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We study the sum s
Tribonacci rule si

1. Introduction

A Tribonacci sequence {T},.,, which is a generalized
Fibonacci sequence {F,}, is defined by the Tribonacci rule
T, = T,, +T,, + T, 5 withT, = T, = 1
and T, = 0. The sequence can be extended to neg-
ative subscript #n; hence few terms of the sequence are
...,=3,2,0,-1,1,0,0,1,1,2,4,7,.... Each term in {T,} is
called the Tribonacci number.

The sum of Fibonacci numbers is well expressed by
YioF = F,, — 1, and moreover the sum of reciprocal
Fibonacci numbers was studied intensively in [1-3]. For the
sum S, = Y. ,T; of Tribonacci numbers, there are some
researches including [4-7]. In particular Kilic [6] proved the
identity S, = (1/2)(T,,, + T,, — 1) by means of generating
matrix calculations. And Irmak and Alp [5] proved an
identity about the k subscripted Tribonacci sum S, ; =
Y Tx; using the three roots of x> — x* —x - 1 = 0.

This paper is devoted to studying the sum of Tribonacci
numbers as well as the sum Y Ty, of k step apart
Tribonacci numbers for any 1 < r < k. Our method
here is to employ the k-step Tribonacci rule T, = a;T,_; +
bT, o + T, s (4 b, ¢ € Z) that is a linear combination
of k distance Tribonacci numbers in [8]. For this purpose we
will display all Tribonacci numbers in rectangle form with k
columns, called the k-tribo table:

T, T, - T. - T,
Tk+1 Tk+2 Tk+r T2k 1

T2k+1 T2k+2 T2k+r '

) = ¥, Tu, of k step apart Tribonacci numbers for any 1 < r < k. We prove that s!

kr) satisfies certain

o + 5,3 + A with integers ay, b, ¢, and A.

Then Y'_, Ty, can be regarded as a partial sum of £+1 entries
in rth column of the table. We denote it by s*” for 1 < r < k.

2. Tribonacci Tables

T, satisfies a Tribonacci rule a,T,_; + yT,_, + ¢,T,_; with
(a;,b,¢) = (1,1,1) and a 2-step Tribonacci rule a,T,_, +
bT, 4 + T, ¢ with (a,,b,,¢c,) = (3,1,1). Moreover the k-
step Tribonacci rules for T, were proved in [8].

Lemma 1 (see [8]). Consider T, = a;T, i + b T, 5 + T, 3
witha, = 3T, —T)_c and b, = —a_ forany 1 < k < n. The {a;.}

and {b.} satisfy a3 = G+ sy +a and by = b +b, +bis
witha, =1,a,=3,a;, =7, and b, = b, =1, b; = -5.

The recurrence a5 = dy,, + di,; + di implies that {a,} is
a Tribonacci type sequence. By extending the subscript k to
negative integers, we have g, = 3,a_, = -1,a_, = —1, and
so forth; thus {as} = {...,-1,-5,5,-1,-1,3,1,3,7,11,...}.
In particular if 1 < k < 10 then the coefficients (g, b;) are

k (ab)
1 (1,1)
2 (3,1
3 (7,-5)
4 (11,5)
5 (2L1)
6 (39,-11)



7 (71,15)
8 (131,-3)
9 (241,-23)
10 (443,41)

)

For example, T, is expressed by the 10-step Tribonacci rule
Ty, = 443T,, + 41Ty, + T, = 443(121415) + 41(274) + 1 =
53798080. It shows that T3, is a combination of three entries
at Ist column of 10-tribo table. Similarly, by taking k =
we have a;; = 815and b;; = -21, so T3, = 815T,, — 21T, +
T_, = 53798080 which is a combination of three entries at
9th column of 11-tribo table.

Thusifn =kt +7 (0 < t,1 < r < k) then T, is located
at (¢ + 1)th row and rth column in the k-tribo table and is a
combination of three entries at ¢, t — 1, and (¢t — 2)th row of
rth column. Now for the partial sum s(k = Z, o Txir of rth
column in k-tribo table, let us begin w1th k =3and4.

