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Two reliable techniques, Haar wavelet method and optimal homotopy asymptotic method (OHAM), are presented. Haar wavelet
method is an efficient numerical method for the numerical solution of arbitrary order partial differential equations like Burgers-
Fisher and generalized Fisher equations. The approximate solutions thus obtained for the fractional Burgers-Fisher and generalized
Fisher equations are compared with the optimal homotopy asymptotic method as well as with the exact solutions. Comparison
between the obtained solutions with the exact solutions exhibits that both the featured methods are effective and efficient in solving
nonlinear problems. The obtained results justify the applicability of the proposed methods for fractional order Burgers-Fisher and

generalized Fisher’s equations.

1. Introduction

Fractional calculus is a field of applied mathematics which
deals with derivatives and integrals of arbitrary orders. In
the last few decades, fractional calculus has been extensively
investigated due to its broad applications in mathematics,
physics, and engineering such as viscoelasticity, diffusion of
biological population, signal processing, electromagnetism,
fluid mechanics, electrochemistry and so on. Fractional
differential equations are extensively used in modeling of
physical phenomena in various fields of science and engineer-
ing. For this we need a reliable and efficient technique for the
solution of fractional differential equations.

Recently, orthogonal wavelets bases are becoming more
popular for numerical solutions of partial differential equa-
tions due to their excellent properties such as ability to detect
singularities, orthogonality, flexibility to represent a function
at different levels of resolution, and compact support. In
recent years, there has been a growing interest in devel-
oping wavelet based numerical algorithms for solution of
fractional order partial differential equations. Among them,
the Haar wavelet method is the simplest and is easy to use.
Haar wavelets have been successfully applied for the solu-
tions of ordinary and partial differential equations, integral

equations, and integrodifferential equations. Therefore, the
main focus of the present paper is the application of Haar
wavelet technique for solving the problem of Burgers-Fisher
and generalized Fisher’s equations. The obtained numerical
approximation results of this method are then also compared
with the optimal homotopy asymptotic method.
Consider the generalized one-dimensional Burgers-
Fisher equation of fractional order:
o“u U du "
ata+§u ax—yax2+ﬁu(1 u'), @
where &, p, and 3 are parameters and 0 < « < 1. This equation
has a wide range of applications in fluid dynamics model, heat
conduction, elasticity, and capillary-gravity waves. When & =
0and# = 1, (1) reduces to Fisher type equation. The derivative
in (1) is Caputo derivative of order «.
The generalized time-fractional Fisher’s biological popu-
lation diffusion equation is given by

ot Ox?

where u(x, t) denotes the population density and t > 0, x €
R, and F(u) is a continuous nonlinear function satisfying

+F(u), u(x,0)=¢(x), (2)
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the following conditions: F(0) = F(1) = 0, F'(0) > 0 >
F'(1). The derivative in (2) is also the Caputo derivative of
order a.

Our aim in the present work is to implement Haar wavelet
method and optimal homotopy asymptotic method (OHAM)
in order to demonstrate the capability of these methods in
handling nonlinear equations of arbitrary order, so that one
can apply it to various types of nonlinearity.

2. Fractional Derivative and Integration

There are several approaches to define the derivatives of frac-
tional order such as Riemann-Liouville, Griinwald-Letnikov,
and Caputo. Riemann-Liouville fractional derivative is not
suitable for real-world physical problems since it requires the
definition of fractional order initial conditions, which have
no physically meaningful explanation yet. Caputo introduced
an alternative definition, which has the advantage of defining
integer order initial conditions for fractional order differen-
tial equations.

Definition 1. The Riemann-Liouville fractional integral oper-
ator J* (a0 > 0), of a function f(¢), is defined as [1]
1

JEF () = @ Jot(t—r)“_lf(‘r)d‘r, a>0, a e R,
3)

where I'(-) is the well-known gamma function, and some
properties of the operator J are as follows:

PIRF &) =1Ff(6), (a>0, B>0),

ey T+Y) ) ()
J't _—F(1+y+oc)t . (y>-1).

Definition 2. The Caputo fractional derivative (D of a
function f(t) is defined as [1]

a _ 1 )]
Oth(t) - F(H—OC) JO (t_T)oc—nJrl T (5)

(n-1<a<n neN).

The following are two basic properties of the Caputo frac-
tional derivative:

a r(1+/3) B-a _
oDt _—F(1+ﬁ—oc)t , 0<a<B+1, >-1,
n-1 " tk
FDUf O = f®O =) £ 1 (6)
k=0 :

n-1<a<n neN.

3. Haar Wavelets

Haar functions have been used from 1910 when they were
introduced by the Hungarian mathematician Alfred Haar.

Haar wavelets are the simplest wavelets among various types
of wavelets. They are step functions over the real line that
can take only three values 0, 1, and —1. The method has been
used for being its simpler, fast, and computationally attractive
feature. Usually the Haar wavelets are defined for the interval
t € [0,1) but in general case t € [A,B], we divide the
interval [A, B] into m equal subintervals, each of width At =
(B — A)/m. In this case, the orthogonal set of Haar functions
are defined in the interval [A, B] by [2]

_ |1 te[AB],
o (1) = {0 elsewhere,
Lo G@st< G0 @)
hi(t)=9-1, G <t< ()
0, otherwise,
where
cl(i)=A+(k2_j1)(B—A)=A+<k2;jl>mAt,
= (02 g (A,
(3(1'):A+<§>(B—A):A+<§>mm,
(8)
i =12...,m m =2, and ] is a positive integer which

is called the maximum level of resolution. Here j and k
represent the integer decomposition of the index i. That is,
i=k+2/-1,0<j<iand1 <k<2/ +1.

