IJMMS International Journal of Mathematics and Mathematical Sciences 1687-0425 0161-1712 Hindawi Publishing Corporation 797162 10.1155/2014/797162 797162 Research Article On 3-Dimensional Contact Metric Generalized ( k , μ ) -Space Forms Prakasha D. G. 1 Hui Shyamal Kumar 2 Mirji Kakasab 1 Vrancken Luc 1 Department of Mathematics Karnatak University Dharwad 580 003 India kud.ac.in 2 Department of Mathematics Sidho Kanho Birsha University Purulia 723101 India skbu.ac.in 2014 1442014 2014 18 01 2014 19 03 2014 15 4 2014 2014 Copyright © 2014 D. G. Prakasha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The present paper deals with a study of 3-dimensional contact metric generalized ( k , μ ) -space forms. We obtained necessary and sufficient condition for a 3-dimensional contact metric generalized ( k , μ ) -space form with Q ϕ = ϕ Q to be of constant curvature. We also obtained some conditions of such space forms to be pseudosymmetric and ξ -projectively flat, respectively.

1. Introduction

In 1995, Blair et al.  introduced the notion of contact metric manifolds with characteristic vector field ξ belonging to the ( k , μ ) -nullity distribution and such types of manifolds are called ( k , μ ) -contact metric manifolds. They obtained several results and examples of such a manifold. A full classification of this manifold has been given by Boeckx . A contact metric manifold ( M , ϕ , ξ , η , g ) is said to be a generalized ( k , μ ) -space if its curvature tensor satisfies the condition (1) R ( X , Y ) ξ = k { η ( Y ) X - η ( X ) Y } + μ { η ( Y ) h X - η ( X ) h Y } for some smooth functions k and μ on M independent choice of vector fields X and Y . If k and μ are constant, the manifold is called a ( k , μ ) -space. If a ( k , μ ) -space M has a constant ϕ -sectional curvature c and a dimension greater than 3, the curvature tensor of this ( k , μ ) -space form is given by  (2) R = c + 3 4 R 1 + c - 1 4 R 2 + ( c + 3 4 - k ) R 3 + R 4 + 1 2 R 5 + ( 1 - μ ) R 6 , where R 1 , R 2 , R 3 , R 4 , R 5 , and R 6 are the tensors defined by (3) R 1 ( X , Y ) Z = g ( Y , Z ) X - g ( X , Z ) Y , R 2 ( X , Y ) Z = g ( X , ϕ Z ) ϕ Y - g ( Y , ϕ Z ) ϕ X + 2 g ( X , ϕ Y ) ϕ Z , R 3 ( X , Y ) Z = η ( X ) η ( Z ) Y - η ( Y ) η ( Z ) X + g ( X , Z ) η ( Y ) ξ - g ( Y , Z ) η ( X ) ξ , R 4 ( X , Y ) Z = g ( Y , Z ) h X - g ( X , Z ) h Y + g ( h Y , Z ) X - g ( h X , Z ) Y , R 5 ( X , Y ) Z = g ( h Y , Z ) h X - g ( h X , Z ) h Y + g ( ϕ h X , Z ) ϕ h Y - g ( ϕ h Y , Z ) ϕ h X , R 6 ( X , Y ) Z = η ( X ) η ( Z ) h Y - η ( Y ) η ( Z ) h X + g ( h X , Z ) η ( Y ) ξ - g ( h Y , Z ) η ( X ) ξ for all vector fields X , Y , Z on M , where 2 h = L ξ ϕ and L is the usual Lie derivative.

The notion of generalized Sasakian-space-forms was introduced and studied by Alegre et al.  with several examples. A generalized Sasakian-space-form is an almost contact metric manifold ( M , ϕ , ξ , η , g ) whose curvature tensor is given by (4) R ( X , Y ) Z = f 1 R 1 + f 2 R 2 + R 3 f 3 , where R 1 , R 2 , and R 3 are the tensors defined above and f 1 , f 2 , f 3 are differentiable functions on M . In such case we will write the manifold as M ( f 1 , f 2 , f 3 ) . Generalized Sasakian-space-forms have been studied by several authors, namely, .

