (i): Assume that 𝐹 is a prime filter of the second

kind and is 𝑛-fold Boolean. Let 𝑥 ∈ 𝐿 be such that 𝑥 ∉ 𝐹.
Since 𝐹 is 𝑛-fold boolean, we have 𝑥 ∨ 𝑥𝑛 ∈ 𝐹. Since 𝐹 is a
prime filter of the second kind and 𝑥 ∉ 𝐹, we have 𝑥𝑛 ∈ 𝐹.
Hence 𝐹 is an 𝑛-fold obstinate filter.

We note that this is an improvement of [11,Theorem 4.14].

Definition 52. A residuated lattice 𝐿 is said to be 𝑛-fold
obstinate (or 𝑛-fold Boolean of the second kind) if, for all
𝑥 ̸= 1, 𝑥𝑛 = 0.

This means that (𝐿\ {1}; ⊗) is an 𝑛-nilpotent commutative
semigroup.

Proposition 53. The following conditions are equivalent for
any proper filter 𝐹 and 𝑛 ≥ 1.

(i) 𝐿/𝐹 is an 𝑛-fold obstinate residuated lattice.
(ii) 𝐹 is an 𝑛-fold obstinate filter of 𝐿.

Proof. (i) ⇒ (ii): Assume that 𝐿/𝐹 is an 𝑛-fold obstinate
residuated lattice. Let 𝑥 ∈ 𝐿 be such that 𝑥 ∉ 𝐹; then, 𝑥

𝐹
̸= 1
𝐹
.

Since 𝐿/𝐹 is an 𝑛-fold obstinate residuated lattice, it follows
that (𝑥

𝐹
)
𝑛
= 0
𝐹
. This implies 𝑥𝑛 ∈ 𝐹.

(ii) ⇒ (i): Assume that 𝐹 is an 𝑛-fold obstinate filter of 𝐿.
Let 𝑥 ∈ 𝐿 be such that 𝑥

𝐹
̸= 1
𝐹
; then, 𝑥 ∉ 𝐹. It follows that

𝑥
𝑛
∈ 𝐹, or equivalently (𝑥𝑛)

𝐹
= 1
𝐹
, or equivalently (𝑥𝑛)

𝐹
=

0
𝐹
; that is, (𝑥

𝐹
)
𝑛
= 0
𝐹
.

Since 𝐿/{1} ≅ 𝐿, from Proposition 53, we have the
following result.

Proposition 54. Let 𝑛 ≥ 1. Then 𝐿 is an 𝑛-fold obstinate
residuated lattice if and only if {1} is an 𝑛-fold obstinate filter
of 𝐿.

Thus, an 𝑛-fold obstinate residuated lattice is locally finite.

Example 55. Let 𝑛 ≥ 2.

(i) The lattice of Example 6 is 𝑛-fold obstinate.
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(ii) The lattice of Example 3 is not 𝑛-fold obstinate, since
𝑑 ̸= 1 and 𝑑𝑛 ̸= 0.

8. 𝑛-Fold Integral Filter

Definition 56. Let 𝐹 be a filter of the residuated lattice 𝐿, and
𝑛 ≥ 1.

(i) 𝐹 is said to be 𝑛-fold integral if, for all 𝑥, 𝑦 ∈ 𝐿,
𝑥 ⊗ 𝑦 ∈ 𝐹 implies 𝑥𝑛 ∈ 𝐹 or 𝑦𝑛 ∈ 𝐹. In particular,
1-fold integral filters are integral filters.

(ii) 𝐿 is said to be 𝑛-fold integral if, for all 𝑥, 𝑦 ∈ 𝐿, 𝑥 ⊗
𝑦 = 0 implies 𝑥𝑛 = 0 or 𝑦𝑛 = 0. In particular, a 1-
fold integral residuated lattice is an integral residuated
lattice.

Example 57. Let 𝑛 ≥ 2.

(i) In Example 5, the filter 𝐹
3
= {𝑎, 𝑐, 1} is 𝑛-fold integral,

but the filter 𝐹
2
= {𝑐, 1} is not, because 𝑎 ⊗ 𝑏 = 1,

whereas 𝑎𝑛 = 𝑏 and 𝑏𝑛 = 𝑎.

(ii) The residuated lattice of Example 4 is 𝑛-fold integral,
but that of Example 5 is not, since 𝑎 ⊗ 𝑏 = 0 and 𝑎

𝑛
=

𝑎 ̸= 0 ̸= 𝑏 = 𝑏
𝑛.