4. Function Approximation

Any function y(t) € L2([0,1)) can be expanded into Haar
wavelets by [2-4]

Y (t) = cohy (t) + ¢ hy (8) + 6 hy (£) + -+,

1 9)
where ¢ = Jo y (1) hj (t) dt.

If y(t) is approximated as piecewise constant in each subin-
terval, the sum in (9) may be terminated after m terms and
consequently we can write discrete version in the matrix form
as

m—1
Y= ) ohi(t) = CpH,, (10)
i=0

where Y and CL are the m-dimensional row vectors.
Here H is the Haar wavelet matrix of order m defined by

H = [hy,h,,...,h, ;]7; thatis,
hO h0,0 hO,l hO,m—l
hl hl,O hl,l hl,m—l
H=| . |= . , (1)
hm—l hm—l,O hm—l,l e hm—l,m—l
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where hg,hy,...
wavelet bases.
The collocation points are given by

,h,,_; are the discrete form of the Haar

ti=A+(1-05)At, I=1,2,...,m. 12)
5. Operational Matrix of the General
Order Integration [2]

The integration of the H,,(¢) = [hy(t), h,(£), ..., h,,_4 )] can
be approximated by [4]

Jt H, (t)dt = QH,,(t), (13)
0

where Q is called the Haar wavelet operational matrix of
integration which is a square matrix of m-dimension. To
derive the Haar wavelet operational matrix of the general
order of integration, we recall the fractional integral of order
a(> 0)which is defined by Podlubny [1]

Jf (8 = ﬁ Lt -0 f(dr, t>0,aeR,
(14)

where R™ is the set of positive real numbers.
The Haar wavelet operational matrix Q” for integration of
the general order « is given by

Q*H,, (t) = J*H,, (£) = [J%ho (t), J*hy (£) ..., J*hyy ()]

= [Qhy (1), Qhy (1), Qh,,, (D],

(15)
where
tOC
Qhy (1) = {r(mx)’ LelABl,
0, elsewhere,
0, A<t<( (), (16)
¢, G () <st<0),
h. =
0 ¢ G )<t <03,
¢5, () <t<B,
where
(=)
= T(x+1)
_(t=40)" (t-40)
¢ = T(a+1) -2 T(a+1) a7
_E-5)" (-6L0)" (-40)°
¢; = -2 + ,
I'(x+1) I(x+1) I(x+1)
fori = 1,2,...,m, m = 2/ and J is a positive integer, called

the maximum level of resolution. Here j and k represent the
integer decomposition of the index i. Thatis,i = k+2/—1, 0 <
j<iandl<k<2 +1.

6. Basic Idea of Optimal Homotopy
Asymptotic Method (OHAM)

The OHAM was introduced and developed by Marinca et al.
[5]. In OHAM, the control and adjustment of the convergence
region are provided in a convenient way. To illustrate the
basic ideas of optimal homotopy asymptotic method [6, 7],
we consider the following nonlinear differential equation:

Aw(xt)+g(xt)=0, xeQ (18)
with the boundary conditions
B(”’?)_I:>=O’ x €T, (19)

where A is a differential operator, B is a boundary operator,
u(x,t) is an unknown function, I' is the boundary of the
domain Q, and g(x, t) is a known analytic function.

The operator A can be decomposed as

A=L+N, (20)

where L is a linear operator and N is a nonlinear operator.
We construct a homotopy ¢(x,t;p) : Q x [0,1] — R
which satisfies

H(p(xtp),p) = (1-p)[L(p(x55p)) +g(x1)]

-H(p)[A(p(x.t:p)) + g (x,8)] =0,
(21

where p € [0,1] is an embedding parameter, H(p) is a
nonzero auxiliary function for p#0, and H(0) = 0. When
p =0and p =1, we have ¢(x,1;0) = uy(x,t) and ¢(x, ;1) =
u(x, t), respectively.

Thus as p varies from 0 to 1, the solution ¢(x,t; p)
approaches from u(x, t) to u(x, t).

Here uy(x,t) is obtained from (21) and (19) with p = 0
yields

B <u0, %> =0. (22)

L(p(x,t0))+g(x,t) =0, P

The auxiliary function H(p) is chosen in the form

H(p)=pC,+p°Cy+ p°Cy+---, (23)

where C,,C,,Cs;, ... are constants to be determined. To get
an approximate solution, §(x, t; p, C;, C,, Cs, .. .) is expanded
in a series about p as

¢ (x,t:p,C,Cy,Cs,..0)

® N Y
=1y (x,t) + Y 1 (x,£,C;,C,,Cs,..) P

i=1



Substituting (24) in (21) and equating the coefficients of like
powers of p, we will have the following equations:

L(u, (x,t) + g (x,1)) = C;N, (1 (x, 1)),

B (ul, aautl > 0,
L(uy (x,1)) = L(uy (x,1))

= C,N, (uy (x,1))
+C, (L(uy (x,1)) + Ny (1 (x, 1) 1y (x,1))),

B(uz, aai > 0.