By motivating the works on generalized Sasakian-space-forms and ( k , μ ) -space forms, Carriazo et al.  introduced the concept of generalized ( k , μ ) -space forms. A generalized ( k , μ ) -space form is an almost contact metric manifold ( M , ϕ , ξ , η , g ) whose curvature tensor R is given by (5) R = f 1 R 1 + f 2 R 2 + f 3 R 3 + f 4 R 4 + f 5 R 5 + f 6 R 6 , where R 1 , R 2 , R 3 , R 4 , R 5 , R 6 are the tensors defined above and f 1 , f 2 , f 3 , f 4 , f 5 , f 6 are differentiable functions on M .

The object of the paper is to study 3-dimensional contact metric generalized ( k , μ ) -space forms. The paper is organized as follows. Section 2 deals with some preliminaries on contact metric manifolds and contact metric generalized ( k , μ ) -space forms. Section 3 is concerned with 3-dimensional contact metric generalized ( k , μ ) -space forms. Here it is proved that a 3-dimensional contact metric generalized ( k , μ ) -space form with Q ϕ = ϕ Q is of constant curvature if and only if 3 f 2 + f 3 = 0 . In Section 4, it is proved that a 3-dimensional contact metric generalized ( k , μ ) -space form is Ricci-semisymmetric; then either f 1 = f 3 or 3 f 2 + f 3 = 0 . In Sections 5 and 6, we obtained that some equivalent conditions for a 3-dimensional contact metric generalized ( k , μ ) -space form are pseudosymmetric and ξ -projectively flat, respectively.

2. Contact Metric Generalized <inline-formula> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M79"> <mml:mo mathvariant="bold">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo mathvariant="bold">,</mml:mo> <mml:mo mathvariant="bold"> </mml:mo> <mml:mi>μ</mml:mi> <mml:mo mathvariant="bold">)</mml:mo></mml:math> </inline-formula>-Space Forms

A contact manifold is a C -( 2 n + 1 ) manifold M 2 n + 1 equipped with a global 1-form η such that η ( d η ) n 0 everywhere on M 2 n + 1 . Given a contact form η it is well known that there exists a unique vector field ξ called the characteristic vector field of η such that η ( ξ ) = 1 and d η ( X , ξ ) = 0 for every vector field X on M 2 n + 1 . A Riemannian metric is said to be associated metric if there exists a tensor field ϕ of type (1, 1) such that d η ( X , Y ) = g ( X , ϕ Y ) , η ( X ) = g ( X , ξ ) , ϕ 2 X = - X + η ( X ) ξ , ϕ ξ = 0 , η ( ϕ X ) = 0 , and g ( ϕ X , ϕ Y ) = g ( X , Y ) - η ( X ) η ( Y ) for all vector fields X , Y on M 2 n + 1 . Then the structure ( ϕ , ξ , η , g ) on M 2 n + 1 is called a contact metric structure, and then manifold M 2 n + 1 equipped with such a structure is called a contact metric manifold .

Given a contact metric manifold ( M 2 n + 1 , ϕ , ξ , η , g ) we define a (1, 1) tensor field h by 2 h = L ξ ϕ . Then h is symmetric and satisfies the following relations: (6) h ξ = 0 , h ϕ = - ϕ h , tr ( h ) = tr ( ϕ h ) = 0 , η · h = 0 . Moreover, if denotes the Riemannian connection of g , then the following relation holds: (7) X ξ = - ϕ X - ϕ h X . The vector field ξ is a Killing vector with respect to g if and only if h = 0 . A contact metric manifold ( M 2 n + 1 , ϕ , ξ , η , g ) for which ξ is a Killing vector is said to be a K -contact manifold. Therefore, a generalized ( k , μ ) -space form with such a structure is actually a generalized Sasakian-space-form.