Theorem 2. When k = 3 or 4, the partial sum sgk’” holds as
follows:

(1)
o0 _ 7530~ 5sCD +sPD 1 if r=1
' 7580 5B 4 CD 41 if r#1
fort=>3
1 . (3)
T. (Tsenyer = 4T300r + Tagryer 1) if r=1
3
1 .
T (Tseenyer = 4T50r + Tagonyr = 1) if 7 #1
3
fbrt'z 1;
)
(4,r) “r) . [(4r) if =
o _ s 4 5530 180 4 if r=1
! 1ls§f’f)+5542’)+s(43r +4 ifr+1
fort>3
1 , (4)
T2 (Tagervyer + 6Tapr + Tagryar +4) if r=1
4
=1, .
2 (Taesnyer + 6Ty + Tagryer —4) if r#1
4
fort>1.
Proof. The 3-tribo table produces a table of 553’” as follows:

3-tribo table

1 1 2
4 7 13
24 44 81
149 274 504
927 1705
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" s§3’1) 553,2) 553’3)
0| 1 1 2
1 5 8 15
21 29 52 96
31178 326 600
411105 2031 3736
(5)
If t = 4 then it can be observed that
sV = 1105 =7 (178) -5 (29) +5— 1
N I
(3,2) _ _
s$P 22031 = 7(326)=5(52) + 8 +1
(6)
= 7s§3’2) 55(3 2y 5(1 D41,
(3,3) _ _
89 = 3736 = 7(600) — 5(96) + 15+ 1
= 75&3’3) —5s, 5.3) +s(1 2RSS
For some ¢ > 4, we assume 553’” = 7s§3r 55t 5+ 5(3 4

with minus sign if r = 1, otherwise plus sign. Then the next

(3r)

11 satisfies

partial sum s

(3,r) (3,r)

s =S T Taryer

= (7520 - 57 + 507 £1)

(7)
+ (7Tst4r = 5T5-1)4r + Tae-2)4r)
(3 (3 (3,r)
=757 =587 575 1
due to Lemma 1. And we also notice that
Tio—4T,+T,+1=149-4(24)+4+1 =2(29)
3,1 3,1)
260 = Ty,
Ty, — 4Ty +Ts—1=274—4(44)+7—1 = 2(52)
(8)

_ 532 e
=25, =138, 7,

Ty, — 4Ty +Ts—1 = 504 —4(81) +13—1 = 2(96)
_ 209 = 7,3,

so it shows T; 5(3’ = T35y — 4T50)4, + T3y £ 1 with
minus sign if r = 1, otherwise plus. Hence if we assume
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Ty = T, sr)sr — 4304 + T3o1)s, + 1 for some ¢ then
it follows from Lemma 1 that

(3,r)
t+1

(3.r)
T3y =T (St Ut T3(t+1)+r)

= T3(t+1)+r - 4T3t+r + T3(t D+r T 1+ T3T3 (t+1)+7

= (7T3(t+1)+r

+ T3t+r tl

= 5Ts04r + Tye-1yar) = 4T3 1)4r

+T

= L32)4r — 4T3(t+1)+r 3t T

Similarly the 4-tribo table makes the table of s\*"):

4-tribo table
1 2 4
7 13 24 44
81 149 274 504
927 1705 3136 5768

1

(10)
SE4,1) S(4,2)

(4.3)
£ S

(4.4)
¢ S

t

1 1 2 4

8 14 26 48
89 163 300 552
1016 1868 3436 6320

When t = 3, experimental observations show that

sV = 1016 = (11)89+(5)8 +1-4

= 11554’1) + 5554’1) + 584’1) -4,
(11)
s = 1868 = 11 (163) +5 (14) + 5

(4,2)

= 11552 4 5532 4 82 4 g

+sD 44
(4,7)

t+1

and so on. Hence if we assume 5(4 " = lls(4 ") +55(4 )

with —signif r = 1, otherwise + sign for some t > 3, then's
is equal to

(

(4.1)
St+1r + T4(t+1)+r
= (1157 + 557 + 51 £ 4)

(12)

+ (11T + 5T 4e1)r + Tage2yer)

= 1137 455040 4510 14,

On the other hand, it is easy to see that

Ty, +6T 3+ Ty+T, =10609+6(927)+81 +4

= 42 (1016) = T} s,

Tg+ 6T, +Tyo— T, = 19513 + 6 (1705) + 149 — 4

2 (42)

>

= 4% (1868) = (13)

Ty + 6T+ T, —T, = 66012 +6(5768) + 504 — 4

= 4% (6320) = TisY.

So by assuming Tzst U= Typir + 6Ty 1y4r
some t, we have

+ T4(t 2)+r + T for

Tysryer + 6Tapsr + Tyg1yir £ T4

= (11Tyy, + S5Ty—1)er + T4(t—2)+r) +6T 4,

+ Tyryer =1y (14)
= (Tysr +6Tyuo1ysr + Tarnysr £ Ty) + 16Ty,

= Tist) + T3 Ty, = T (s + Ty ) = Tysi™.
O

We remark that if = 4 in Theorem 2 then we have

1
T_Z (T4(t+2) +6T 1) + Ty — 4)
s t+1 (15)
=5 ZT41+4 = ZT41

Since T, = 4, our result is equal to Theorem 5 in [6] which
was proven by means of generating matrix.