And hence the general governing equations for u;(x,t) are
given by

L(uj (x,t)) =

(25)

L (ujy (x,1)) + C;Nq (ug (x, 1))

j-1
+ Z C; [L (u]-,l (x, t))
i=1

+N;_; (uo (x,1),...

iy (60)]5
i=23...,

(26)

where N;(ug(x,1), ..., uj(x, 1)) is the coefficient of pj in the
expansion of N(¢(x, t; p)) about the embedding parameter p
and

N ((P (x’ t? P: Cl: Cz, C3, .. ))

= N, (u, (x,t))+§Nj (uo,ul,...,uj)pj. 27)

j=1

It is observed that the convergence of the series (24) depends
upon the auxiliary constants C;,C,,Cs, ...

The approximate solution of (18) can be written in the
following form:

7i(x,;C,,Cy,Css...)

n—-1 (28)
= uy (x,t) + Z u; (%,t,C,CyCs,..0)
j=1
Substituting (28) in (18), we get the following expression for
the residual

R, (x,tC,,C,,Cs,...) = L(u(x,;C,,C,,Cs,...))

+ N (ii(x,5C,;,Cy, Css..))

+g(x,t).
(29)

IfR,(x,t;C;,C,,C5,...) = 0,thenti(x,t;C,,C,,Cs,...) is the
exact solution. Generally such case does not arise for non-
linear problems. The nth order approximate solution given
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by (28) depends on the auxiliary constants C;,C,,Cs;, ...
and these constants can be optimally determined by various
methods such as weighted residual least square method,
Galerkin method, and collocation method. Here we apply
collocation method.

According to the collocation method the optimal values
of the constants C,, C,, Cs, ... can be obtained by solving the
following system of equations:

R, (x5t;C1,Cy,Cs,...,Cpa) =0 fori=1,2,...,k
(30)

j=1,2,...,k

The convergence of the nth approximate solution depends
upon unknown constants C,,C,,Cs,.... When the con-
vergence control constants C;,C,,Cj,... are known by the
above mentioned methods then the approximate solution of
(18) is well determined.

7. Application of Haar Wavelet to Fractional
Order Burgers-Fisher Equation

Consider the generalized one dimensional Burgers-Fisher
equation [8] of fractional order

0“u nOU u
=U— 1- 31)

ot +eu Ox +Pu(1-u),

where &, and f are parameters and 0 < « < 1, with the

initial and boundary conditions

(11 ~&n t
u(x,O)—[E+Etanh<2(n+1)x)] , (32)
u (0,1)
:<l+ltanh[ il
202 2(n+1)
1/
(- He)))
n+l 4
t>0,
u(l,t)

()
£>0
(33)
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When « = 1, the exact solution of (31) is given by [8]

By

()]

(34)

1 1
u(x,t) = (5 + Etanh

Let us divide both space and time interval [0, 1] into m equal
subintervals; each of width A = 1/m. Here we have taken # =
1, u=1and & = B = 0.01. Therefore, (31) reduces to

u  u ou

w ox Bl 001(14& +u(u—1)>=0. (35)
Haar wavelet solution of u(x,t) is sought by assuming that
d*u(x, t)/0x? can be expanded in terms of Haar wavelets as

Fulxt) o
L;SZC 2 - 2. DGl () hy (). (36)

i=1 j=1

Integrating (36) w.r.t. x from 0 to x we get

au(r pt) = ZZ QM () h; (). (37)

i=1 j=1

Again, integrating (37) w.r.t. x from 0 to x we get
u@t) =Y ¥ qQh () h () +q®) +xpt). (38
i=1 j=1

Putting x = 0, in (38) we get
q(t) =u(0,1). (39)

Putting x = 1, in (38) we get

Ms

PO =ulLt)-u(0,t)-)

i=1 j

6| Q@h (0)] _ b ().

1

(40)

Again q(t) + xp(t) can be approximated using Haar wavelet
function as

m m

qa) +xpt) =) Y ryh (x)h; (). (41)

i=1 j=1

This implies

u(0,t) +x | u(l,t) —u(0,t)

ne| 42

.[\'4§
Ms

U
—

-

Il
—

c,J[Q hx)]

iy (O hy (8).

o
M§

I
—
-
I
—

5
Substituting (41) in (38), we get
u@t) = Y Y Q% (x)h; ()
i=1 j=1
(43)

+

D rihy () (8).

=1

IZNgE

i

I
—_
.

The nonlinear term presented in (35) can be approximated
using Haar wavelet function as

N dih ()b (). (44)

j=1

[\/]3

ug—Z+u(u—l)

Il
—

i

Therefore from (37), (40), and (43) we have

(

M§

Y Qi ()b () + Y Y ki (x) by (t)>

j=1 i=1 j=1

|

(
(3

J

I
—_

i 6;jQh; (x) h; (t) + u (1,£) —u (0,1)

j=1

-¥ Y ol@m®] ks (t)}

M§

Il
—_

i=1 j=1

Mz
[\/]3

QM (b 0+ Y i (x)h (t))

i=1 j=1

Il
—
Il
—
~.

J

ZNgE
M§

1 =1 j=1

i

L
T
-

CUQ h; (x)h (t)+§: ir h; (x)h (t)—1>

I
Mz
Mz

Il
—

digh; (x) h; (8).