A generalized ( k , μ ) -space-form is an almost contact metric manifold ( M , ϕ , ξ , η , g ) whose curvature tensor R is given by (8) R ( X , Y ) Z = f 1 { g ( Y , Z ) X - g ( X , Z ) Y } + f 2 { g ( X , ϕ Z ) ϕ Y - g ( Y , ϕ Z ) ϕ X + 2 g ( X , ϕ Y ) ϕ Z } + f 3 { η ( X ) η ( Z ) Y - η ( Y ) η ( Z ) X + g ( X , Z ) η ( Y ) ξ - g ( Y , Z ) η ( X ) ξ } + f 4 { g ( Y , Z ) h X - g ( X , Z ) h Y + g ( h Y , Z ) X - g ( h X , Z ) Y } + f 5 { g ( h Y , Z ) h X - g ( h X , Z ) h Y + g ( ϕ h X , Z ) ϕ h Y - g ( ϕ h Y , Z ) ϕ h X } + f 6 { η ( X ) η ( Z ) h Y - η ( Y ) η ( Z ) h X + g ( h X , Z ) η ( Y ) ξ - g ( h Y , Z ) η ( X ) ξ } for all vector fields X , Y , Z on M , where f 1 , f 2 , f 3 , f 4 , f 5 , f 6 are differentiable functions on M , 2 h = L ξ ϕ , and L is the usual Lie derivative. In such case we will denote the manifold as M ( f 1 , , f 6 ) . This kind of manifold appears as natural generalization of the ( k , μ ) -space forms by taking (9) f 1 = c + 3 4 , f 2 = c - 1 4 , f 3 = c + 3 4 - k , f 4 = 1 , f 5 = 1 2 , f 6 = 1 - μ as constant. Here c denotes constant ϕ -sectional curvature. The ϕ -sectional curvature of generalized ( k , μ ) -space form M ( f 1 , , f 6 ) is f 1 + 3 f 2 + f 4 g ( ( h - ϕ h ϕ ) X , X ) . Generalized Sasakian-space-forms  are also examples with f 4 = f 5 = f 6 = 0 and f 1 , f 2 , f 3 not necessarily constant.

We inferred the following result from .

Theorem 1.

Let M ( f 1 , , f 6 ) be a generalized ( k , μ ) -space form. If M is a contact metric manifold with f 3 = f 1 - 1 , then it is a Sasakian manifold.

Next, by using the definitions of the tensors R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and properties (6) of the tensor h in the formula (8), we obtain that the curvature tensor of a generalized ( k , μ ) -space form satisfies (10) R ( X , Y ) ξ = ( f 1 - f 3 ) { η ( Y ) X - η ( X ) Y } + ( f 4 - f 6 ) { η ( Y ) h X - η ( X ) h Y } for every X , Y . Thus we have the following Theorem.

Theorem 2 (see [<xref ref-type="bibr" rid="B8">12</xref>]).

If M ( f 1 , , f 6 ) is a contact metric generalized ( k , μ ) -space form, then it is a generalized ( k , μ ) -space, with k = f 1 - f 3 and μ = f 4 - f 6 .

We know from Theorem 1 that M ( f 1 , , f 6 ) is Sasakian if k = f 1 - f 3 = 1 . Under the same hypothesis, we also know that f 2 = f 3 = f 1 - 1 and h = 0 , so we may take f 4 = f 5 = f 6 = 0 . Therefore, in this paper we will consider non-Sasakian generalized ( k , μ ) -space forms M ( f 1 , , f 6 ) , that is, those with k = f 1 - f 3 1 .

A contact metric manifold is said to be η -Einstein manifold  if it satisfies (11) S = a g + b η η for some smooth functions a and b .

3. On 3-Dimensional Contact Metric Generalized <inline-formula> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M183"> <mml:mo mathvariant="bold">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo mathvariant="bold">,</mml:mo> <mml:mo mathvariant="bold"> </mml:mo> <mml:mi>μ</mml:mi> <mml:mo mathvariant="bold">)</mml:mo></mml:math> </inline-formula>-Space Forms