The expression of 554’” has tails +4 according to» = 1 or
not and equals Ty, )y, + 6Ty, + Tyy),, = 4 multiplied by

1/T7. Similarly sf’r) has tails +1 according to ¥ = 1 or not
and equals Ty 1), = 4T3, + T3(—1)s, = 1 multiplied by 1/T;.

However, when k > 5 the expressions of s(k )

the case of k = 3, 4.

quite differ from

Theorem 3. Let {/\(r)}f:1 {~7,3,5,1,9} and {A‘”}le =
{-12,6,4,-2,8,10}. Then one has the following:

1
s =210 + B0 1B A0 for 123
1 o)
22 (T S5(+1)+r T 2T5t+r + TS(t—1)+r - ) (16)

fort>1;
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2)
s 239500 11560 + 5D 4+ A0 for 1 >3
1 ")
=58 (T6(t+1)+r — 10T, + Tggr-1)er = A ) 17)
fort>1.

Proof. The 5-tribo table yields a table of sis’r) such that

¢ SES,I) S§5,2) 555,3) S§5,4) 555,5)

ol 1 1 2 4 7

1| 14 25 46 8 156 (18)
201288 529 973 1790 3292

36056 11138 20486 37680

Then by inspecting the table, we find that

=21(288)+14+1-7 = 212V 4PV 4501

-7,

s = 21(529) +25 + 143 = 21657 + P2 4 57

+3, (19)

= 21(3292)+156+7 +9 = 2157 + 50

(5,5)
+557+9,
so we have s&7 = 21587 4+ &7 4 &0 4 A7 for t = 5 and
1 < r < t. Now if we assume the identity is true for some ¢,
then the t + 1 partial sum follows

(5,r) (5,r)

Stel T St +T5(t+1)+r

(215t51r) + st(szr) + 5¢5;) + A0 )
(20)
+ (21T, + T5-1y4r + TS(t—2)+r)
= 21587 4500 4 B0 4 A0
from Lemma 1. Moreover we notice that
Ty +2T 6+ Ty, +7 = 121415+ 2 (5768) + 274 + 7
_ _ (5,1)
= 22(6056) = 225,

Ty, + 2Ty, + Tyy — 3 = 223317 +2 (10609) + 504 — 3

5.2)
=22(11138) = 22577, (21)

Tys + 2Ty + Tys — 9 = 1389537 +2 (66012) + 3136

~9=22s7,

so we have Ty, + 2T503)4, + Ts)4r — A = 22$§S’r). Hence,

by assuming 22s{") = Tsiryer + 2Tspr + Tsgyyir = A" for
some t, we have
22$t5 Y= (TS(t+1 + 205 + Tsm1yar — /\(r))
+ 22T 5 41)4r
= (21T5(t+1)+r + T + TS(t—1)+r) (22)
+ (2T5(t+1)+r Tspir /\(r))

— ()
- TS(t+2)+r + 2’1—‘5(1.‘+1)+r + T5t+r -A"

Now, for (2), we construct the table of sﬁé’” from 6-tribo
table:

¢ 556,1) S§6,2) 556,3) S§6,4) 356,5) S§6,6)

0| 1 1 2 4 7 13

1| 25 45 83 153 281 517 (23)
2| 952 1750 3219 5921 10890 20030
3|36842 67762 124634 229238 421634

It is not hard to observe

sV =39(952) — 11 (25) + 1 - 12 = 395>V

— 11500 4 50V — 12,

s = 39(1750) — 11 (45) + 1 + 6 = 3957

-1 1556’2) + s((f 2) + 6, (24)

59 = 39(20030) — 11 (517) + 13 + 10 = 39s\®

(6:6) | (6:6)

—11s;77 +s577 + 10,

s0 it proves s = 3957 — 1157 + 7 + 1) when t = 3.

