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For quasitoric manifolds and moment-angle complexes which are central objects recently much studied in toric topology, there
are several important notions of rigidity formulated in terms of cohomology rings. The aim of this paper is to show that, among
other things, Buchstaber-rigidity (or B-rigidity) is equivalent to cohomological-rigidity (or C-rigidity) for simple convex polytopes
supporting quasitoric manifolds.

1. Introduction and Main Results

In general, a cohomology ring of a given manifold is not
enough to determine the manifold completely. However,
there are some cases where we can characterize a given man-
ifold in terms of a cohomology ring and which have recently
attracted a great amount of attention in toric topology (see
[1, 2]). For example, certain Bott manifolds and quasitoric
manifolds, but not all of them, are such cases. The aim of this
paper is, roughly speaking, to establish certain equivalence
between twowell-known notions of rigidity which essentially
characterize quasitoric manifolds and also are formulated in
terms of cohomology rings.

In order to describe our results more precisely, we first
need to collect some definitions and notations. To do so,
throughout this paper k will denote a field of characteristic
zero. A quasitoric manifold𝑀 of dimension 2𝑛 is a closed 2𝑛-
dimensional smooth manifold with a locally standard action
of an 𝑛-torus 𝑇𝑛 := (𝑆

1

)
𝑛 whose orbit space is a simple

convex polytope 𝑃. The combinatorial structure of 𝑃 can be
decoded from the equivariant cohomology ring𝐻∗

𝑇
𝑛(𝑀; k) of

𝑀.The reason is that the equivariant cohomology ring of𝑀 is
isomorphic to the Stanley-Reisner face ring k(𝐾) of the dual
𝐾 = (𝜕𝑃)

∗ of the boundary 𝜕𝑃 of 𝑃 and that the Stanley-
Reisner face ring k(𝐾) is in turn obtained by using certain
combinatorial information of 𝑃 (refer to, e.g., [2], Theorem
4.8). In a similar vein, it is also expected that one can possibly

obtain some information on a simple convex polytope𝑃 from
the usual cohomology ring of the manifold 𝑀. If we have
a quasitoric manifold 𝑀 over a simple convex polytope 𝑃,
from now on we will say that 𝑃 (or 𝐾 = (𝜕𝑃)

∗) supports the
quasitoric manifold𝑀, for simplicity.

From these contexts, it is natural to give Definition 1.
In order to explain it, recall first that the faces of a convex
polytope form a face poset (or face lattice) where the partial
ordering is by set containment of faces. Two polytopes are
defined to be combinatorially isomorphic or combinatorially
equivalent if their face posets are isomorphic (refer to [1],
Section 1.1). An analogous definition obviously applies to two
simplicial complexes.

Definition 1. A simple convex polytope 𝑃 is said to be
cohomologically rigid, or simply C-rigid, if the following two
conditions hold.

(i) There exists a quasitoric manifold𝑀 over 𝑃.
(ii) Let𝑀󸀠 be another quasitoric manifold over a simple

convex polytope 𝑃󸀠 such that as a ring

𝐻
∗

(𝑀; k) ≅ 𝐻∗ (𝑀󸀠; k) . (1)

Then 𝑃󸀠 is combinatorially equivalent to 𝑃.
As mentioned above, the Stanley-Reisner face ring k(𝐾)

contains certain significant information of a simple convex

Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences
Volume 2014, Article ID 825850, 5 pages
http://dx.doi.org/10.1155/2014/825850



2 International Journal of Mathematics and Mathematical Sciences

polytope 𝑃 supporting the quasitoric manifold, and the
dimension of its Tor algebra gives rise to the bigraded Betti
numbers𝛽

𝑖,2𝑗
(𝑃)which are purely combinatorial invariants of

the polytope. It can be shown that the cohomology ring of the
moment-angle complex Z

𝐾
of the simplicial complex 𝐾 =

(𝜕𝑃)
∗ is isomorphic to Tor(k(𝐾); k) (refer to [1], Theorem

7.6, and see Section 2 for the definition of a moment-angle
complex Z

𝐾
). Hence, it will be also natural to consider the

following notion of rigidity, introduced first by Buchstaber in
[3].

Definition 2. A simplicial complex𝐾 is said to be Buchstaber-
rigid, or simply B-rigid, if the following condition holds.