1
(45)

Substituting (36) and (44) in (35) we will have

DI RIACTHOR D IS W FACTACE
j=1

i=1 i= j=

—
—

(46)
Now applying J* to both sides of (46) yields
u(x,t) —u(x,0)
Z Z Cl]hl h (t)
i=1 j=1 (47)

~0.01J* (Z Z diih; (x) h; (t)) .

i=1 j=

—_
—_



Substituting (32) and (43) in (47) we get

Y ¢;Qh; (x) b (1)

j=1

M=

i

I
—_
[

+ rijhi (x) hj )

s
h

Il
—

i 1

J

11 -&n
‘[Titanh(z(nﬂ)x)] (48)

Gih; () Q7 h; (1)

Mz
Mz

I
—

1

i

j
- 0.01 ( Z h; (x) QFh; (t)> -

Now substituting the collocation points x; = (I — 0.5)/m and
t, = (k- 0.5)/mfor ,k = 1,2,...,min (42), (45), and (48),
we have 3m” equations in 3m” unknowns in ¢ ij»1;jand d;;. By
solving this system of equations using mathematical software,

the Haar wavelet coefficients c;;, 7;j, and d;; can be obtained.

nMs

8. Haar Wavelet Based Scheme for
Generalized Fisher’s Equation

Consider the generalized Fisher’s equation [9] of fractional
order

u  u 6
ﬁ:ﬁ+u(l—u), (49)
where 0 < « < 1 and 0 < x < 1 with the initial condition
1
u(x,0) = (50)

(1 + C2x)3

When « = 1, the exact solution of (49) is given by [10]

%tanh [%3 <x - §t>]>1/3. (51)

Let us divide both space and time interval [0, 1] into m equal
subintervals; each of width A = 1/m.

The Haar wavelet solution of u(x, t) is sought by assuming
that 0*u(x, t)/0x* can be expanded in terms of Haar wavelets
as

u(x,t) = <% +

a”“” = Y e k(). (52)
j=1

i=1
Integrating (52) twice w.r.t. x from 0 to x we get
m m )
u(xt) =Y ¥ ¢;Qh (x)h () +qt) +xp(t).  (53)
i=1 j=1
Putting x = 0, in (53) we get

q(t) =u(0,t). (54)
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Putting x = 1, in (53) we get

pO=u,)-u@0,)-) > ¢[QH (x)]lehj (t).

j=1

—_

i=

(55)
Substituting (54) and (55) in (53) we have

u(x,t) = i i ;Q°h; (x) () + u (0, 1)

i=1 j=1

wx|u (L) —u(0,6)-) ) ;[Qh (x)] _ h;(1)].
i=1 j=1

(56)

The nonlinear term presented in (49) can be approximated
using Haar wavelet function as

u(1-u) =

which implies

(

+ x |:u(1,t)—u(0,t)—

-

+x [u(l,t)—u(o,t)

Y dyjh; (x) hy (t) (57)

j=1

[\/]3

Il
—

i

i ;Q°h; (x) i (£) + u (0, 1)

1 j=

Maf

ii%mhm]hu4>

i=1 j=1

i 6;Q°h; (x) () +u (0,1)

1 j=

[\/]3

6

Ms
M§

%Mh@ﬂJ%ﬂ)

1

Il

—
-

1l

I
UF
NgE

I
—
-.

I
—

djh; (x) h; (t) .
(58)
Substituting (52) and (57) in (49) we will have
Ew ;;huwan;;%gmmﬂ(@
Now applying J* to both sides of (59) yields

u(x,t)—u(x,0)= <§ ich(x)h

i=1 j=1

+]“<

(60)

M§

Z dj;h; (x) h; (t)>

j=1

I
—
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Substituting (50) and (56) in (60) we get

i Q% (x) by (1) +u (0,1)

j=

lM§

i

+x|u(L)-u©0,0)-) Y ¢[Qhx)] _h (t)]

i=1 j=1
S S
(1 + eB/2x)1?

I
F
M§

Il
—

M3ﬁ

> b (x) QS (1)

1

+

Y dhy (x) QT (1)

i=1 j=1

(61)

Now substituting the collocation points x; = (I — 0.5)/m and
ty = (k—05)/mfor L,k = 1,2,...,m in (61) and (58), we
have 2m” equations in 2/m? unknowns in ¢; jand d;;. By solving
these system of equations using mathematical software, the
Haar wavelet coeflicients ¢;; and d;; can be obtained.

9. Application of OHAM to Fractional Order
Burgers-Fisher Equation

Using optimal homotopy asymptotic method, the homotopy
for (35) can be written as

(1-p Leletip)

ot*
~ “p(x,5p) 0’9 (x5 p)
“HP) | = T e
0 (5.5 p) 2
+9¢(x,t;p) —’
Ox
¢ (xtp)[1-¢(xtp)]
Here,
o (x,t;p) = uy (x, ) + Z w; (x,1) p',
=1
H(p) = pCi +p'Co + p'Cs +
N (¢ (x.t;p)) = No (1 (x,1)) + Z Nie (tgs s ) P
k=1
(63)

Substituting (63) in (62) and equating the coeflicients of
like powers of p, we have the following system of partial
differential equations.
Coefficients of p° are
(24
FupCel) _ (64)
ot

Coefficients of p' are

uy (1) ug ()
ot ot

_c 0%uq (x, 1) ~ *uy (x,t)
s T 0x>

Ouy (x, t)
ox

+0.01 {uo (x,1)

+(ug (x, t))2 —uy (x,1) H )
(65)

Coefficients of p* are

0%u, (x,t) ~ 0%y, (x, 1)
ot ot
_C uy (1) 0%u; (x,1)
I T 0x2

0,01 ‘[“o (.8) aula(x, t)

+ 2uq (x, ) uy (x, 1)

Ouy, (x, 1)

i -u (x,t)]» ]

0%uqy (x, 1) - uy (x,t)
ot* 0x?