Thus if we assume the identity holds for some t then Lemma 1
shows that

(6:7) (6.1
t+1r =S + T6(t+1)+r

= (3957 — 115 + 57 +17)
(25)
+ (39T, — T 1y + T6(t—2)+r)

= 39567 — 1157 1+ 5D 4 A1,
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Finally we also notice 285"
A™. Indeed,

= Tsyer = 10T 52y + Ty =

Tyo— 1075 + T, + 12 = 35890 — 10 (927) + 24 + 12
=28(952) = 285",
Tyo— 10Ty, + Ty — 6 = 66012 — 10 (1705) + 44— 6
= 28(1750) = 2857, (26)
T,y — 10T + Ty — 10 = 755476 — 10 (19513) + 504
~10 = 28519

So if we assume 2857 10Tg(1yar + To—zyrr = M7

then

= Tpsr —

28s 56 7= (Tsm 10T 1y4r + To(-2)4r /\(r))
+ 28Ty,
= (39T g1, = UTgoryir + Toemayer) = 10Ty (27)
+ T(t-1)4r = A7

(r)
= T6(t+1)+r - 10T6t+r + TG(t—1)+r -y r .

3. The Tails A*"” of the Partial Sum sik’r)

With the use of coefficients (ay,b,) satisfying the k-step
Tribonacci rule Tkt+r = aka(t_l)_H, + kak(t—2)+r + Tk(t—3)+r
in Lemma 1, the identities in Theorem 3 can be restated such
that

sis’r) = a5$§51’ +b stszr) + st5 74 A0
5
with AV} ={-7,3,5,1,9},
(28)
s = ags®D + b)) + 5100 1 A0
: me _ g _
with {1 }r=1 ={-12,6,4,-2,8,10}.
In this sense, we are able to recast Theorem 2 as
s = aysP0 4 bysP) 420 4 A0
3
with A0 = {-1,1,1},
(29)
s = a5 4 bys D) s 4 A0
4
with (A7} ={-4,4,4,4}.

We will call {/\(r)}le the tail set of s! (or) — = Yo Thisr

Theorem 4. With (a;,b,) (1 < k < 10) in Lemma 1, one has
the following:

5
1) s(k = aks(k 4 bksikzr) + 5 kr + Alkn)
(@) {7 = (1/ @ +BI) Tesryer+ B+ DT+ Teeoys
A(k r))’
where the tails (A"} are defined as follows:
)1k
k Ak}
1 {1}
2 {0,2}
3 -1,1,1}
4 {-4,4,4,4}
5 {-7,3,5,1,9} (30)
6 {(-12,6,4,-2,8,10}
7 {=29,13,9,-7,15,17, 25}
8 {-48,16,16,-16, 16, 16, 16, 48}
9 {-87,35,21,-31,25,15,9, 49, 73}

10 {-176,66, 44, -66,44,22,0, 66, 88, 154}

Proof. When 3 < k < 6, (1) is due to Theorems 2 and 3. If
k = 1then stV = ¥ T, is the sum of all £ + 1 numbers
from T to T}, ; hence

(1 n (4D

+5, +s3 = (T, +T,) + (T, + T, +T;)

+(Ty+ T, + T3+ Ty)

(3D
=(T\+T,)+T5+ T, +T5+ T,
-T; = sil’l) -1.
Soforany t > 0, the identity s"") = 55111) +s£ 2) +s(1 Dy

with A®? = 1 can be proved by induction.
If k = 2, making use of the table of 5", it is easy to see
that

D_34= 3552,1) +s§2 1) (2,1) @D

with A%V =0,

(32)

(2 2) —62 = 35(2 2) (2,2) + S(()2,2) + 1(2,2)

with A3? =2



Thus it can be generalized to s*" = a,s'7 + bys>) + 0 +

A& for anyt>0and 1 <r < 2,since (az,bz) =(3,1).
Now when 7 < k < 10, (1) can be observed. For instance,
the table of 5(7”) shows that

sV = 71(3181) + 15 (45) +1-29 = 715V

+ 155(7 D + s(()7 D -29,

s = 71(5850) + 15 (82) + 1+ 13 = 715

+ 155(7 2y 55)7 2 413, (33)

7 = 71(123144) + 15 (1729) + 24 + 25 = 715y

+15s77 4577 425,

These observations together with mathematical induction
imply

s = 71670 415570 4 570 4 A0

(34)
= ays") +bysT 457 + A7,
The rest follows similarly.
Since the coeflicients a; and b, satisfy a, = 3T} — Ty
and b, = —a_; in Lemmal, st(k”) can be expressed by T,

Ti(s-1)+r> and Ty, with A% such that

(L) (L)
(ay+b) s = 25" = Tonyar + 2Top + Tenyar

t+r

_ @0

@r) _ 4,27
(ay +by) 5,77 =45, = Typanysr + 2Toper + Togeoiyir

_ /\(21)

(35)
10 10,
(a1 +byp) 5( 7= 48455 & = Thogrsnyer + 42T 1014r
10,
+T1o-1)4r — A1
So (2) also follows immediately. O

In particular if k = 1 thenr = 1 and g, = b, = AV = 1;
Theorem 4 shows

s(l’l) = 55111) +s§121) +s§131) +1. (36)

But since sV = Y T, = S,,,, we have S, = S, + S, +
S+ 1 thls is Lemma 1 in [6]. Moreover Theorem 4 implies

1
(1 = E (Tt+2 + 2'Tt+1 + T )
: (37)
= 5 (Tt+3 + Ty — 1) .