Proposition 58. Let 𝐹 be a filter of 𝐿.The following conditions
are equivalent.

(i) 𝐹 is an 𝑛-fold integral filter.
(ii) 𝐿/𝐹 is an 𝑛-fold integral residuated lattice.

Proof. (i) ⇒ (ii): Assume that 𝐹 is an 𝑛-fold integral filter.
Then, let 𝑥, 𝑦 ∈ 𝐿 be such that 𝑥

𝐹
⊗ 𝑦
𝐹
= (𝑥 ⊗ 𝑦)

𝐹
= 0
𝐹
, or

equivalently (𝑥 ⊗ 𝑦)
𝐹
= 1
𝐹
; then 𝑥 ⊗ 𝑦 ∈ 𝐹. Since 𝐹 is 𝑛-fold

integral, it follows that 𝑥𝑛 ∈ 𝐹 or 𝑦𝑛 ∈ 𝐹, so (𝑥
𝐹
)
𝑛
= 1
𝐹
or

(𝑦
𝐹
)
𝑛
= 1
𝐹
. From this we have (𝑥

𝐹
)
𝑛
= 0
𝐹
or (𝑦
𝐹
)
𝑛
= 0
𝐹
.

(ii) ⇒ (i): Let 𝑥, 𝑦 ∈ 𝐿 be such that 𝑥 ⊗ 𝑦 ∈ 𝐹. We have
(𝑥 ⊗ 𝑦)

𝐹
= 1
𝐹
, or equivalently (𝑥 ⊗ 𝑦)

𝐹
= 𝑥
𝐹
⊗ 𝑦
𝐹
= 0
𝐹
. Since

𝐿/𝐹 is an 𝑛-fold integral residuated lattice, we have (𝑥
𝐹
)
𝑛
= 0
𝐹

or (𝑦
𝐹
)
𝑛
= 0
𝐹
; that is, 𝑥𝑛 ∈ 𝐹 or 𝑦𝑛 ∈ 𝐹.

FromProposition 58 and the fact that 𝐿/{1} ≅ 𝐿, it is clear
that the residuated lattice 𝐿 is 𝑛-fold integral if and only if {1}
is an 𝑛-fold integral filter.

Also, any 𝑛-fold integral filter is a primary filter. But the
converse is not true: in Example 3, simple computations prove
that𝐹 = {1, 𝑑} is a primary filter, but not a 1-fold integral filter,
because 𝑎 ⊗ 𝑎 ∈ 𝐹 and 𝑎 = 𝑐 ∉ 𝐹.

Proposition 59. Any proper filter of𝐿which is 𝑛-fold obstinate
is also 𝑛-fold integral.

Proof. Assume that 𝐹 is a proper 𝑛-fold obstinate filter and
let 𝑥, 𝑦 ∈ 𝐿 such that 𝑥 ⊗ 𝑦 ∈ 𝐹. Since 𝐹 is a proper filter,
it follows that 𝑥 ⊗ 𝑦 ∉ 𝐹, so 𝑥 ∉ 𝐹 or 𝑦 ∉ 𝐹. Since 𝐹 is a
proper 𝑛-fold obstinate filter, this implies 𝑥𝑛 ∈ 𝐹 or 𝑦𝑛 ∈ 𝐹,
and hence 𝐹 is an 𝑛-fold integral filter of 𝐿.

The converse of the above proposition is not true, since in
Example 4, 𝐹

2
= {𝑐, 1} is an 𝑛-fold integral filter which is not

𝑛-fold obstinate because 𝑎 ∉ 𝐹
2
and 𝑎𝑛 = 0 ∉ 𝐹

2
.

It follows that any 𝑛-fold obstinate residuated lattice is 𝑛-
fold integral.

Definition 60. Afilter𝐹 satisfies 𝑛-fold double negation if, for
all 𝑥 ∈ 𝐿, 𝑥𝑛 → 𝑥 ∈ 𝐹 implies ((𝑥)𝑛) → 𝑥 ∈ 𝐹.

Example 61. Let 𝑛 ≥ 2.

(i) In Example 2, we see by simple computations that the
filter 𝐹

2
= {𝑐, 𝑑, 1} satisfies 𝑛-fold double negation.