If M 3 ( f 1 , , f 6 ) is a contact metric generalized ( k , μ ) -space form, then its Ricci tensor S and the scalar curvature r can be written as  (12) S ( X , Y ) = ( 2 f 1 + 3 f 2 - f 3 ) g ( X , Y ) - ( 3 f 2 + f 3 ) η ( X ) η ( Y ) + ( f 4 - f 6 ) g ( h X , Y ) , (13) r = 2 ( 3 f 1 + 3 f 2 - 2 f 3 ) . It is known that in a 3-dimensional Riemannian manifold ( M 3 , g ) , the curvature tensor R is given by (14) R ( X , Y ) Z = S ( Y , Z ) X - S ( X , Z ) Y + g ( Y , Z ) Q X - g ( X , Z ) Q Y - r 2 [ g ( Y , Z ) X - g ( X , Z ) Y ] for any vector fields X , Y , Z on M . By substituting (12) and (13) in (14) we have (15) R ( X , Y ) Z = ( f 1 + 3 f 2 ) { g ( Y , Z ) X - g ( X , Z ) Y } + ( 3 f 2 + f 3 ) { η ( X ) η ( Z ) Y - η ( Y ) η ( Z ) X + g ( X , Z ) η ( Y ) ξ - g ( Y , Z ) η ( X ) ξ } + ( f 4 - f 6 ) { g ( Y , Z ) h X - g ( X , Z ) h Y + g ( h Y , Z ) X - g ( h X , Z ) Y } . From (12), we have (16) S ( X , ξ ) = 2 ( f 1 - f 3 ) η ( X ) . Also, from (15) we obtain (17) R ( ξ , Y ) Z = ( f 1 - f 3 ) { g ( Y , Z ) ξ - η ( Z ) Y } + ( f 4 - f 6 ) { g ( h Y , Z ) ξ - η ( Z ) h Y } .

If M 3 ( f 1 , , f 6 ) is a contact metric generalized ( k , μ ) -space form, then Q ϕ = ϕ Q is true if and only if f 4 - f 6 = 0 . In this connection, the following result appears in .

Lemma 3.

If M 3 ( f 1 , , f 6 ) is a contact metric generalized ( k , μ ) -space form, then the following conditions are equivalent:

M 3 is an η -Einstein,

Q ϕ = ϕ Q , where Q denotes the Ricci tensor,

M 3 is a ( f 1 - f 3 , 0 ) -space,

f 4 - f 6 = 0 .

Now we begin with the following.

Lemma 4.

A 3-dimensional contact metric generalized ( k , μ ) -space form with Q ϕ = ϕ Q is of constant curvature if and only if 3 f 2 + f 3 = 0 .

Proof.

Let a 3-dimensional contact metric generalized ( k , μ ) -space form M 3 ( f 1 , , f 6 ) with Q ϕ = ϕ Q be a space of constant curvature. Then (18) R ( X , Y ) Z = c { g ( Y , Z ) X - g ( X , Z ) Y } , where c is constant curvature of the manifold. By using the definition of Ricci curvature and (18) we have (19) S ( X , Y ) = 2 c g ( X , Y ) . If we use (19) in the definition of the scalar curvature we get (20) r = 6 c . From (19) and (20) one can easily see that (21) S ( X , Y ) = r 3 g ( X , Y ) . By putting X = Y = ξ in (12) and using (21) we obtain r = 6 ( f 1 - f 3 ) . By comparing this value of r with (13), we have 3 f 2 + f 3 = 0 .

Conversely, if 3 f 2 + f 3 = 0 , then from (15) we can easily see that (22) R ( X , Y ) Z = ( f 1 - f 3 ) { g ( Y , Z ) X - g ( X , Z ) Y } + ( f 4 - f 6 ) { g ( Y , Z ) h X - g ( X , Z ) h Y + g ( h Y , Z ) X - g ( h X , Z ) Y } . If M 3 ( f 1 , , f 6 ) satisfies Q ϕ = ϕ Q , then in view of Lemma 3 we have f 4 - f 6 = 0 . Thus from (22), we have (23) R ( X , Y ) Z = ( f 1 - f 3 ) { g ( Y , Z ) X - g ( X , Z ) Y } . If M 3 ( f 1 , , f 6 ) satisfies f 4 - f 6 = 0 , then f 1 - f 3 is constant. Hence, from (23), we conclude that the M 3 is of constant curvature. This completes the proof.

Theorem 5.

Every 3-dimensional contact metric generalized ( k , μ ) -space form with Q ϕ = ϕ Q is an N ( f 1 - f 3 ) - η -Einstein manifold.

Proof.

The proof follows from (12), (10), and Lemma 3.

