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The aim of this paper is to introduce the concepts of somewhat slightly generalized double fuzzy semicontinuous functions and
somewhat slightly generalized double fuzzy semiopen functions in double fuzzy topological spaces. Some interesting properties
and characterizations of these functions are introduced and discussed. Furthermore, the relationships among the new concepts are
discussed with some necessary examples.

1. Introduction

In 1968, Chang [1] was the first to introduce the concept
of fuzzy topological spaces. These spaces and their gener-
alization are later developed by Goguen [2], who replaced
the closed interval [0, 1] by more general lattice 𝐿. On the
other hand, by the independent and parallel generalization of
Kubiak and Šostak’s [3, 4], made topology itself fuzzy besides
their dependence on fuzzy set in 1985.

Various generalizations of the concept of fuzzy set have
been done bymany authors. In [5–10], Atanassove introduced
the notion of intuitionistic fuzzy sets. Later Çoker [11] defined
intuitionistic fuzzy topology in Chang’s sense. Then, Mondal
and Samanta [12] introduced the intuitionistic gradation of
openness of fuzzy sets. Gutiérrez Garćıa and Rodabaugh [13],
in 2005, replaced the term “intuitionistic” and concluded that
the most appropriate work is under the name “double.”

In 1980, Jain [14] introduced the notion of slightly contin-
uous functions. On the other hand, Nour [15] defined slightly
semicontinuous functions as a weak form of slight continuity
and investigated their properties. In [16], Noiri introduced
the concept of slightly 𝛽-continuous functions. Sudha et al.
[17] introduced slightly fuzzy 𝜔-continuous functions. Also
in 2004, Ekici and Caldas [18] introduced the notion of slight
𝛾-continuity (slight 𝑏-continuity).

In this paper, the concepts of somewhat slightly general-
ized double fuzzy semicontinuous functions and somewhat
slightly generalized double fuzzy semiopen functions are
introduced. Several interesting properties and characteriza-
tions are introduced and discussed. Furthermore, the rela-
tionships among the concepts are obtained and established
with some interesting counter examples.

2. Preliminaries

Throughout this paper, let 𝑋 be a nonempty set, 𝐼 the unit
interval [0, 1], 𝐼

0
= (0, 1], and 𝐼

1
= [0, 1). The family of all

fuzzy sets in 𝑋 is denoted by 𝐼
𝑋. 𝑃
𝑡
(𝑋) is the family of all

fuzzy points in 𝑋. By 0 and 1 we denote the smallest and the
greatest fuzzy sets on𝑋. For a fuzzy set 𝜆 ∈ 𝐼

𝑋, 1 − 𝜆 denotes
its complement. Given a function 𝑓 : 𝑋 → 𝑌, 𝑓(𝜆) and
𝑓
−1

(𝜆) defined the direct image and the inverse image of 𝑓,
defined by 𝑓(𝜆)(𝑦) = ⋁

𝑓(𝑥)=𝑦
𝜆(𝑥) and 𝑓

−1
(𝜇)(𝑥) = 𝜇(𝑓(𝑥))

for each 𝜆 ∈ 𝐼
𝑋, 𝜇 ∈ 𝐼

𝑌, and 𝑥 ∈ 𝑋, respectively. All other
notations are standard notations of fuzzy set theory.

Definition 1 (see [12, 13]). A double fuzzy topology (𝜏, 𝜏
∗
) on

𝑋 is a pair of maps 𝜏, 𝜏∗ : 𝐼
𝑋

→ 𝐼, which satisfies the
following properties:
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(O1) 𝜏(𝜆) ≤ 1 − 𝜏
∗
(𝜆) for each 𝜆 ∈ 𝐼

𝑋;

(O2) 𝜏(𝜆
1
∧𝜆
2
) ≥ 𝜏(𝜆

1
)∧𝜏(𝜆

2
) and 𝜏

∗
(𝜆
1
∧𝜆
2
) ≤ 𝜏
∗
(𝜆
1
)∨

𝜏
∗
(𝜆
2
) for each 𝜆

1
, 𝜆
2
∈ 𝐼
𝑋;

(O3) 𝜏(⋁
𝑖∈Γ

𝜆
𝑖
) ≥ ⋀

𝑖∈Γ
𝜏(𝜆
𝑖
) and 𝜏

∗
(⋁
𝑖∈Γ

𝜆
𝑖
) ≤ ⋁

𝑖∈Γ
𝜏
∗
(𝜆
𝑖
)

for each 𝜆
𝑖
∈ 𝐼
𝑋, 𝑖 ∈ Γ.

The triplet (𝑋, 𝜏, 𝜏
∗
) is called double fuzzy topological spaces

(dfts, for short). A fuzzy set 𝜆 is called an (𝑟, 𝑠)-fuzzy open
((𝑟, 𝑠)-fo, for short) if 𝜏(𝜆) ≥ 𝑟 and 𝜏

∗
(𝜆) ≤ 𝑠, 𝜆 is called

an (𝑟, 𝑠)-fuzzy closed ((𝑟, 𝑠)-fc, for short) if and only if 1 − 𝜆

is an (𝑟, 𝑠)-fo set, and 𝜆 is called (𝑟, 𝑠)-fuzzy clopen ((𝑟, 𝑠)-
fco, for short) if and only if 𝜆 is (𝑟, 𝑠)-fo set and (𝑟, 𝑠)-fc
set. Let (𝑋, 𝜏

1
, 𝜏
∗

1
) and (𝑌, 𝜏

2
, 𝜏
∗

2
) be two dfts’s. A function

𝑓 : 𝑋 → 𝑌 is said to be a double fuzzy continuous if and
only if 𝜏

1
(𝑓
−1

(])) ≥ 𝜏
2
(]) and 𝜏

∗

1
(𝑓
−1

(])) ≤ 𝜏
∗

2
(]) for each

] ∈ 𝐼
𝑌.
Before starting to present our results, there are two

questions that we must ask ourselves. First, what is the differ-
ence between classical topology and double fuzzy topology?
Secondly, where we can apply our results?