(i) Let 𝐾󸀠 be another simplicial complex such that as a
ring

𝐻
∗

(Z
𝐾
; k) ≅ 𝐻∗ (Z

𝐾
󸀠 ; k) . (2)

Then 𝐾󸀠 is combinatorially equivalent to𝐾.
Note that there are simple convex polytopes 𝑃 supporting

quasitoric manifolds which are not C-rigid such that their
dual simplicial complexes 𝐾 = (𝜕𝑃)

∗ are not B-rigid,
either (refer to, e.g., [4], Example 1.1). Nonetheless, the aim
of this paper is to show that B-rigidity is equivalent to
C-rigidity in case of simple convex polytopes supporting
quasitoric manifolds.This affirmatively answers a question in
[4], Section 8, as follows.

Theorem 3. Let 𝑃 be a simple convex polytope supporting a
quasitoric manifold, and let 𝐾 = (𝜕𝑃)

∗ be the dual of the
boundary of 𝑃. Then B-rigidity of 𝐾 is equivalent to C-rigidity
of 𝑃.

We organize this paper as follows. In Section 2, we
will collect some basic facts about the Stanley-Reisner face
ring k(𝐾) and its Tor-algebra Tork[v](k(𝐾), k) of k(𝐾) and
recall some well-known terminology used in this paper. In
Section 3, we give a proof of our mainTheorem 3.

2. Stanley-Reisner Face Ring and
Moment-Angle Complexes

The aim of this section is to set up some notations and briefly
collect some basic material necessary for the proof of main
Theorem 3 given in Section 3. In particular, we recall well-
known facts about Stanley-Reisner face ring, following the
works of [5, 6]. Refer to [1, 4] for more details and other
notations used in this paper.

To do so, let k[v] = k[V
1
, V
2
, . . . , V

𝑚
] be the polynomial

algebra over k on 𝑚 variables V
1
, V
2
, . . . , V

𝑚
of degree 2.

Let N denote the set of nonnegative integers and a =

(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
) ∈ N𝑚. Each monomial in k[v] has the form

va = V𝑎1
1
V𝑎2
2
⋅ ⋅ ⋅ V𝑎𝑚
𝑚
. Thus k[v] is N𝑚-graded, so that we have

k [v] = ⊕a∈N𝑚k[v]a, k[v]a ⋅ k[v]b = k[v]a+b, (3)

where k[v]a denotes the vector space ⟨va⟩ over k spanned by
va.

The Stanley-Reisner ideal 𝐼
𝐾
of a simplicial complex 𝐾 is

defined as

𝐼
𝐾
= ⟨v𝜏 | 𝜏 ∉ 𝐾⟩ , (4)

and its quotient ring k(𝐾) = k[v]/𝐼
𝐾
is called the Stanley-

Reisner face ring of𝐾.
Since k(𝐾) has finitely generated graded k[v]-module,

there exists a free resolution of k(𝐾) of length at most 𝑚.
Moreover, it has an N𝑚-graded minimal free resolution as
follows:

0 ←󳨀 k (𝐾)
𝜙
0

←󳨀 𝐹
0

𝜙
1

←󳨀 𝐹
1

𝜙
2

←󳨀 ⋅ ⋅ ⋅
𝜙
ℎ−1

←󳨀 𝐹
ℎ−1

𝜙
ℎ

←󳨀 𝐹
ℎ
←󳨀 0,

(5)

where each homomorphism 𝜙
𝑖
is an N𝑚-graded degree-

preserving homomorphism.
Now, applying the functor ⊗k[v]k to the sequence (5),

we can obtain the following chain complex of N𝑚-graded
k[v]-modules:

0 ←󳨀 𝐹
0
⊗k[v]k

𝜙
󸀠

1

←󳨀 𝐹
1
⊗k[v]k

𝜙
󸀠

2

←󳨀 ⋅ ⋅ ⋅
𝜙
󸀠

ℎ−1

←󳨀 𝐹
ℎ−1

⊗k[v]k
𝜙
󸀠

ℎ

←󳨀 𝐹
ℎ
⊗k[v]k ←󳨀 0,

(6)

where each homomorphism 𝜙
󸀠

𝑖
is given by 𝜙

𝑖
⊗ Idk. Since the

free resolution (5) is minimal, the differentials 𝜙󸀠
𝑖
are actually

zero homomorphisms. Hence the 𝑖th homology module of
the above chain complex, denoted Tor𝑖k[v](k(𝐾), k), is given
by 𝐹
𝑖
⊗k[v]k. In particular, we have

dimkTor
𝑖

k[v] (k (𝐾) , k) = rankk[v]𝐹𝑖. (7)

With these notations, by definition we have

𝛽
𝑖
(𝐾) = dimkTor

𝑖

k[v] (k (𝐾) , k) ,

𝛽
𝑖,2𝑗

(𝐾) = dimkTor
𝑖,2𝑗

k[v] (k (𝐾) , k) .
(8)

In case of a simple convex polytope 𝑃, the bigraded Betti
number 𝛽

𝑖,2𝑗
(𝑃) is defined to be the bigraded Betti number

𝛽
𝑖,2𝑗
(𝐾) of the simplicial complex 𝐾 = (𝜕𝑃)

∗ that is dual to
the boundary 𝜕𝑃 of 𝑃.