4. Ricci-Semisymmetric 3-Dimensional Contact Metric Generalized <inline-formula> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M241"> <mml:mo mathvariant="bold">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo mathvariant="bold">,</mml:mo> <mml:mo mathvariant="bold"> </mml:mo> <mml:mi>μ</mml:mi> <mml:mo mathvariant="bold">)</mml:mo></mml:math> </inline-formula>-Space Forms

A contact metric generalized ( k , μ ) -space form is said to be Ricci-semisymmetric if its Ricci tensor S satisfies the condition (24) R ( X , Y ) · S = 0 , X , Y χ ( M ) , where R ( X , Y ) acts as a derivation on S . This notion was introduced by Mirzoyan  for Riemannian spaces.

From (24) we have (25) S ( R ( X , Y ) U , V ) + S ( U , R ( X , Y ) V ) = 0 . If we substitute X = ξ in (25) and then using (17), we get (26) ( f 1 - f 3 ) [ g ( Y , U ) S ( ξ , V ) - η ( U ) S ( Y , V ) + g ( Y , V ) S ( ξ , U ) - η ( V ) S ( Y , U ) ] + ( f 4 - f 6 ) [ g ( h Y , U ) S ( ξ , V ) - η ( U ) S ( h Y , V ) + g ( h Y , V ) S ( ξ , U ) - η ( V ) S ( h Y , U ) ] = 0 . By using (16) in (26) we obtain (27) 2 ( f 1 - f 3 ) [ ( f 1 - f 3 ) { g ( Y , U ) η ( V ) + g ( Y , V ) η ( U ) } + ( f 4 - f 6 ) { g ( h Y , U ) η ( V ) + g ( h Y , V ) η ( U ) } ] - ( f 1 - f 3 ) [ S ( Y , V ) η ( U ) + S ( Y , U ) η ( V ) ] - ( f 4 - f 6 ) [ S ( h Y , V ) η ( U ) + S ( h Y , U ) η ( V ) ] = 0 . Consider that { e 1 , e 2 , e 3 } is an orthonormal basis of the T p M , p M . Then by putting Y = U = e i in (27) and taking the summation for 1 i 3 , we have (28) ( f 1 - f 3 ) [ 8 ( f 1 - f 3 ) η ( V ) - S ( V , ξ ) - r η ( V ) ] = 0 . Again by using (16) in (28), we get (29) ( f 1 - f 3 ) [ 6 ( f 1 - f 3 ) - r ] η ( V ) = 0 , which gives either f 1 = f 3 or r = 6 ( f 1 - f 3 ) . For the second case, that is, r = 6 ( f 1 - f 3 ) , we have 3 f 2 + f 3 = 0 . Thus we can state the following.

Theorem 6.

If a 3-dimensional contact metric generalized ( k , μ ) -space form is Ricci-semisymmetric then either f 1 = f 3 or 3 f 2 + f 3 = 0 .

5. Pseudosymmetric 3-Dimensional Contact Metric Generalized <inline-formula> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M265"> <mml:mo mathvariant="bold">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo mathvariant="bold">,</mml:mo> <mml:mo mathvariant="bold"> </mml:mo> <mml:mi>μ</mml:mi> <mml:mo mathvariant="bold">)</mml:mo></mml:math> </inline-formula>-Space Forms

Let ( M , g ) be a Riemannian manifold with the Riemannian metric . A tensor field F : χ ( M ) × χ ( M ) × χ ( M ) χ ( M ) of type (1, 3) is said to be curvature-like if it has the properties of R . For example, the tensor R given by (30) R ( X , Y ) Z = ( X Y ) Z = g ( Y , Z ) X - g ( X , Z ) Y , 00 00 000000000000000000000000 X , Y , Z χ ( M ) defines a curvature-like tensor field on M . For example, if R ( X , Y ) Z = k ( ( X Y ) Z ) = k ( g ( Y , Z ) X - g ( X , Z ) Y ) , then the manifold is of constant curvature k .