To answer the first question, we should know that double
fuzzy sets and hence double fuzzy topological spaces deal
with obscurities. In addition to that, we observed that the
concept of double fuzzy topological spaces is a generalization
of fuzzy topological spaces and classical topology. For exam-
ple, when the first condition in Definition 1 does not hold,
we get the definition of fuzzy topological spaces in Kubiak-
Šostak’s sense [3, 4]. Also, in the same definition, when we
replace 2

𝑋 with 𝐼
𝑋, we will get results in double gradation

fuzzifying topological spaces [19]. Appropriate changes can
be made to get results in the classical topological spaces.

With regard to applications, since double fuzzy topology
forms an extension of fuzzy topology and general topology,
we think that our results can be applied in the fuzzy math-
ematics, which has many applications in different branches
of engineering and ICT. For example, recently double fuzzy
topological spaces have been applied to study sensor bias
[20] and there exist well-established applications of fuzzy
topological spaces in the areas of digital topology [21], image
processing [22], and geographic information systems (GIS)
problems [23].

Theorem2 (see [24, 25]). Let (𝑋, 𝜏, 𝜏
∗
) be a dfts.Then for each

𝑟 ∈ 𝐼
0
, 𝑠 ∈ 𝐼

1
, and 𝜆 ∈ 𝐼

𝑋, one defines an operator 𝐶
𝜏,𝜏
∗ :

𝐼
𝑋

× 𝐼
0
× 𝐼
1

→ 𝐼
𝑋 as follows:

𝐶
𝜏,𝜏
∗ (𝜆, 𝑟, 𝑠) = ⋀{𝜇 ∈ 𝐼

𝑋
| 𝜆 ≤ 𝜇, 𝜏 (1 − 𝜇) ≥ 𝑟,

𝜏
∗
(1 − 𝜇) ≤ 𝑠} .

(1)

For 𝜆, 𝜇 ∈ 𝐼
𝑋, 𝑟, 𝑟

1
, 𝑟
2
∈ 𝐼
0
and 𝑠, 𝑠

1
, 𝑠
2
∈ 𝐼
1
, the operator 𝐶

𝜏,𝜏
∗

satisfies the following statements:

(C1) 𝐶
𝜏,𝜏
∗(0, 𝑟, 𝑠) = 0;

(C2) 𝜆 ≤ 𝐶
𝜏,𝜏
∗(𝜆, 𝑟, 𝑠);

(C3) 𝐶
𝜏,𝜏
∗(𝜆, 𝑟, 𝑠) ∨ 𝐶

𝜏,𝜏
∗(𝜇, 𝑟, 𝑠) = 𝐶

𝜏,𝜏
∗(𝜆 ∨ 𝜇, 𝑟, 𝑠);

(C4) 𝐶
𝜏,𝜏
∗(𝜆, 𝑟
1
, 𝑠
1
) ≤ 𝐶
𝜏,𝜏
∗(𝜆, 𝑟
2
, 𝑠
2
) if 𝑟
1
≤ 𝑟
2
and 𝑠
1
≥ 𝑠
2
;

(C5) 𝐶
𝜏,𝜏
∗(𝐶
𝜏,𝜏
∗(𝜆, 𝑟, 𝑠), 𝑟, 𝑠) = 𝐶

𝜏,𝜏
∗(𝜆, 𝑟, 𝑠).

Theorem3 (see [24, 25]). Let (𝑋, 𝜏, 𝜏
∗
) be a dfts.Then for each

𝑟 ∈ 𝐼
0
, 𝑠 ∈ 𝐼

1
, and 𝜆 ∈ 𝐼

𝑋, one defines an operator 𝐼
𝜏,𝜏
∗ :

𝐼
𝑋

× 𝐼
0
× 𝐼
1

→ 𝐼
𝑋 as follows:

𝐼
𝜏,𝜏
∗ (𝜆, 𝑟, 𝑠) = ⋁{𝜇 ∈ 𝐼

𝑋
| 𝜇 ≤ 𝜆, 𝜏 (𝜇) ≥ 𝑟, 𝜏

∗
(𝜇) ≤ 𝑠} .

(2)

For 𝜆, 𝜇 ∈ 𝐼
𝑋, 𝑟, 𝑟

1
, 𝑟
2
∈ 𝐼
0
and 𝑠, 𝑠

1
, 𝑠
2
∈ 𝐼
1
, the operator 𝐼

𝜏,𝜏
∗

satisfies the following statements:

(I1) 𝐼
𝜏,𝜏
∗(1 − 𝜆, 𝑟, 𝑠) = 1 − 𝐶

𝜏,𝜏
∗(𝜆, 𝑟, 𝑠);

(I2) 𝐼
𝜏,𝜏
∗(1, 𝑟, 𝑠) = 1;

(I3) 𝐼
𝜏,𝜏
∗(𝜆, 𝑟, 𝑠) ≤ 𝜆;

(I4) 𝐼
𝜏,𝜏
∗(𝜆, 𝑟, 𝑠) ∧ 𝐼

𝜏,𝜏
∗(𝜇, 𝑟, 𝑠) = 𝐼

𝜏,𝜏
∗(𝜆 ∧ 𝜇, 𝑟, 𝑠);

(I5) 𝐼
𝜏,𝜏
∗(𝜆, 𝑟
1
, 𝑠
1
) ≥ 𝐼
𝜏,𝜏
∗(𝜆, 𝑟
2
, 𝑠
2
) if 𝑟
1
≤ 𝑟
2
and 𝑠
1
≥ 𝑠
2
;

(I6) 𝐼
𝜏,𝜏
∗(𝐼
𝜏,𝜏
∗(𝜆, 𝑟, 𝑠), 𝑟, 𝑠) = 𝐼

𝜏,𝜏
∗(𝜆, 𝑟, 𝑠);

(I7) If 𝐼
𝜏,𝜏
∗(𝐶
𝜏,𝜏
∗(𝜆, 𝑟, 𝑠), 𝑟, 𝑠) = 𝜆, then 𝐶

𝜏,𝜏
∗(𝐼
𝜏,𝜏
∗(1 −

𝜆, 𝑟, 𝑠), 𝑟, 𝑠) = 1 − 𝜆.