Next, we recall the notion of a regular sequence of the
Stanley-Reisner face ring k(𝐾) (refer to, e.g., [2], Section
5). The Krull dimension of k(𝐾) is defined to be the maxi-
mal number of algebraically independent elements of k(𝐾).
Suppose that the Krull dimension of k(𝐾) is 𝑛. A sequence
(𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
) of homogeneous elements of k(𝐾) is called

a homogeneous system of parameters if the Krull dimension
of k(𝐾)/⟨𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑛
⟩ is zero. A homogeneous system of

parameters (𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
) of k(𝐾) is called regular if 𝜆

𝑖+1

is not a zero divisor in k(𝐾)/⟨𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑖
⟩. Equivalently,

a sequence (𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
) is regular if 𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑛
are

algebraically independent and if k(𝐾) is a finite dimensional
free k[𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑛
]-module.

Finally, we close this section with reviewing the construc-
tion of a moment-angle complex associated with an abstract
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simplicial complex on a vertex set. To do so, let𝑚 be a positive
integer and let us denote by [𝑚] the set {1, 2, . . . , 𝑚}. Let𝐾 be
an abstract simplicial complex on the vertex set [𝑚]. For each
simplex 𝜎 ∈ 𝐾, we set

𝐵
𝜎
(𝐷
2

, 𝑆
1

) =

𝑚

∏

𝑖=1

𝐴
𝑖
, (9)

where𝐷2 = {𝑧 ∈ C | |𝑧| ≤ 1}, 𝑆1 = 𝜕𝐷2, and

𝐴
𝑖
= {

𝐷
2

, 𝑖 ∈ 𝜎,

𝑆
1

, 𝑖 ∈ [𝑚] \ 𝜎.
(10)

Then the moment-angle complexZ
𝐾
on𝐾 is defined to be a

subspace of (𝐷2)𝑚, as follows:

Z
𝐾
:= ⋃

𝜎∈𝐾

𝐵
𝜎
(𝐷
2

, 𝑆
1

) ⊂ (𝐷
2

)
𝑚

. (11)

When 𝐾 = 2
[𝑚], it is easy to see that Z

𝐾
= (𝐷
2

)
𝑚. On the

other hand, when 𝐾 = 2
[𝑚]

\ {[𝑚]}, where 2[𝑚] denotes the
power set of [𝑚], it can be easily shown that Z

𝐾
= 𝑆
2𝑚−1

(refer to, e.g., [7], Example 2.4). Since (𝐷2)𝑚 as a subspace of
C𝑚 is invariant under the standard action of 𝑇𝑚 on C𝑚 given
by

((𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑚
) , (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑚
))

󳨃󳨀→ (𝑔
1
𝑧
1
, 𝑔
2
𝑧
2
, . . . , 𝑔

𝑚
𝑧
𝑚
)

(12)

(𝐷
2

)
𝑚 inherits a natural 𝑇𝑚-action whose orbit space is the

unit cube 𝐼𝑚 := [0, 1]
𝑚

⊂ R𝑚
≥0
. This 𝑇𝑚-action on (𝐷

2

)
𝑚

then induces a canonical 𝑇𝑚-action on the moment-angle
complex Z

𝐾
. Refer to [1], Chapters 6 and 7 for more details

on a moment-angle complexZ
𝐾
.

3. Proof of Theorem 3

The aim of this section is to give a proof ofTheorem 3. Before
doing it, we should remark that there seems to exist some
confusing point at the end of [4], Section 8, where the authors
erroneously claim the proof that C-rigidity implies B-rigidity
for simple convex polytopes supporting quasitoricmanifolds.

We begin with the following lemma.

Lemma 4. Let 𝑃 be a simple convex polytope supporting a
quasitoric manifold 𝑀, and let 𝐾 = (𝜕𝑃)

∗ be the dual of the
boundary of 𝑃. If 𝐾 is B-rigid, then P is C-rigid.