+uy (x,t)

+C2[

Jug (x, 1)
ox

+0.01 {uo (x,1)

+ (ug (x, t))2 —uy (x, 1) H
(66)

and so on.

For solving fractional order Burgers-Fisher equation
using OHAM, we consider the initial condition (32), and
solving (64) to (66), we obtain

1 1 -0.01
uy (x,t) = [E+5tanh< 040 x)],

~0.00250625C, sech” (0.0025x) t*
I'(l+a)

u, (x,t) = ,
uy (x,1) = 1y (%, 1)
+C, [y (1) = ((C, (sech® (0.0025x)
— 2sech? (0.0025x)
x tanh’ (0.0025x)) £**)
x (I (1+2a))7")
+0.01 {((C,sech’ (0.0025x)

x (=1 + tanh (0.0025x))
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TaBLE 1: The absolute errors in the solution of fractional order Burgers-Fisher equation (35) using Haar wavelet method and three terms for
second-order OHAM with convergence control parameters C, = 0 and C, = —0.99999 at various points of x and t for « = 1.

x |uExact - uHaar' |uExact - uOHAM'
t=02 t=04 t=0.6 t=0.8 t=0.2 t=04 t=0.6 t=0.8

0.1 5.4804E -5 2.3476E - 5 7.8526E - 6 39181E -5 4.229E - 11 8.408E - 10 3.403E -9 8.7368E -9
0.2 2.3553E -5 7.7785E - 6 3.9108E -5 7.0440E - 5 8.333E-11 3.384E - 10 2.273E-9 6.7268E - 9
0.3 7.0426E - 5 3.9091E -5 7.7594E - 6 2.3578E -5 2.089E - 10 1.642E - 10 1.142E -9 4.7168E - 9
0.4 3.9169E - 5 7.8222E -6 2.35157E -5 5.4870E - 5 3.346E - 10 6.667E — 10 1.L13E-11 2.7068E - 9
0.5 7.9054E - 6 2.3463E -5 5.48121E -5 8.6199E -6 4.602E - 10 1.1692E -9 1.119E -9 6.968E — 10
0.6 5.4768E - 5 2.3384E -5 7.97308E - 6 3.9384E -5 5.858E - 10 1.6717E -9 2.249E -9 1.3132E -9
0.7 2.3489E -5 7.9370E - 6 3.93167E -5 7.0791E -5 7.115E - 10 2.1742E -9 3.381E -9 3.3232E-9
0.8 7.0337E-5 3.8884E -5 7.4894E - 6 2.4026E -5 8.371E - 10 2.6767E -9 4.511E -9 5.3332E -9
09 39031E-5 7.5074E - 6 2.39232E -5 5.5543E -5 9.627E - 10 3.1792E -9 5.642E -9 7.3432E -9
1.0 8.5852E -5 5.4286E -5 2.28326E - 5 8.8514E - 6 1.0883E -9 3.6817E -9 6.772E - 9 9.3532E -9

TaBLE 2: The absolute errors in the solution of generalized Fisher’s equation (49) using Haar wavelet method and five terms for fourth-order
OHAM with convergence control parameters C; = —0.637012, C, = —0.151156, C; = 0.023432, and C, = —0.0012788 at various points of x
and t for o = 1.

x [Uexact = Ubtaarl [tesace = Uomaml
t =02 t=04 t=10.6 t=0.38 t =02 t=04 t=0.6 t=0.8

0.1 0.0051104 0.0054849 0.0042629 0.0027556 6.67439E - 5 0.0040747 0.023752 0.0740709
0.2 0.0096957 0.0106181 0.0085377 0.0058225 1.99503E - 4 0.0023417 0.019345 0.0678136
0.3 0.013553 0.0151142 0.0125286 0.0089272 4.65337E - 4 43112E -4 0.013810 0.0581267
0.4 0.0163976 0.018593 0.0158324 0.0116856 7.18406E — 4 0.0015578 0.007399 0.0453319
0.5 0.0179265 0.0206477 0.0180051 0.0136684 9.47663E — 4 0.0035178 4521E -4 0.030035
0.6 0.017924 0.0209528 0.0186691 0.0145062 0.0011444 0.0053436 0.006645 0.013062
0.7 0.0163414 0.01935 0.0175984 0.013973 0.0013029 0.0069445 0.013494 0.0046328
0.8 0.0133823 0.015939 0.0148102 0.0120755 0.0014207 0.0082540 0.019736 0.0220718
0.9 0.0095361 0.0111158 0.0106057 0.0090918 0.0014982 0.009231 0.025078 0.0383517
1.0 0.0055837 0.0055837 0.0055837 0.0055837 0.0015382 0.0098632 0.029315 0.0527218

Ouy (x, 1)
ox

x tanh (0.0025x) tm) +0.01 {”o (x, 1)
x (T(1+ 2(x))71)
+(up (x, t))2 = Uy (x,1) H
+((Cysech® (0.0025x) )
L x—t
x (D (1+2a))7") I(l+a)