Definition 4 (see [26]). Let (𝑋, 𝜏, 𝜏
∗
) be a dfts. For each 𝜆, 𝜇 ∈

𝐼
𝑋, 𝑟 ∈ 𝐼

0
, and 𝑠 ∈ 𝐼

1
.

(1) A fuzzy set 𝜆 is called (𝑟, 𝑠)-fuzzy semiclosed (briefly,
(𝑟, 𝑠)-fsc) if 𝐼

𝜏,𝜏
∗(𝐶
𝜏,𝜏
∗(𝜆, 𝑟, 𝑠), 𝑟, 𝑠) ≤ 𝜆. 𝜆 is called

(𝑟, 𝑠)-fuzzy semiopen (briefly, (𝑟, 𝑠)-fso) if and only if
1 − 𝜆 is an (𝑟, 𝑠)-fuzzy semiclosed set.

(2) An (𝑟, 𝑠)-fuzzy semiclosure of 𝜆 is defined by
SC
𝜏,𝜏
∗(𝜆, 𝑟, 𝑠) = ⋀{𝜇 ∈ 𝐼

𝑋
| 𝜆 ≤ 𝜇 and 𝜇 is (𝑟, 𝑠)-fsc}.

Definition 5 (see [26]). Let (𝑋, 𝜏, 𝜏
∗
) be a dfts. For each 𝜆, 𝜇 ∈

𝐼
𝑋, 𝑟 ∈ 𝐼

0
and 𝑠 ∈ 𝐼

1
.

(1) A fuzzy set 𝜆 is called (𝑟, 𝑠)-generalized fuzzy semi-
closed (briefly, (𝑟, 𝑠)-gfsc) if SC

𝜏,𝜏
∗(𝜆, 𝑟, 𝑠) ≤ 𝜇, 𝜆 ≤ 𝜇

and 𝜏(𝜇) ≥ 𝑟, 𝜏∗(𝜇) ≤ 𝑠. 𝜆 is called (𝑟, 𝑠)-generalized
fuzzy semiopen (briefly, (𝑟, 𝑠)-gfso) if and only if 1−𝜆

is (𝑟, 𝑠)-gfsc set.
(2) An (𝑟, 𝑠)-fuzzy generalized semiclosure of 𝜆 is defined

by GSC
𝜏,𝜏
∗(𝜆, 𝑟, 𝑠) = ⋀{𝜇 ∈ 𝐼

𝑋
| 𝜆 ≤ 𝜇 and 𝜇 is (𝑟, 𝑠)-

gfsc}.
(3) An (𝑟, 𝑠)-fuzzy generalized semi-interior of 𝜆 is

defined by GSI
𝜏,𝜏
∗(𝜆, 𝑟, 𝑠) = ⋁{𝜇 ∈ 𝐼

𝑋
| 𝜇 ≤ 𝜆 and

𝜇 is (𝑟, 𝑠)-gfso}.

Definition 6 (see [27]). Let (𝑋, 𝜏
1
, 𝜏
∗

1
) and (𝑌, 𝜏

2
, 𝜏
∗

2
) be dfts’s.

A function 𝑓 : (𝑋, 𝜏
1
, 𝜏
∗

1
) → (𝑌, 𝜏

2
, 𝜏
∗

2
) is called

(1) slightly double fuzzy continuous (briefly, sdfc) if for
every 𝜆 ∈ 𝐼

𝑋, 𝜇 ∈ 𝐼
𝑌, 𝑟 ∈ 𝐼

0
, and 𝑠 ∈ 𝐼

1
such that 𝜇

is (𝑟, 𝑠)-fco set and 𝑓(𝜆) ≤ 𝜇, there exists ] ∈ 𝐼
𝑋 such

that 𝜏
1
(]) ≥ 𝑟, 𝜏∗

1
(]) ≤ 𝑠, 𝜆 ≤ ], and

𝑓 (]) ≤ 𝜇, (3)
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(2) slightly generalized double fuzzy semicontinuous
(briefly, sgdfsc) if for each 𝜆 ∈ 𝐼

𝑋, 𝜇 ∈ 𝐼
𝑌, 𝑟 ∈ 𝐼

0
,

and 𝑠 ∈ 𝐼
1
such that 𝜇 is (𝑟, 𝑠)-fco set and 𝑓(𝜆) ≤ 𝜇,

there exists an (𝑟, 𝑠)-gfso set ] ∈ 𝐼
𝑋 such that 𝜆 ≤ ]

and

𝑓 (]) ≤ 𝜇. (4)

3. Somewhat Slightly Generalized Double
Fuzzy Semicontinuous Functions

Definition 7. Let (𝑋, 𝜏
1
, 𝜏
∗

1
) and (𝑌, 𝜏

2
, 𝜏
∗

2
) be dfts’s. A function

𝑓 : (𝑋, 𝜏
1
, 𝜏
∗

1
) → (𝑌, 𝜏

2
, 𝜏
∗

2
) is called somewhat slightly

generalized double fuzzy semicontinuous (briefly, swsgdfsc)
if for each fuzzy set 𝜆 ∈ 𝐼