Proof. Toprove it, suppose that𝐾 is B-rigid. Let𝑃󸀠 be another
simple convex polytope supporting a quasitoric manifold𝑀󸀠
such that

𝐻
∗

(𝑀; k) ≅ 𝐻∗ (𝑀󸀠; k) . (13)

As before, let 𝐾󸀠 = (𝜕𝑃
󸀠

)
∗ be the simplicial complex which

is the dual of the boundary of the simple convex polytope 𝑃󸀠.
Then it follows from [4], Lemma 3.7, and Proposition 3.8 that
as a ring

Tork[v] (k (𝐾) , k) ≅ Tork[v] (k (𝐾
󸀠

) , k) . (14)

Since we have a ring isomorphism𝐻
∗

(Z
𝐾
; k) ≅ Tor(k(𝐾), k)

for any simplicial complex 𝐾 by Buchstaber and Panov ([1],
Theorem 7.6, and [8], Theorem 4.7), it follows from (14)
that we have a ring isomorphism between 𝐻

∗

(Z
𝐾
; k) and

𝐻
∗

(Z
𝐾
󸀠 ; k). Thus 𝐾 is combinatorially equivalent to 𝐾󸀠 by

the assumption that 𝐾 is B-rigid. This implies that 𝑃 is also
combinatorially equivalent to 𝑃󸀠, which proves that 𝑃 is C-
rigid.

Next, we show the following lemma.

Lemma 5. Let 𝑃 (resp. 𝑃󸀠) be a simple convex polytope
supporting a quasitoric manifold 𝑀 (resp., 𝑀󸀠), and let 𝐾 =

(𝜕𝑃)
∗ (resp., 𝐾󸀠 = (𝜕𝑃

󸀠

)
∗) be the dual of the boundary of 𝑃

(resp., 𝑃󸀠). Assume that as a ring

𝐻
∗

(Z
𝐾
; k) ≅ 𝐻∗ (Z

𝐾
󸀠 ; k) . (15)

Then two Stanley-Reisner face rings k(𝐾) and k(𝐾󸀠) are
isomorphic to each other, as rings.

Proof. To prove it, note first that as a ring

Tork[v] (k (𝐾) , k) ≅ Tork[v] (k (𝐾
󸀠

) , k) . (16)

In particular, we have

𝛽
𝑖,2𝑗

(𝐾) = 𝛽
𝑖,2𝑗

(𝐾
󸀠

) (17)

for all 𝑖 and 𝑗.
Next, we claim that the Stanley-Reisner face rings k(𝐾)

and k(𝐾󸀠) are isomorphic to each other as rings. To prove it,
let 𝑚 (resp. 𝑚󸀠) denote the number of facets of 𝑃 (resp., 𝑃󸀠).
Since 𝛽

1,2
(𝐾) (resp., 𝛽

1,2
(𝐾
󸀠

)) is equal to the number of facets
of𝑃 (resp.𝑃󸀠) by the nice formula for bigraded Betti numbers
by Hochster ([9],Theorem 5.2 or [4],Theorem 3.3), it follows
from (17) that𝑚 should be equal to𝑚󸀠. Then, as in Section 2,
consider an N𝑚-graded minimal free resolution for k(𝐾) as
follows:

0 ←󳨀 k (𝐾)
𝜙
0

←󳨀 𝐹
0

𝜙
1

←󳨀 𝐹
1

𝜙
2

←󳨀 ⋅ ⋅ ⋅
𝜙
ℎ−1

←󳨀 𝐹
ℎ−1

𝜙
ℎ

←󳨀 𝐹
ℎ
←󳨀 0,

(18)

where each homomorphism 𝜙
𝑖
is an N𝑚-graded degree-

preserving homomorphism. Similarly, let

0 ←󳨀 k (𝐾󸀠)
𝜙
󸀠

0

←󳨀 𝐹
󸀠

0

𝜙
󸀠

1

←󳨀 𝐹
󸀠

1

𝜙
󸀠

2

←󳨀 ⋅ ⋅ ⋅

𝜙
󸀠

ℎ
󸀠
−1

←󳨀 𝐹
󸀠

ℎ
󸀠
−1

𝜙
󸀠

ℎ
󸀠

←󳨀 𝐹
󸀠

ℎ
󸀠 ←󳨀 0

(19)

be an N𝑚-graded minimal resolution of k(𝐾󸀠). Since the free
resolution of k(𝐾) is minimal, for each 𝑖 = 1, 2, . . . , ℎwe have

rankk[v] (𝐹𝑖) = ∑
𝑗

𝛽
𝑖,2𝑗

(𝐾) = ∑

𝑗

𝛽
𝑖,2𝑗

(𝐾
󸀠

)

= rankk[v] (𝐹
󸀠

𝑖
) .