2 (67)
+((0.00250625C, sech” (0.0025x)

Using (67) and consequently substituting in (28), the second

20
x (-1 + tanh (0.0025x)) ¢ ) order approximate solution is obtained as follows:

x (T (1+2a)) ")

1 1 -0.01
u(x,t) = [— + —tanh(—x)]
2 2 4
— ((0.00250625C, ,
0.00250625C; sech” (0.0025x) t*
x sech? (0.0025x) tz"‘) I'l+a)

x (C(1+2a) ")} +uy (%) + Cy [y (x,1)

Puy () —((c, (sech* (0.0025x)

+C
. 0x2 — 2 sech? (0.0025x)
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TABLE 3: The approximate solutions of fractional order Burgers-Fisher equation (35) using Haar wavelet method and three terms for second-
order OHAM with convergence control parameters C, = —0.000104528 and C, = —0.99979 at various points of x and ¢ for & = 0.75.

X t=02 t=04 t=0.6 t=0.8
Utfaar Uonam Utfaar UoHAM Utfaar UoHAM Uttaar Uonam

0.1 0.50043 0.500691 0.5009 0.501247 0.501369 0.501734 0.501839 0.502182
0.2 0.500271 0.500566 0.50074 0.501122 0.501207 0.501609 0.501674 0.502057
0.3 0.500187 0.500441 0.500656 0.500997 0.501119 0.501484 0.501584 0.501932
0.4 0.500028 0.500316 0.500495 0.500872 0.500944 0.501359 0.5014 0.501807
0.5 0.499873 0.500191 0.500335 0.500747 0.500758 0.501234 0.501197 0.501682
0.6 0.499789 0.500066 0.500248 0.500622 0.500653 0.501109 0.50108 0.501557
0.7 0.499641 0.499941 0.500092 0.500497 0.500446 0.500984 0.500839 0.501432
0.8 0.499559 0.499816 0.500005 0.500372 0.500326 0.500859 0.500697 0.501307
0.9 0.499423 0.499691 0.499855 0.500247 0.500092 0.500734 0.500409 0.501182
1.0 0.499345 0.499566 0.499767 0.500122 0.499953 0.500609 0.500236 0.501057

TaBLE 4: The approximate solutions of fractional order Burgers-Fisher equation (35) using Haar wavelet method and three terms for second-
order OHAM with convergence control parameters C; = 0.000163239 and C, = —1.00032796 at various points of x and  for « = 0.5.

. t=02 t=04 t=06 t=08
Uttaar Uonam Utfaar Uonam Uttaar Uonam Utiaar Uonam

0.1 0.500429 0.50114 0.500898 0.501664 0.501368 0.502066 0.501837 0.502404
0.2 0.500273 0.501015 0.500736 0.501539 0.501201 0.501941 0.501666 0.502279
0.3 0.50019 0.50089 0.500646 0.501414 0.501105 0.501816 0.501566 0.502154
0.4 0.500056 0.500765 0.500484 0.501289 0.500921 0.501691 0.501363 0.502029
0.5 0.499953 0.50064 0.500329 0.501164 0.500725 0.501566 0.501132 0.501904
0.6 0.499898 0500515 0.500238 0.501039 0500605 0.501441 0.500986 0.501779
0.7 0.49986 0.50039 0.500098 0.500914 0.500386 0.501316 0.500698 0.501654
0.8 0.499838 0.500265 0.50001 0.500789 0.500246 0.501191 0.500513 0.501529
09 0.499889 0.50014 0.499894 0.500664 0.499999 0.501066 0.500153 0.501404
1.0 0.499912 0.500015 0.499814 0.500539 0.499838 0.500941 0.499922 0.501279

x tanh” (0.0025x) ) £**) (T (1+2a))7")

-1
x (I (1+2a)) ") — ((0.00250625C,
+0.01{((C,sech? (0.0025x) x sech’ (0.0025x) £**)
x (~1 + tanh (0.0025x)) x (F(1+2a) ")}
2« aZ
x tanh (0.0025x) £**) to (%, 1)
+Cy |- 3
ox

x (T'(1+ 2¢x))71)
Ouy (x, 1)

+0.01 {uo (x,1) Ix

C,sech® (0.0025x) t**
I'(l+2a)

+ (ug (x, 1‘))2 —uy (x, ) } ]
+((0.00250625C,

th
x sech® (0.0025x) “Tara)

x (=1 + tanh (0.0025x)) (68)

The optimal values of the convergence control constants C,
X tzo‘) and C, can be obtained using collocation method from (30).
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TABLE 5: The approximate solutions of fractional order Burgers-Fisher equation (35) using Haar wavelet method and three terms for second-
order OHAM with convergence control parameters C, = —0.00019986 and C, = —0.999602 at various points of x and ¢ for & = 0.25.