𝑋, 𝜇 ∈ 𝐼
𝑌, 𝑟 ∈ 𝐼

0
, and 𝑠 ∈ 𝐼

1
such

that 𝑓
−1

(𝜇) ̸= 0 and 𝑓(𝜆) ≤ 𝜇, there exists an (𝑟, 𝑠)-gfso set
0 ̸= ] ∈ 𝐼

𝑋 such that 𝜆 ≤ ] and

] ≤ 𝑓
−1

(𝜇) . (5)

Definition 8. A fuzzy set 𝜆 in a dfts (𝑋, 𝜏, 𝜏
∗
) is called (𝑟, 𝑠)-

generalized fuzzy semidense (resp., (𝑟, 𝑠)-fuzzy-𝑑𝑒𝑛𝑠𝑒∗) set if
there exists no (𝑟, 𝑠)-gfsc (resp., (𝑟, 𝑠)-fco) set 𝜇 ∈ 𝐼

𝑋, 𝑟 ∈ 𝐼
0
,

and 𝑠 ∈ 𝐼
1
such that

𝜆 < 𝜇 < 1. (6)

Example 9. (1) Let 𝑋 = {𝑎, 𝑏}. Define 𝜆
1
and 𝜆

2
as follows:

𝜆
1
(𝑎) = 0.1, 𝜆

1
(𝑏) = 0.2,

𝜆
2
(𝑎) = 0.8, 𝜆

2
(𝑏) = 0.7.

(7)

And define 𝜏(𝜆) and 𝜏
∗
(𝜆) as follows:

𝜏 (𝜆) =

{{{{{{{

{{{{{{{

{

1, if 𝜆 = 0 or 1;
1

3
, if 𝜆 = 𝜆

1
;

2

3
, if 𝜆 = 𝜆

2
;

0, otherwise;

𝜏
∗
(𝜆) =

{{{{{{{{

{{{{{{{{

{

0, if 𝜆 = 0 or 1;
2

3
, if 𝜆 = 𝜆

1
;

1

3
, if 𝜆 = 𝜆

2
;

1, otherwise.

(8)

So, if 𝜆(𝑎) = 0.9, 𝜆(𝑏) = 0.8, then there exists no (1/3, 2/3)-
gfsc set 𝜇 in 𝐼

𝑋 such that 𝜆 < 𝜇 < 1.Therefore, 𝜆 is (1/3, 2/3)-
generalized fuzzy semidense set in 𝐼

𝑋.
(2) In (1), let 𝜆

1
and 𝜆

2
be defined as follows:

𝜆
1
(𝑎) = 0.1, 𝜆

2
(𝑏) = 0.2,

𝜆
2
(𝑎) = 0.9, 𝜆

2
(𝑏) = 0.8.

(9)

So, if 𝜆(𝑎) = 0.8, 𝜆(𝑏) = 0.9, then there exists no (1/3, 2/3)-
fco set 𝜇 in 𝐼

𝑋 such that 𝜆 < 𝜇 < 1. Therefore, 𝜆 is (1/3, 2/3)-
fuzzy-𝑑𝑒𝑛𝑠𝑒∗ set in 𝐼

𝑋.

Definition 10. Let (𝑋, 𝜏, 𝜏
∗
) be a dfts. For a fuzzy set 𝜆 ∈ 𝐼

𝑋,
𝑟 ∈ 𝐼
0
, and 𝑠 ∈ 𝐼

1
, 𝐼∗
𝜏,𝜏
∗ and 𝐶

∗

𝜏,𝜏
∗ are defined as follows:

(1) 𝐼
∗

𝜏,𝜏
∗(𝜆, 𝑟, 𝑠) = ⋁{𝜇 ∈ 𝐼

𝑋
| 𝜇 ≤ 𝜆 and 𝜇 is (𝑟, 𝑠)-fco};

(2) 𝐶
∗

𝜏,𝜏
∗(𝜆, 𝑟, 𝑠) = ⋀{𝜇 ∈ 𝐼

𝑋
| 𝜆 ≤ 𝜇 and 𝜇 is (𝑟, 𝑠)-fco}.

Proposition 11. Let (𝑋, 𝜏
1
, 𝜏
∗

1
) and (𝑌, 𝜏

2
, 𝜏
∗

2
) be dfts’s, and

let 𝑓 : (𝑋, 𝜏
1
, 𝜏
∗

1
) → (𝑌, 𝜏

2
, 𝜏
∗

2
) be any function. Then the

following are equivalent.

(1) 𝑓 is swsgdfsc function.
(2) If 𝜆 is an (𝑟, 𝑠)-fco set such that 𝑓

−1
(𝜆) ̸= 1 and 𝜆 ≤

𝑓(1−]), for each ] ∈ 𝐼
𝑋, 𝑟 ∈ 𝐼

0
, and 𝑠 ∈ 𝐼

1
, then there

exists an (𝑟, 𝑠)-gfsc set 𝜇 ≤ 1 − ] ∈ 𝐼
𝑋 such that 𝜇 ≥

𝑓
−1

(𝜆).
(3) If 𝜆 is (𝑟, 𝑠)-gfs-dense set in 𝐼

𝑋, then 𝑓(𝜆) is (𝑟, 𝑠)-
fuzzy-𝑑𝑒𝑛𝑠𝑒∗ set in 𝐼

𝑌 such that every (𝑟, 𝑠)-fco set
𝜇 ≤ 𝑓(1 − ]), for each ] ∈ 𝐼

𝑋, 𝑟 ∈ 𝐼
0
, and 𝑠 ∈ 𝐼

1
.