(ii) In Example 3, the filter 𝐹 = {1, 𝑑} does not satisfy 𝑛-
fold double negation since 𝑎𝑛 → 𝑎 = 1 ∈ 𝐹 but
((𝑎)
𝑛
) → 𝑎 = 𝑎 ∉ 𝐹.

Proposition 62. Let 𝐹 be a proper filter which satisfies 𝑛-fold
double negation. If𝐹 is 𝑛-fold integral and 𝑛-fold fantastic, then
𝐹 is 𝑛-fold obstinate.

Proof. Assume that 𝐹 is 𝑛-fold integral and 𝑛-fold fantastic.
Let 𝑥 ∈ 𝐿 such that 𝑥 ∉ 𝐹. By Proposition 1, we have (𝑥 ⊗ 𝑥) =
1 ∈ 𝐹. Since 𝐹 is 𝑛-fold integral, we have 𝑥𝑛 ∈ 𝐹 or (𝑥)𝑛 ∈ 𝐹.

Now, by Proposition 38, 𝑥𝑛 → 𝑥 ∈ 𝐹 as 𝐹 is 𝑛-fold
fantastic; thus (𝑥)𝑛 → 𝑥 ∈ 𝐹 by 𝑛-fold double negation. Since
𝑥 ∉ 𝐹, we also have (𝑥)𝑛 ∉ 𝐹, so 𝑥𝑛 ∈ 𝐹.

Definition 63. A residuated lattice 𝐿 satisfies 𝑛-fold double
negation if, for all 𝑥 ∈ 𝐿, 𝑥𝑛 → 𝑥 = 1 implies ((𝑥)𝑛) →

𝑥 = 1.

One easily verifies that a residuated lattice 𝐿 satisfies 𝑛-
fold double negation if and only if so does filter {1}.

Example 64. Let 𝑛 ≥ 2. The residuated lattice of Example 2
satisfies 𝑛-fold double negation. But the lattice of Example 3
does not, since 𝑎𝑛 → 𝑎 = 1 but ((𝑎)𝑛) → 𝑎 = 𝑎 ̸= 1.

From Propositions 62 and 45, we obtain the following
corollary.

Corollary 65. Let 𝐿 be a residuated lattice satisfying 𝑛-fold
double negation. If𝐿 is 𝑛-fold integral and 𝑛-fold fantastic, then
𝐿 is 𝑛-fold obstinate.

9. 𝑛-Fold Involutive filter

In [11], Zahiri and Farahani introduced the notion of 𝑛-fold
involutive filter of 𝑀𝑇𝐿-algebra. In this section, we follow
their idea and give the corresponding definition on residuated
lattices.

Definition 66. Let 𝐹 be a filter of the residuated lattice 𝐿.

(i) 𝐹 is called an 𝑛-fold involutive filter of 𝐿 (or 𝑛-fold
IRL filter) if 𝑥𝑛 → 𝑥 ∈ 𝐹, for all 𝑥 ∈ 𝐿.
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(ii) 𝐿 is called an 𝑛-fold involutive residuated lattice (or
𝑛-fold IRL) if 𝑥𝑛 → 𝑥 = 1, for all 𝑥 ∈ 𝐿.

Remark 67. (i) It is easy to verify that𝐹 is an 𝑛-fold involutive
filter if and only if 𝐿/𝐹 is an 𝑛-fold involutive residuated
lattice.

(ii) The class of 𝑛-fold involutive filters is closed under
extension.

These two notions are weakenings of the corresponding
ones for 𝑛-fold fantastic, by setting 𝑦 = 0 in Definitions 36
and 42. So, 𝑛-fold fantastic filters are 𝑛-fold involutive

In [11], they also study the notion of extended involutive
filter of𝑀𝑇𝐿-algebra, by taking 𝑥 = 0 in Definition 29.

Definition 68. (i) 𝐹 is called an 𝑛-fold extended involutive
filter of the residuated lattice 𝐿 (or 𝑛-fold EIRL filter) if 𝑥𝑛 ∈
𝐹 implies 𝑥 ∈ 𝐹, for all 𝑥 ∈ 𝐿.

(ii) 𝐿 is called an 𝑛-fold extended involutive residuated
lattice (or 𝑛-fold EIRL) if 𝑥𝑛 = 1 implies 𝑥 = 1, for all 𝑥 ∈ 𝐿.