X t=02 t=04 t=0.6 t=0.8
Utfaar UonAM Utaar Uonam Uttaar UoHAM Utfaar Uonam

0.1 0.500427 0.501724 0.500897 0.502074 0.501366 0.502309 0.501836 0.50249
0.2 0.50027 0.501599 0.500733 0.501949 0.501196 0.502184 0.50166 0.502365
0.3 0.500184 0.501474 0.500639 0.501824 0.501095 0.502059 0.501552 0.50224
0.4 0.500056 0.501349 0.50048 0.501699 0.500909 0.501934 0.50134 0.502115
0.5 0.49997 0.501224 0.500339 0.501574 0.500717 0.501809 0.501099 0.50199
0.6 0.49992 0.501099 0.500248 0.501449 0.500591 0.501684 0.500937 0.501865
0.7 0.499923 0.500974 0.500142 0.501324 0.500385 0.501559 0.500637 0.50174
0.8 0.499916 0.500849 0.500064 0.501199 0.500243 0.501434 0.500432 0.501615
0.9 0.500043 0.500724 0.500011 0.501074 0.500027 0.501309 0.500059 0.50149
1.0 0.500097 0.500599 0.499954 0.500949 0.499869 0.501184 0.499805 0.501365

TABLE 6: The approximate solutions of generalized Fisher equation (49) using Haar wavelet method and five terms for fourth-order OHAM
with convergence control parameters C; = —0.649458, C, = 0.053658, C; = —0.1822726, C4 = 0.0894301 at various points of x and ¢ for
« =0.75.

X t=0.2 t=04 t=0.6 t=0.8
Utiaar Uonam Uttaar UonAM Uttaar Uonam Uttaar Uonam
0.1 0.859185 0.899389 0.920547 0.931947 0.957952 0.927394 0.978665 0.902524
0.2 0.838644 0.888856 0.905313 0.930017 0.948042 0.930519 0.972681 0.905646
0.3 0.817612 0.877253 0.889588 0.927859 0.93764 0.934718 0.966206 0.91116
0.4 0.796431 0.864492 0.873714 0.92523 0.927088 0.939825 0.959581 0.919341
0.5 0.775484 0.850503 0.858074 0.921857 0.916772 0.945568 0.953191 0.930278
0.6 0.755093 0.835244 0.84299 0.917456 0.90701 0.951569 0.947357 0.943809
0.7 0.735424 0.818704 0.828628 0.911753 0.897971 0.957356 0.942244 0.959482
0.8 0.716399 0.800908 0.81491 0.904497 0.889575 0.962388 0.937776 0.976567
0.9 0.697656 0.781918 0.801474 0.895481 0.881463 0.966095 0.933591 0.994112
1.0 0.678526 0.761827 0.787651 0.884559 0.872963 0.967927 0.929017 1.01104
10. Application of OHAM to Generalized Substituting (70) in (69) and equating the coefficients of
Fisher’s Equation like powers of p, we have the following system of partial
differential equations.
Using optimal homotopy asymptotic method, the homotopy Coefficients of p° are
for (49) can be written as
0%ug (x,t
%p (x,t; p) T (ut) 0. (71)
(1-p)———== ot
ot*
. 1
1) ¢ (x,t; p) ) P (x.t p) ) Coefficients of p- are
o« 0x? 0%uy (x,t)  0"uy (x, 1)
ot* ot*
6
~p(tp) [1-(p(atip)] |- . 2
_C 0“u, (x,t)_a U, (x,t)+(u (x t))7—u (0.1)
Here, ! ot% ax2 0™ 0™ ’

0 A (72)

9 (%t p) =g (1) + ) 1, (1) p, ,
i=1 Coefficients of p~ are

H(p) = pC, + PZCZ + P3C3 T 0%u, (x, 1) ~ 0%u, (x,t)

ot ot

Ny (ugs thys - - 1g) p.

(70)

M8

N((p(x’t’p)) = NO (u() (X,t)) + aaul (x,t) ~ aZul (X,t)

ot Ox?

k

]
—_

:C1
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TaBLE 7: The approximate solutions of generalized Fisher equation (49) using Haar wavelet method and five terms for fourth-order OHAM

with convergence control parameters C, = —-0.5059152, C, = —0.0211535, C; = —0.05081612, and C, = 0.0574318 at various points of x and
t for a = 0.5.
X t=02 t=04 t=0.6 t=0.8

Utiaar Uonam Uttaar Uonam Utiaar Uonam Utiaar Uonam
0.1 0.859121 0.927731 0.920482 0.943924 0.957888 0.943779 0.9786 0.939948
0.2 0.838402 0.921616 0.905071 0.943123 0.947799 0.94491 0.972438 0.940694
0.3 0.817123 0.914826 0.889099 0.942438 0.937151 0.946615 0.965717 0.941956
0.4 0.795694 0.907206 0.872977 0.941713 0.926351 0.948908 0.958844 0.944068
0.5 0.774576 0.898605 0.857166 0.940787 0.915864 0.951841 0.952284 0.947508
0.6 0.754149 0.888882 0.842046 0.93948 0.906066 0.955446 0.946413 0.952761
0.7 0.734584 0.877915 0.827789 0.937586 0.897131 0.959662 0.941405 0.96016
0.8 0.715744 0.865607 0.814255 0.934862 0.888921 0.964283 0.937121 0.969739
0.9 0.697156 0.851889 0.800975 0.931031 0.880963 0.968937 0.933091 0.98117
1.0 0.678052 0.83673 0.787178 0.925803 0.872489 0.973109 0.928543 0.993777

TaBLE 8: The approximate solutions of generalized Fisher equation (49) using Haar wavelet method and five terms for fourth-order OHAM

with convergence control parameters C; =

—-0.33833012, C,

and ¢ for « = 0.25.