Proof. (1) ⇒ (2) Suppose𝑓 is swsgdfsc function, and let 𝜆 be
any (𝑟, 𝑠)-fco set in 𝐼

𝑌 such that 𝑓−1(𝜆) ̸= 1 and 𝜆 ≤ 𝑓(1 − ]),
for each ] ∈ 𝐼

𝑋, 𝑟 ∈ 𝐼
0
, and 𝑠 ∈ 𝐼

1
. Then, 1 − 𝜆 is (𝑟, 𝑠)-fco

in 𝐼
𝑌 such that 𝑓−1(1 − 𝜆) ̸= 0 and 𝑓(]) ≤ 1 − 𝜆. Then by the

hypothesis, there exists an (𝑟, 𝑠)-gfso set 0 ̸= 𝛼 ∈ 𝐼
𝑋, 𝑟 ∈ 𝐼

0
,

and 𝑠 ∈ 𝐼
1
such that ] ≤ 𝛼 and 𝛼 ≤ 𝑓

−1
(1 − 𝜆). That is, 1 − 𝛼

is an (𝑟, 𝑠)-gfsc set and

1 − 𝛼 ≥ 1 − 𝑓
−1

(1 − 𝜆) = 𝑓
−1

(𝜆) . (10)

Put 1 − 𝛼 = 𝜇. Then 𝜇 is an (𝑟, 𝑠)-gfsc set in 𝐼
𝑋 such that

𝜇 ≥ 𝑓
−1

(𝜆).
(2) ⇒ (3) Let 𝜆 be an (𝑟, 𝑠)-gfs-dense set in 𝐼

𝑋, and
suppose that 𝑓(𝜆) is not a fuzzy-𝑑𝑒𝑛𝑠𝑒∗ set in 𝐼

𝑌, such that
each (𝑟, 𝑠)-fco set 𝜇 ≤ 𝑓(1 − ]), for each ] ∈ 𝐼

𝑋, 𝑟 ∈ 𝐼
0
, and

𝑠 ∈ 𝐼
1
. Then, there exists an (𝑟, 𝑠)-fco set 𝛼 ∈ 𝐼

𝑌 such that

𝑓 (𝜆) < 𝛼 < 1, (11)

since

𝛼 < 1, 𝑓
−1

(𝛼) ̸= 1. (12)

Now, 𝛼 is an (𝑟, 𝑠)-fco set such that 𝑓−1(𝛼) ̸= 1 and 𝑓(1 −

]) ≥ 𝛼, for each ] ∈ 𝐼
𝑋, 𝑟 ∈ 𝐼

0
, and 𝑠 ∈ 𝐼

1
. Then by the

hypothesis, there exists an (𝑟, 𝑠)-gfsc set 𝛾 ≤ 1 − ] ∈ 𝐼
𝑋 such

that 𝛾 ≥ 𝑓
−1

(𝛼).
But

𝑓
−1

(𝛼) > 𝑓
−1

(𝑓 (𝜆)) = 𝜆. (13)

That is, 𝛾 ≥ 𝜆. Therefore, there exists an (𝑟, 𝑠)-gfsc set 𝛾 ∈

𝐼
𝑋, 𝑟 ∈ 𝐼

0
, and 𝑠 ∈ 𝐼

1
such that 𝛾 ≥ 𝜆, which is a contradiction.

Therefore, 𝑓(𝜆) is an (𝑟, 𝑠)-fuzzy 𝑑𝑒𝑛𝑠𝑒
∗ set in 𝐼

𝑌 such that

𝛾 ≤ 𝑓 (1 − ]) , (14)

for each ] ∈ 𝐼
𝑋 and (𝑟, 𝑠)-fco set 𝛾 ∈ 𝐼

𝑌.
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(3) ⇒ (1) Let 𝜆 be an (𝑟, 𝑠)-fco set such that 𝑓−1(𝜆) ̸= 0

and 𝑓(]) ≤ 𝜆, for each ] ∈ 𝐼
𝑋, 𝑟 ∈ 𝐼

0
, and 𝑠 ∈ 𝐼

1
. Then, 𝜆 ̸= 0.

Now, suppose that ] ≤ 𝛼 and GSI
𝜏,𝜏
∗(𝑓
−1

(𝜆), 𝑟, 𝑠) = 0 ∈ 𝐼
𝑋.

Then,

GSC
𝜏,𝜏
∗ (1 − 𝑓

−1
(𝜆) , 𝑟, 𝑠) = 1 ∈ 𝐼

𝑋
. (15)

That is, 1 − 𝑓
−1

(𝜆) is an (𝑟, 𝑠)-gfs-dense in 𝐼
𝑋. Then by (3),

𝑓(1−𝑓
−1

(𝜆)) is an (𝑟, 𝑠)-fuzzy𝑑𝑒𝑛𝑠𝑒
∗ set such that there exists

an (𝑟, 𝑠)-fco set 𝜇 ≤ 𝑓(1−]), for each ] ∈ 𝐼
𝑋, 𝑟 ∈ 𝐼

0
, and 𝑠 ∈ 𝐼

1
.

But

𝑓 (1 − 𝑓
−1

(𝜆)) = 𝑓 (𝑓
−1

(1 − 𝜆)) ≤ 1 − 𝜆 < 1, (16)

since 1 − 𝜆 is an (𝑟, 𝑠)-fco and

𝑓 (1 − 𝑓
−1

(𝜆)) ≤ 1 − 𝜆,

𝐶
∗

𝜏,𝜏
∗ (𝑓 (1 − 𝑓

−1
(𝜆)) , 𝑟, 𝑠) ≤ 1 − 𝜆.

(17)

That is,

1 − 𝜆 ≥ 1 ⇒ 𝜆 = 0, (18)

which is a contradiction, since 𝜆 ̸= 0. Therefore, ] ≤ 𝛼 and
GSI
𝜏,𝜏
∗(𝑓
−1

(𝜆), 𝑟, 𝑠) ̸= 0. So 𝑓 is swsgdfsc.