(20)

In particular, this implies that ℎ is equal to ℎ󸀠.
Now, we show that there are N𝑚-graded degree-

preserving isomorphisms 𝜓
𝑖
(0 ≤ 𝑖 ≤ ℎ) from 𝐹

𝑖
to 𝐹󸀠
𝑖
so that

the diagram (21) below commutes as follows:
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0 ←󳨀 k (𝐾)
𝜙
0

←󳨀 𝐹
0

𝜙
1

←󳨀 𝐹
1

𝜙
2

←󳨀 ⋅ ⋅ ⋅
𝜙
ℎ−1

←󳨀 𝐹
ℎ−1

𝜙
ℎ

←󳨀 𝐹
ℎ

←󳨀 0

‖ ↓ 𝜓
−1

↓ 𝜓
0

↓ 𝜓
1

⋅ ⋅ ⋅ ↓ 𝜓
ℎ−1

↓ 𝜓
ℎ

‖

0 ←󳨀 k (𝐾󸀠)
𝜙
󸀠

0

←󳨀 𝐹
󸀠

0

𝜙
󸀠

1

←󳨀 𝐹
󸀠

1

𝜙
󸀠

2

←󳨀 ⋅ ⋅ ⋅
𝜙
󸀠

ℎ−1

←󳨀 𝐹
ℎ−1
󸀠

𝜙
󸀠

ℎ

←󳨀 𝐹
󸀠

ℎ
←󳨀 0

. (21)

To do so, recall first that by (16) there is a ring isomor-
phism 𝜅

𝑖
from Tor𝑖k[v](k(𝐾), k) to Tor𝑖k[v](k(𝐾

󸀠

), k) for each
𝑖. Hence, in particular, 𝜅

𝑖
induces an isomorphism from

Tor𝑖,2k[v](k(𝐾), k) to Tor𝑖,2k[v](k(𝐾
󸀠

), k) for each 𝑖. On the other
hand, since 𝜅

𝑖
is a ring isomorphism and 𝛽

𝑖,2𝑗
(𝐾) is equal

to 𝛽
𝑖,2𝑗
(𝐾
󸀠

) for all 𝑖 and 𝑗, this implies that actually 𝜅
𝑖

should be an N𝑚-graded degree-preserving isomorphism
from Tor𝑖k[v](k(𝐾), k) to Tor

𝑖

k[v](k(𝐾
󸀠

), k) for each 𝑖. As noted
in Section 2, recall also that there are N𝑚-graded degree-
preserving isomorphisms 𝜂

𝑖
and 𝜂󸀠
𝑖
such that

𝜂
𝑖
: Tor𝑖k[v] (k (𝐾) , k) 󳨀→ 𝐹

𝑖
⊗k[v]k 󳨀→ 𝐹

𝑖
,

𝜂
󸀠

𝑖
: Tor𝑖k[v] (k (𝐾

󸀠

) , k) 󳨀→ 𝐹
󸀠

𝑖
⊗k[v]k 󳨀→ 𝐹

󸀠

𝑖
.

(22)

So it is now easy to see that 𝜓
𝑖
= 𝜂
󸀠

𝑖
∘ 𝜅
𝑖
∘ 𝜂
−1

𝑖
is an N𝑚-

graded degree-preserving isomorphism from 𝐹
𝑖
to 𝐹󸀠
𝑖
which

automatically makes the diagram (21) commute, as desired.
Moreover, by the standard argument using the diagram-

chasing we can also construct an N𝑚-graded degree-
preserving homomorphism 𝜓

−1
between k(𝐾) and k(𝐾󸀠) in

such a way that the diagram (21) commutes. To be more
precise, let 𝑥 ∈ k(𝐾). Then there is an element 𝑦 ∈ 𝐹