It is well known that every curvature-like tensor field F acts on the algebra 𝔗 s 1 ( M ) of all tensor fields on M of type ( 1 , s ) as a derivation  (31) ( F · P ) ( X 1 , , X s ; Y , X ) = F ( X , Y ) { P ( X 1 , , X s ) } - j = 1 s P ( X 1 , , F ( X , Y ) X j , , X s ) for all X 1 , , X s χ ( M ) and P 𝔗 s 1 ( M ) . The derivation F · P of P by F is a tensor field of type ( 1 , s + 2 ) . For a tensor field P of type ( 1 , s ) , we define the derivative of P with respect to the curvature-like tensor defined by (30) as (32) Q ( g , P ) ( X 1 , , X s ; Y , X ) = ( X Y ) P ( X 1 , , X s ) - j = 1 s P ( X 1 , , ( X Y ) X j , , X s ) . As a generalization of locally symmetric ( R = 0 ) manifolds, the notion of a semisymmetric ( R · R = 0 ) manifold is introduced by Szabó . As a proper generalization of a semisymmetric manifold, the notion of pseudosymmetric manifold is introduced by Deszcz . A Riemannian manifold ( M , g ) is said to be pseudosymmetric if there exists a real valued smooth function L : M such that R · R = L ( g , R ) . In particular, if L is constant, then M is said to be a pseudosymmetric manifold of constant type . A pseudosymmetric manifold is said to be proper if it is not semisymmetric.

For 3-dimensional Riemannian spaces, the following characterization of pseudosymmetry is known (cf. [18, 19]).

Theorem 7.

A 3-dimensional Riemannian space is pseudosymmetric if and only if it is η -Einstein.

We also know that a 3-dimensional contact metric generalized ( k , μ ) -space form is η -Einstein if and only if f 4 - f 6 = 0 . Hence, in view of Theorem 7, we can state the following.

Theorem 8.

A 3-dimensional contact metric generalized ( k , μ ) -space form is pseudosymmetric if and only if f 4 - f 6 = 0 .

From Lemma 3 and Theorem 8, we have following.

Lemma 9.

A 3-dimensional contact metric generalized ( k , μ ) -space form with Q ϕ = ϕ Q is pseudosymmetric.

6. <inline-formula> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M305"> <mml:mrow> <mml:mi>ξ</mml:mi></mml:mrow> </mml:math></inline-formula>-Projectively Flat 3-Dimensional Contact Metric Generalized <inline-formula> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M306"> <mml:mo mathvariant="bold">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo mathvariant="bold">,</mml:mo> <mml:mo mathvariant="bold"> </mml:mo> <mml:mi>μ</mml:mi> <mml:mo mathvariant="bold">)</mml:mo></mml:math> </inline-formula>-Space Forms

In a 3-dimensional contact metric generalized ( k , μ ) -space form M 3 ( f 1 , , f 6 ) the projective curvature tensor 𝒫 is defined as (33) 𝒫 ( X , Y ) Z = R ( X , Y ) Z - 1 2 [ S ( Y , Z ) X - S ( X , Z ) Y ] for all X , Y , Z T M .

By plugging Z = ξ in (33) and using (16) and (10), we get (34) 𝒫 ( X , Y ) ξ = ( f 4 - f 6 ) [ η ( Y ) h X - η ( X ) h Y ] . If f 4 - f 6 = 0 , then from (34) one can get (35) 𝒫 ( X , Y ) ξ = 0 ; that is, M 3 ( f 1 , , f 6 ) is ξ -projectively flat.

Conversely, suppose that M 3 ( f 1 , , f 6 ) is ξ -projectively flat. Then from (34) we obtain (36) ( f 4 - f 6 ) [ η ( Y ) h X - η ( X ) h Y ] = 0 . This implies that f 4 - f 6 = 0 . Thus we can state the following.

Theorem 10.

A 3-dimensional contact metric generalized ( k , μ ) -space form is ξ -projectively flat if and only if f 4 - f 6 = 0 .

From Lemma 3 and Theorem 10, we obtain the following.

Lemma 11.

A 3-dimensional contact metric generalized ( k , μ ) -space form with Q ϕ = ϕ Q is ξ -projectively flat.

By combining Lemma 3, Theorem 5, Theorem 8, and Theorem 10 the following result is obtained.

Theorem 12.