4. Somewhat Slightly Generalized Double
Fuzzy Semiopen Functions

Definition 12. Let (𝑋, 𝜏
1
, 𝜏
∗

1
) and (𝑌, 𝜏

2
, 𝜏
∗

2
) be dfts’s. A func-

tion 𝑓 : (𝑋, 𝜏
1
, 𝜏
∗

1
) → (𝑌, 𝜏

2
, 𝜏
∗

2
) is called

(1) generalized double fuzzy semiopen (briefly, gdfso) if
for each (𝑟, 𝑠)-gfso set 𝜆 ∈ 𝐼

𝑋, 𝑟 ∈ 𝐼
0
, and 𝑠 ∈ 𝐼

1
, 𝑓(𝜆)

is an (𝑟, 𝑠)-gfso in 𝐼
𝑌;

(2) slightly generalized double fuzzy semiopen (briefly,
sgdfso) if for each (𝑟, 𝑠)-gfso set 𝜆 ∈ 𝐼

𝑋 and each
𝜇 ∈ 𝐼

𝑋, 𝑟 ∈ 𝐼
0
, and 𝑠 ∈ 𝐼

1
such that 𝜆 ≤ 𝜇, 𝑓(𝜆) is

an (𝑟, 𝑠)-fco set in 𝐼
𝑌 and

𝑓 (𝜆) ≤ 𝑓 (𝜇) ; (19)

(3) somewhat generalized double fuzzy semiopen (bri-
efly, swgdfso) if for each (𝑟, 𝑠)-gfso set 0 ̸= 𝜆 ∈ 𝐼

𝑋,
𝑟 ∈ 𝐼

0
, and 𝑠 ∈ 𝐼

1
, there exists an (𝑟, 𝑠)-gfso set

0 ̸= 𝜇 ∈ 𝐼
𝑌 such that

𝑓 (𝜆) ≥ 𝜇; (20)

(4) somewhat slightly generalized double fuzzy semiopen
(briefly, swsgdfso) if for each (𝑟, 𝑠)-gfso set 0 ̸= 𝜆 ∈ 𝐼

𝑋

such that 𝜆 ≤ ] and for each ] ∈ 𝐼
𝑋, 𝑟 ∈ 𝐼

0
, and 𝑠 ∈ 𝐼

1
,

there exists an (𝑟, 𝑠)-fco set 0 ̸= 𝜇 ∈ 𝐼
𝑌, 𝜇 ≤ 𝑓(]) such

that

𝑓 (𝜆) ≥ 𝜇. (21)

That is, 𝐼∗
𝜏,𝜏
∗(𝑓(𝜆), 𝑟, 𝑠) ̸= 0, and there exists an (𝑟, 𝑠)-

fco set 𝜇 such that𝑓(]) ≥ 𝜇 and 𝜆 ≤ ], for each ] ∈ 𝐼
𝑋,

𝑟 ∈ 𝐼
0
, and 𝑠 ∈ 𝐼

1
.

Proposition 13. Let (𝑋, 𝜏
1
, 𝜏
∗

1
), (𝑌, 𝜏

2
, 𝜏
∗

2
), and (𝑍, 𝜏

3
, 𝜏
∗

3
) be

dfts’s. If 𝑓 : (𝑋, 𝜏
1
, 𝜏
∗

1
) → (𝑌, 𝜏

2
, 𝜏
∗

2
) and 𝑔 : (𝑌, 𝜏

2
, 𝜏
∗

2
) →

(𝑍, 𝜏
3
, 𝜏
∗

3
) are swsgdfso functions, then 𝑔 ∘ 𝑓 : (𝑋, 𝜏

1
, 𝜏
∗

1
) →

(𝑍, 𝜏
3
, 𝜏
∗

3
) is a swsgdfso function.

Proof. Let 0 ̸= 𝜆 ∈ 𝐼
𝑋 be an (𝑟, 𝑠)-gfso set 𝑟 ∈ 𝐼

0
and 𝑠 ∈ 𝐼

1

such that 𝜆 ≤ 𝜇, for each fuzzy set 𝜇 ∈ 𝐼
𝑋, 𝑟 ∈ 𝐼

0
, and 𝑠 ∈ 𝐼

1
.

Since 𝑓 is swsgdfso, then there exists an (𝑟, 𝑠)-fco set 0 ̸= ] ∈

𝐼
𝑌, and 𝑓(𝜇) ≥ ] such that 𝑓(𝜆) ≥ ].

Now, GSI
𝜏,𝜏
∗(𝑓(𝜆), 𝑟, s)) is an (𝑟, 𝑠)-gfso in 𝐼

𝑌 such that

GSI
𝜏,𝜏
∗ (𝑓 (𝜆) , 𝑟, 𝑠) ̸= 0,

GSI
𝜏,𝜏
∗ (𝑓 (𝜆) , 𝑟, 𝑠) ≤ 𝑓 (𝜇) ,

(22)

for each 𝑓(𝜇) ∈ 𝐼
𝑌.

Since 𝑔 is swsgdfso, then there exists an (𝑟, 𝑠)-fco set
0 ̸= 𝛾 ∈ 𝐼

𝑍 and 𝛾 ≤ 𝑔(𝑓(𝜇)) such that

𝛾 ≤ 𝑔 (GSI
𝜏,𝜏
∗ (𝑓 (𝜆) , 𝑟, 𝑠)) . (23)

But

𝑔 (GSI
𝜏,𝜏
∗ (𝑓 (𝜆) , 𝑟, 𝑠)) ≤ 𝑔 (𝑓 (𝜆)) . (24)

Thus, there exists an (𝑟, 𝑠)-fco set 0 ̸= 𝛾 ∈ 𝐼
𝑍 and

(𝑔 ∘ 𝑓) (𝜇) ≥ 𝛾, (25)

such that

(𝑔 ∘ 𝑓) (𝜆) ≥ 𝛾. (26)

Therefore, 𝑔 ∘ 𝑓 is swsgdfso.