0

such that 𝜙
0
(𝑦) = 𝑥. We then define 𝜓

−1
: k(𝐾) → k(𝐾󸀠)

by 𝜓
−1
(𝑥) = 𝜙

󸀠

0
∘ 𝜓
0
(𝑦). Then it is well defined; that is,

this definition is independent of the choice of 𝑦. Indeed, let
𝑦
󸀠

∈ 𝐹
0
such that 𝜙

0
(𝑦
󸀠

) = 𝑥.Then, since 𝜙
0
(𝑦−𝑦

󸀠

) = 0, there
is an element 𝑧 ∈ 𝐹

1
such that 𝑦 − 𝑦󸀠 = 𝜙

1
(𝑧). Thus we have

𝜙
󸀠

0
∘ 𝜓
0
(𝑦) − 𝜙

󸀠

0
∘ 𝜓
0
(𝑦
󸀠

) = 𝜙
󸀠

0
∘ 𝜓
0
(𝑦 − 𝑦

󸀠

)

= (𝜙
󸀠

0
∘ 𝜙
󸀠

1
) ∘ 𝜓
1
(𝑧) = 0,

(23)

as desired.
Finally, it is easy to see that by using the five-lemma

([10], p. 169) the ring homomorphism 𝜓
−1

is also an N𝑚-
graded degree-preserving ring isomorphism between k(𝐾)
and k(𝐾󸀠). This, in particular, completes the proof of
Lemma 5.

Recall now that the Stanley-Reisner face ring k(𝐾) is
given by k[v]/𝐼

𝐾
, where 𝐼

𝐾
denotes the Stanley-Reisner ideal

defined as ⟨v𝜏 | 𝜏 ∉ 𝐾⟩. Let 𝐽 be the ideal of k(𝐾) generated
by a regular sequence of homogeneous system of parameters
of degree 2 elements. Then the cohomology ring𝐻∗(𝑀; k) is
isomorphic to

k (𝐾)
𝐽

. (24)

Then we need the following lemma ([1], Lemma 3.35, or [4],
Lemma 3.6).

Lemma 6. Let 𝐽 be an ideal generated by a regular sequence of
k(𝐾). Then we have the following algebra isomorphism:

Tor k[v] (k (𝐾) , k) ≅ Tor k[v]/𝐽 (
k (𝐾)
𝐽

, k) . (25)

The following lemma will also play an important role in
the proof of Theorem 3.

Lemma 7. Under the same assumptions as in Lemma 5, two
rings k(𝐾)/𝐽 and k(𝐾󸀠)/𝐽󸀠 are isomorphic to each other.

Proof. By Lemmas 5 and 6, we have an algebra isomorphism
as follows:

Tork[v]/𝐽 (
k (𝐾)
𝐽

, k) ≅ Tork[v]/𝐽(
k (𝐾󸀠)
𝐽󸀠

, k) . (26)

By applying the same arguments as in the proof of Lemma 5 to
N𝑚-graded minimal free resolutions of k(𝐾)/𝐽 and k(𝐾󸀠)/𝐽󸀠
derived from the isomorphism (26) as in (16), it is now
straightforward to see that two rings k(𝐾)/𝐽 and k(𝐾󸀠)/𝐽󸀠 are
isomorphic to each other, as desired.

Finally, we are ready to prove our main theorem of this
section, as follows.

Theorem 8. Let 𝑃 be a simple convex polytope supporting a
quasitoric manifold 𝑀, and let 𝐾 = (𝜕𝑃)

∗ be the dual of the
boundary of 𝑃. If 𝑃 is C-rigid, then 𝐾 is B-rigid.

Proof. Toprove it, as before let𝑃 (resp.,𝑃󸀠) be a simple convex
polytope supporting a quasitoric manifold𝑀 (resp.𝑀󸀠), and
let𝐾 = (𝜕𝑃)

∗ (resp.,𝐾󸀠 = (𝜕𝑃󸀠)∗) be the dual of the boundary
of 𝑃 (resp., 𝑃󸀠). Assume further that as a ring

𝐻
∗

(Z
𝐾
; k) ≅ 𝐻∗ (Z

𝐾
󸀠 ; k) . (27)

By Lemma 7, we then have a ring isomorphism

𝐻
∗

(𝑀; k) ≅ k (𝐾)
𝐽

≅

k (𝐾󸀠)
𝐽󸀠

≅ 𝐻
∗

(𝑀
󸀠

; k) . (28)

Since 𝑀 (resp., 𝑀󸀠) is a quasitoric manifold over a simple
convex polytope (resp., 𝑃󸀠), it follows from the assumption of
𝑃 being C-rigid that 𝑃 is combinatorially equivalent to 𝑃󸀠. So
𝐾 should be also combinatorial equivalent to𝐾󸀠, completing
the proof of Theorem 8.

Proof of Theorem 3. The proof of Theorem 3 now follows
immediately from Lemma 4 andTheorem 8.
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