—0.04303056, C; = 0.1230816, and C,

—0.0545852 at various points of x

X t=0.2 t=04 t=0.6 t=0.8
Uttaar Uonam Utaar Uonam Utiaar Uonam Utfaar Uonam
0.1 0.859016 0.949105 0.920377 0.959635 0.957783 0.964066 0.978495 0.966453
0.2 0.837987 0.943681 0.904655 0.955839 0.947384 0.960802 0.972023 0.963262
0.3 0.816234 0.937961 0.88821 0.9522 0.936261 0.957955 0.964827 0.960634
0.4 0.79426 0.93184 0.871543 0.948657 0.924917 0.95553 0.95741 0.958645
0.5 0.772676 0.925203 0.855266 0.945143 0.913963 0.953545 0.950383 0.957415
0.6 0.752001 0.917922 0.839899 0.941569 0.903919 0.951996 0.944265 0.957051
0.7 0.732474 0.909857 0.825678 0.937799 0.895021 0.950809 0.939295 0.957571
0.8 0.713871 0.900851 0.812383 0.933634 0.887048 0.949804 0.935249 0.958845
0.9 0.695534 0.890742 0.799352 0.928815 0.87934 0.948678 0.931468 0.96056
1.0 0.676507 0.87937 0.785633 0.923035 0.870944 0.947027 0.926998 0.96224
+ 7wy (x, t))6u1 (% 8) =, (x,0) ] Erom (28),.the fourth order approximate solution can be
obtained by using the formula
2
+C uy (x,1) _ 0 uy (x, 1) u(x,t) =uy (x,t) +uy (6t) +uy (1) +uy (1) +uy (x,1).
ot Ox? (75)
Ay ; The optimal values of the convergence control constants
g (x,1))" —up (x,1) C,,C,,C;, and C, can be obtained using collocation method
(73) from (30).
and so on. 11. Numerical Results and Discussion

We consider the initial condition (50), and solving above

equations, we obtain

1

u, (x,t) = ———,
0 (x,1) (1 + e
(74)
-5C e3x/2t(x
z’ll (X, t) = - 4/3
4(1+e>2)"°T (1 +a)

and so on.

Tables 1 and 2, respectively, show the comparison of the
absolute errors of fractional order Burgers-Fisher equation
(35) and generalized Fisher’s equation (49) obtained by using
Haar wavelet method and OHAM at different values of x and
t. In Tables 1 to 8, m has been taken as 16.

Tables 3, 4, and 5 exhibit the comparison of approximate
solutions obtained by Haar wavelet method and OHAM
for fractional order Burgers-Fisher equation (35). Similarly,
Tables 6, 7, and 8 present the comparison of approximate
solutions obtained by Haar wavelet method and OHAM
for fractional order generalized Fisher’s equation (49). The
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FIGURE 1: Comparison of Haar wavelet solutions and OHAM
solutions with the exact solution of Burgers-Fisher equation when
t=0.2.
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FIGURE 2: Comparison of Haar wavelet solutions and OHAM
solutions with the exact solution of Burgers-Fisher equation when
t=04.

obtained results in these Tables 1 to 8 demonstrate that
these methods are well suited for solving fractional Burgers-
Fisher and fractional generalized Fisher’s equation. Both of
the methods are quite efficient and effective.

Tables 9, 10, and 11 show the values of the Haar wavelet
coeflicients ¢;;, r;; and d;; for fractional order Burgers-Fisher
equation obtained from (42), (45), and (48).

In case of Burgers-Fisher equation, Figures 1 and 2 cite
the comparison graphically between the numerical solutions
obtained by Haar wavelet method, optimal homotopy asymp-
totic method (OHAM), and exact solutions for different
values of ¢ and x. Similarly, in case of generalized Fisher’s
equation, Figures 3 and 4 present the comparison graphically
between the numerical results obtained by Haar wavelet
method, OHAM, and exact solutions for different values of
t and x.
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FIGURE 3: Comparison of Haar wavelet solutions and OHAM
solutions with the exact solution of generalized Fisher’s equation
when t =0.2.
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FIGURE 4: Comparison of Haar wavelet solutions and OHAM
solutions with the exact solution of generalized Fisher’s equation
when t = 0.4.

12. Conclusion

In this paper, the fractional order Burgers-Fisher and gen-
eralized Fisher’s equations have been solved by using Haar
wavelet method. The obtained results are then compared
with exact solutions as well as optimal homotopy asymptotic
method (OHAM). These results have been cited in the tables
in order to justify the accuracy and efficiency of the proposed
schemes. The Haar wavelet technique provides quite satis-
factory results for the fractional order Burgers-Fisher (35)
and generalized Fisher equations (49). The main advantages
of this Haar wavelet method is that they transfer the whole
scheme into a system of algebraic equations for which the
computation is easy and simple. OHAM allows fine tuning
of convergence region and rate of convergence by suitably
identifying convergence control parameters C,,C,,Cs,....
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For Burgers-Fisher equation, OHAM provides more accurate
results than the Haar wavelet method as shown in Table 1. But
in case of generalized Fisher’s equation both of the methods
are competitive. The results obtained by OHAM are slightly
more accurate than the results obtained by Haar wavelet
method. The results obtained by OHAM are accurate as its
convergence region can be easily adjusted and controlled.
The main advantages of these schemes are their simplicity,
applicability, and less computational errors.
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