Proposition 14. Let (𝑋, 𝜏
1
, 𝜏
∗

1
) and (𝑌, 𝜏

2
, 𝜏
∗

2
) be dfts’s, and let

𝑓 : (𝑋, 𝜏
1
, 𝜏
∗

1
) → (𝑌, 𝜏

2
, 𝜏
∗

2
) be a bijective function. Then the

following are equivalent.

(1) 𝑓 is swsgdfso function.
(2) If 𝜆 is an (𝑟, 𝑠)-gfsc set in 𝐼

𝑋 such that 𝑓(𝜆) ̸= 1

and 𝜆 ≥ ] for each ] ∈ 𝐼
𝑋, then there exists an (𝑟, 𝑠)-

fco set 𝜇 ∈ 𝐼
𝑌, 𝜇 ̸= 1, and 𝑓(]) ≤ 𝜇 such that 𝑓(𝜆) ≤

𝜇.

Proof. (1) ⇒ (2) Let 𝜆 be an (𝑟, 𝑠)-gfsc set in 𝐼
𝑋 such that

𝑓(𝜆) ̸= 1 and 𝜆 ≥ ], for each ] ∈ 𝐼
𝑋, 𝑟 ∈ 𝐼

0
, and 𝑠 ∈ 𝐼

1
.

Then, 1 − 𝜆 is an (𝑟, 𝑠)-gfso set in 𝐼
𝑋 such that 𝑓(1 − 𝜆) ̸= 0

and 1 − 𝜆 ≤ 1 − ], for each ] ∈ 𝐼
𝑋. So

1 − 𝜆 ̸= 0. (27)

Since𝑓 is a swsgdfso, then there exists an (𝑟, 𝑠)-fco set 0 ̸= 𝛿 ∈

𝐼
𝑌 and 𝑓(1 − ]) ≥ 𝛿 such that

𝑓 (1 − 𝜆) ≥ 𝛿. (28)
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swsgdfsc

sgdfscsdfc

(a)

swgdfsogdfso
(b)

swsgdfsosgdfso
(c)

Figure 1

Now, 1 − 𝛿 is an (𝑟, 𝑠)-fco set in 𝐼
𝑌 such that 1 − 𝛿 ̸= 1 and

1 − 𝛿 ≥ 𝑓(]) such that

1 − 𝛿 ≥ 𝑓 (𝜆) . (29)

Take

1 − 𝛿 = 𝜇, (30)

so (2) is proved.
(2) ⇒ (1) Let 𝜆 ̸= 0 be any (𝑟, 𝑠)-gfso set in 𝐼

𝑋 such that
𝜆 ≤ ], for each ] ∈ 𝐼

𝑋. Then, 1 − 𝜆 is an (𝑟, 𝑠)-gfsc set in 𝐼
𝑋

such that 1−𝜆 ̸= 1 and 1−𝜆 ≥ 1− ] for each ] ∈ 𝐼
𝑋
𝑟 ∈ 𝐼
0
and

𝑠 ∈ 𝐼
1
. Now,

𝑓 (1 − 𝜆) = 1 − 𝑓 (𝜆) ̸= 1. (31)

For, if 1 − 𝑓(𝜆) = 1, then

𝑓 (𝜆) = 0 ⇒ 𝜆 = 0. (32)

Hence by the hypothesis, there exists an (𝑟, 𝑠)-fco set 𝜇 ∈ 𝐼
𝑌,

1 ̸= 𝜇 ≥ 𝑓(1 − ]), such that

𝑓 (1 − 𝜆) ≤ 𝜇. (33)

That is,

0 ̸= 1 − 𝜇 ≤ 𝑓 (]) , (34)

such that

1 − 𝜇 ≤ 𝑓 (𝜆) . (35)

Let 1 − 𝜇 = 𝛾. Then, 𝛾 ̸= 0 is an (𝑟, 𝑠)-fco set in 𝐼
𝑌 such that

𝑓(]) ≥ 𝛾 and 𝑓(𝜆) ≥ 𝛾. Therefore, 𝑓 is swsgdfso function.

5. Interrelations

The following implication illustrates the relationships
between different functions in Figure 1.

None of these implications is reversible where 𝐴 → 𝐵

represents 𝐴 implies 𝐵, as shown by the following examples.

Example 15. Let 𝑋 = {𝑎, 𝑏}.

(1) Let 𝑓 : (𝑋, 𝜏
1
, 𝜏
∗

1
) → (𝑋, 𝜏

2
, 𝜏
∗

2
) be the identity func-

tion. Define 𝜆
1
, 𝜆
2
, 𝜇
1
, and 𝜇

2
as follows:

𝜆
1 (𝑎) = 0.1, 𝜆

1 (𝑏) = 0.2,

𝜆
2
(𝑎) = 0.9, 𝜆

2
(𝑏) = 0.8,

𝜇
1
(𝑎) = 0.5, 𝜇

1
(𝑏) = 0.5,

𝜇
2
(𝑎) = 1.0, 𝜇

2
(𝑏) = 0.7.

(36)

And define (𝜏
1
, 𝜏
∗

1
) and (𝜏

2
, 𝜏
∗

2
) as follows:

𝜏
1 (𝜆) =

{{{{{{{

{{{{{{{

{

1, if 𝜆 ∈ {0, 1} ,
1

4
, if 𝜆 = 𝜆

1
,

1

8
, if 𝜆 = 𝜆

2
,

0, otherwise,

𝜏
∗

1
(𝜆) =

{{{{{{{

{{{{{{{

{

0, if 𝜆 ∈ {0, 1} ,
1

8
, if 𝜆 = 𝜆

1
,

1

4
, if 𝜆 = 𝜆

2
,

1, otherwise,

𝜏
2 (𝜆) =

{{{{{{{

{{{{{{{

{

1, if 𝜆 ∈ {0, 1} ,
1

4
, if 𝜆 = 𝜇

1
,

1

8
, if 𝜆 = 𝜇

2
,

0, otherwise,

𝜏
∗

2
(𝜆) =

{{{{{{{

{{{{{{{

{

0, if 𝜆 ∈ {0, 1} ,
1

8
, if 𝜆 = 𝜇

1
,

1

4
, if 𝜆 = 𝜇

2
,

1, otherwise.