If M 3 ( f 1 , , f 6 ) is a contact metric generalized ( k , μ ) -space form, then the following conditions are equivalent to each other:

M 3 is N ( f 1 - f 3 ) - η -Einstein,

Q ϕ = ϕ Q , where Q denotes the Ricci operator,

f 4 - f 6 = 0 ,

M 3 is pseudosymmetric,

M 3 is ξ -projectively flat.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

The first author is thankful to University Grants Commission, New Delhi, India, for financial support in the form of Major Research Project F. no. 39-30/2010 (SR), dated 23-12-2010.

Blair D. E. Koufogiorgos T. Papantoniou B. J. Contact metric manifolds satisfying a nullity condition Israel Journal of Mathematics 1995 91 1–3 189 214 10.1007/BF02761646 MR1348312 ZBL0837.53038 Boeckx E. A full classification of contact metric ( k , μ ) -spaces Illinois Journal of Mathematics 2000 44 1 212 219 MR1731388 Koufogiorgos T. Contact Riemannian manifolds with constant ϕ-sectional curvature Tokyo Journal of Mathematics 1997 20 1 13 22 10.3836/tjm/1270042394 MR1451854 Alegre P. Blair D. E. Carriazo A. Generalized Sasakian-space-forms Israel Journal of Mathematics 2004 141 1 157 183 10.1007/BF02772217 MR2063031 ZBL1064.53026 Alegre P. Carriazo A. Structures on generalized Sasakian-space-forms Differential Geometry and its Applications 2008 26 6 656 666 10.1016/j.difgeo.2008.04.014 MR2474428 ZBL1156.53027 Alegre P. Carriazo A. Submanifolds of generalized Sasakian space forms Taiwanese Journal of Mathematics 2009 13 3 923 941 MR2526347 ZBL1176.53047 Alegre P. Carriazo A. Generalized Sasakian space forms and conformal changes of the metric Results in Mathematics 2011 59 3-4 485 493 10.1007/s00025-011-0115-z MR2793469 ZBL1219.53048 De U. C. Sarkar A. Some results on generalized Sasakian-space-forms Thai Journal of Mathematics 2010 8 1 1 10 MR2658622 ZBL1213.53058 De U. C. Sarkar A. On the projective curvature tensor of generalized Sasakian-space-forms Quaestiones Mathematicae. Journal of the South African Mathematical Society 2010 33 2 245 252 10.2989/16073606.2010.491203 MR2755518 ZBL1274.53067 Kim U. K. Conformally flat generalized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms Note di Matematica 2006 26 1 55 67 MR2267682 ZBL1118.53025 Prakasha D. G. On generalized Sasakian-space-forms with Weyl-conformal curvature tensor Lobachevskii Journal of Mathematics 2012 33 3 223 228 10.1134/S1995080212030110 MR2969308 ZBL1257.53072 Carriazo A. Martín Molina V. Tripathi M. M. Generalized ( k , μ ) -space forms Mediterranean Journal of Mathematics 2013 10 1 475 496 10.1007/s00009-012-0196-2 MR3019118 Blair D. E. Contact Manifolds in Riemannian Geometry 1976 Springer Lecture Notes in Mathematics MR0467588 Mirzoyan V. A. Structure theorems for Riemannian Ric-semisymmetric spaces Izvestiya Vysshikh Uchebnykh Zavedeniĭ. Matematika 1992 6 80 89 MR1213338 O'Neill B. Semi-Riemannian Geometry with Applications to Relativity 1983 Academic Press MR719023 Szabó Z. I. Classification and construction of complete hypersurfaces satisfying R ( X , Y ) · R = 0 Acta Universitatis Szegediensis. Acta Scientiarum Mathematicarum 1984 47 3-4 321 348 MR783309 ZBL0578.53036 Deszcz R. On pseudosymmetric spaces Bulletin de la Société Mathématique de Belgique A 1992 44 1 1 34 MR1315367 ZBL0808.53012 Cho J. T. Inoguchi J.-I. Lee J.-E. Pseudo-symmetric contact 3-manifolds. III Colloquium Mathematicum 2009 114 1 77 98 10.4064/cm114-1-7 MR2457280 ZBL1163.53017 Kowalski O. Sekizawa M. Three-Dimensional Riemannian Manifolds of C-Conullity Two, Riemannian Manifolds of Conullity Two 1996 Singapore World Scientific