Clearly, 𝐹 is an 𝑛-fold extended involutive filter if and
only if 𝐿/𝐹 is an 𝑛-fold extended involutive residuated lattice.
Moreover, an 𝑛-fold involutive filter (an 𝑛-fold normal filter,
resp.) is 𝑛-fold extended involutive.

Now, let us consider some statements about 𝐹.

(𝑆
1
) ∀𝑥 ∈ 𝐿, (𝑥)𝑛 → 𝑥

𝑛
∈ 𝐹.

(𝑆
2
) ∀𝑥 ∈ 𝐿, (𝑥)𝑛 → 𝑥 ∈ 𝐹.

(𝑆
3
) ∀𝑥 ∈ 𝐿, 𝑥𝑛 → 𝑥 ∈ 𝐹 (𝑛-fold involutive filter).

(𝑆
4
) ∀𝑥 ∈ 𝐿, 𝑥𝑛 → 𝑥 ∈ 𝐹 implies (𝑥)𝑛 → 𝑥 ∈

𝐹 (𝑛-fold double negation).
Then we have the following implications.
(𝑆
2
) implies (𝑆

3
), because 𝑥𝑛 ≤ (𝑥)

𝑛. Moreover, by
repeated use of Proposition 1 (14) and (15), we have (𝑆

1
) ⇒

(𝑆
4
); (𝑆
1
) and (𝑆

3
) ⇒ (𝑆

2
); (𝑆
3
) and (𝑆

4
) ⇒ (𝑆

2
). So, (𝑆

3
) and

(𝑆
4
) ⇒ (𝑆

2
) ⇒ (𝑆

3
). Then, we easily obtain the following

result.

Proposition 69. Let 𝐹 be a filter of the residuated lattice 𝐿
(i) If 𝐹 satisfies 𝑛-fold double negation, then 𝐹 is 𝑛-fold

involutive if and only if 𝐹 satisfies (𝑆
2
).

(ii) If 𝐹 is 𝑛-fold involutive, then 𝐹 satisfies 𝑛-fold double
negation if and only if 𝐹 satisfies (𝑆

2
).

Now, it is easy to see that an 𝑛-fold Boolean filter satisfies
𝑛-fold double negation if and only if it satisfies (𝑆

2
). So it needs

not to satisfy any one of them, as can be observed on filter {1}
of Example 6.

We may restate [11, Theorem 3.14, Theorem 3.16] as
follows.

Theorem 70. Let 𝐹 be a filter of the residuated lattice 𝐿.
(i) If 𝐹 is 𝑛-fold Boolean, then 𝐹 is 𝑛-fold implicative

and 𝑛-fold extended involutive. The converse holds if 𝐹
satisfies 𝑛-fold double negation.

(ii) If 𝐿 is 𝑛-fold Boolean, then 𝐿 is 𝑛-fold implicative and 𝑛-
fold extended involutive.The converse holds if𝐿 satisfies
𝑛-fold double negation.

Now, here are some consequences of (𝑆
1
).

Theorem 71. Let 𝐹 be a filter satisfying 𝑛-fold double negation
(or (𝑆

1
)). Then 𝐹 is 𝑛-fold obstinate if and only if 𝐹 is 𝑛-fold

integral and 𝑛-fold involutive.

Proof. This follows from Propositions 39, 51, 59, and 69 and
the proof of Proposition 62.

Theorem 72. Let 𝐹 be a filter of 𝐿 satisfying (𝑆
1
). Then 𝐹 is

𝑛-fold obstinate if and only if 𝐹 is 𝑛-fold integral and 𝑛-fold
extended involutive.

Proof. (⇒): This follows fromTheorem 71, the fact that (𝑆
1
)

implies (𝑆
4
), and the fact that an 𝑛-fold involutive filter is 𝑛-

fold extended involutive.
(⇐): Let 𝑥 ∈ 𝐿 such that 𝑥 ∉ 𝐹. Since 𝑥 ⊗ 𝑥 = 1 ∈ 𝐹, we

have 𝑥𝑛 ∈ 𝐹 or (𝑥)𝑛 ∈ 𝐹.
If (𝑥)𝑛 ∈ 𝐹, then by (𝑆

1
)we would have 𝑥𝑛 ∈ 𝐹, and 𝑥 ∈ 𝐹

as 𝐹 is 𝑛-fold EIRL; a contradiction. So, (𝑥)𝑛 ∉ 𝐹, and 𝑥
𝑛
∈

𝐹.
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