(37)

Then, 𝑓 is sgdfsc function but not sdfc.

(2) In (1), 𝑓 is swsgdfsc function but not sdfc.

(3) Let𝑓 : (𝑋, 𝜏
1
, 𝜏
∗

1
) → (𝑋, 𝜏

2
, 𝜏
∗

2
) be a function defined

by

𝑓 (𝑎) = 𝑎, 𝑓 (𝑏) = 𝑎. (38)

Define 𝜆
1
, 𝜇
1
, and 𝜇

2
as follows:

𝜆
1 (𝑎) = 1.0, 𝜆

1 (𝑏) = 0.9,

𝜇
1
(𝑎) = 0.0, 𝜇

1
(𝑏) = 0.2,

𝜇
2
(𝑎) = 1.0, 𝜇

2
(𝑏) = 0.8,

(39)
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and define (𝜏
1
, 𝜏
∗

1
) and (𝜏

2
, 𝜏
∗

2
) as follows:

𝜏
1 (𝜆) =

{{{

{{{

{

1, if 𝜆 ∈ {0, 1} ,
1

2
, if 𝜆 = 𝜆

1
,

0, otherwise,

𝜏
∗

1
(𝜆) =

{{{

{{{

{

0, if 𝜆 ∈ {0, 1} ,
1

2
, if 𝜆 = 𝜆

1
,

1, otherwise,

𝜏
2
(𝜆) =

{{{{{{{

{{{{{{{

{

1, if 𝜆 ∈ {0, 1} ,
1

3
, if 𝜆 = 𝜇

1
,

2

3
, if 𝜆 = 𝜇

2
,

0, otherwise,

𝜏
∗

2
(𝜆) =

{{{{{{{

{{{{{{{

{

0, if 𝜆 ∈ {0, 1} ,
2

3
, if 𝜆 = 𝜇

1
,

1

3
, if 𝜆 = 𝜇

2
,

1, otherwise.

(40)

Then, 𝑓 is swsgdfsc function but not sgdfsc.

(4) Let 𝑓 : (𝑋, 𝜏
1
, 𝜏
∗

1
) → (𝑋, 𝜏

2
, 𝜏
∗

2
) be the identity

function. Define 𝜆
1
, 𝜆
2
, and 𝜇 as follows:

𝜆
1 (𝑎) = 0.0, 𝜆

1 (𝑏) = 1.0,

𝜆
2
(𝑎) = 1.0, 𝜆

2
(𝑏) = 0.0,

𝜇 (𝑎) = 0.0, 𝜇 (𝑏) = 0.3.

(41)

And define (𝜏
1
, 𝜏
∗

1
) and (𝜏

2
, 𝜏
∗

2
) as follows:

𝜏
1
(𝜆) =

{{{{{{{

{{{{{{{

{

1, if 𝜆 ∈ {0, 1} ,
1

3
, if 𝜆 = 𝜆

1
,

2

3
, if 𝜆 = 𝜆

2
,

0, otherwise,

𝜏
∗

1
(𝜆) =

{{{{{{{

{{{{{{{

{

0, if 𝜆 ∈ {0, 1} ,
2

3
, if 𝜆 = 𝜆

1
,

1

3
, if 𝜆 = 𝜆

2
,

1, otherwise,

𝜏
2
(𝜆) =

{{{

{{{

{

1, if 𝜆 ∈ {0, 1} ,
1

3
, if 𝜆 = 𝜇,

0, otherwise,

𝜏
∗

2
(𝜆) =

{{{

{{{

{

0, if 𝜆 ∈ {0, 1}
2

3
, if 𝜆 = 𝜇,

1, otherwise.
(42)

Then, 𝑓 is swgdfso function but not gdfso.

(5) Let 𝑓 : (𝑋, 𝜏
1
, 𝜏
∗

1
) → (𝑋, 𝜏

2
, 𝜏
∗

2
) be the identity

function. Define 𝜆
1
, 𝜇
1
, and 𝜇

2
as follows:

𝜆
1
(𝑎) = 0.1, 𝜆

1
(𝑏) = 0.1,

𝜇
1 (𝑎) = 0.05, 𝜇

1 (𝑏) = 0.02,

𝜇
2
(𝑎) = 0.95, 𝜇

2
(𝑏) = 0.98.

(43)

And define (𝜏
1
, 𝜏
∗

1
) and (𝜏

2
, 𝜏
∗

2
) as follows:

𝜏
1
(𝜆) =

{{{

{{{

{

1, if 𝜆 ∈ {0, 1} ,
1

3
, if 𝜆 = 𝜆

1
,

0, otherwise,

𝜏
∗

1
(𝜆) =

{{{

{{{

{

0, if 𝜆 ∈ {0, 1} ,
2

3
, if 𝜆 = 𝜆

1
,

1, otherwise,

𝜏
2 (𝜆) =

{{{{{{{

{{{{{{{

{

1, if 𝜆 ∈ {0, 1} ,
1

3
, if 𝜆 = 𝜇

1
,

2

3
, if 𝜆 = 𝜇

2
,

0, otherwise,

𝜏
∗

2
(𝜆) =

{{{{{{{

{{{{{{{

{

0, if 𝜆 ∈ {0, 1} ,
2

3
, if 𝜆 = 𝜇

1
,

1

3
, if 𝜆 = 𝜇

2
,

1, otherwise.

(44)

Then, 𝑓 is swsgdfso function but not sgdfso.
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