It means S;,; = (1/2)(Tyy53 + Tpyy —
[6].

1), that is, Theorem 2 in

International Journal of Mathematics and Mathematical Sciences

4. Cyclic Rule for Partial Sums

The partial sum s and its tail A®" were discussed when
1 < k < 10. We investigate them for all k > 0 by showing
certain cyclic rules.

Theorem 5. For any k > 0, s
rules:

satisfies the following cyclic

1 sgk’r) + sﬁk’”” + sgk’”z) = sEk’”” foralll<r<k-3;

(2) Sl(‘k,k—Z) + Sgk,k—l) (kk) _ (k1) _ 1;

+ st SH—l

(k) | (k1) | (k2) _

3) s(k k=1 4 sik k) 4 siill) si’i’f), and s> + 5.0 + 8,5
(k 3)
Sia1 -

Proof. When 1 <r < k -3, (1) is clear from

(k,r) +S(k,r+1) +

t t

s S;k,r+2)

t
ZTki+(r+3) (38)

t
= Z (Tki+r + Tiigreny + Tki+(r+2)) =
i=0 i=0

— Sgk r+3)'

And (2) also follows from

Sik,k—z) +Sikk 1) +Sikk)
t t
Z (Tk1+ k-2) t Trise-ny + Thiri) = ZTki+(k+1)
i=0 i=0 (39)
t+1 t+1 D)
1
= ZTijrl = ZTij =Ty =57 -1,
j=1 j=0

since T} = 1. Moreover

(kD) k) (kD
S Si41 ZTkH(k 1 +ZTk1+k

t+1

+ ZTkiH
i=0

t+1

= Z (Thior + T + Tiin) + T

i=1

(40)

t+1

— (k,2)
= ZTki+2 +Ty =50
i=1
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because T = T,. Finally, we also have

(k k) (k,1) (k,2)
TS0 TS

t+1 t+1 t+1
= ZTkz + ZTkzﬂ +T, + ZTkz+2 +T,

i=1 i=1

t+1 (41)
= Z (T + Thigr + Thia) + Ty + T

i=1

t+1

= Y T+ (To+ T, +T,) = s

t+1 *
i=1

O

Next theorem is about the cyclic rule of the tail {/\(k’r)}l:=1

satisfying s = g, s®0 4 pskD) 4 sk 4y ),

Theorem 6. For any k > 0, (A®"}*_ satisfies the following
cyclic rules:

(1) A(k’r) +A(k’r+1) +A(k’r+2)
(2) A{(k,k*Z) +A’(k,k71) +A,(k)k)

(3) AE’;’k)—l)+A<k'k>+A<k=“
A,

=A% foralll < r < k-3;
= A%D 4 (@ + b);

= A%, and A9 4100 42002 =

Proof. When 1 < k < 10, Theorem 4 shows that {A*"}
satisfies (1). For instance, if k = 10, the set {A1®"}
{~176, 66, 44, —66, 44, 22,0, 66, 88, 154} implies —176 + 66 +

44 = —-66,...,22+0+ 66 = 88,and 0 + 66 + 88 = 154.
Suppose 1 < r < k — 3. Then Theorem 5 gives rise to
Aler)  yore)) | (ore2)
_ (Sgk,r) +SEk,r+1) +S§k,r+2))
(s 4o )

() @)
( gk;) +S£k3r+1) +S(k r+2))

_ Sgk,m) s Ek 1r+3) bks(li,zr+3) §k3r+3)

_ pUere3).

Now, for (2),
Theorem 4 show

(a,b,) in Lemmal and A%®"” in

k | a + b [ ARFD £ AED L QR0 _ (g 4 ) | 20D
2 -1+1+1-(2) -1
41 16 4+4+4-(16) -4
(43)
5 22 5+41+9-(22) -7
10| 484 66 + 88 + 154 — (484) -176

which proves (2) if 1 < k < 10. Now for any k > 0, we have

/\(k,k—z) +A(k,k—l) +/\(k,k)

(k,k-1)

+ s (k:k)

_ (kk-2)
=S +s;

(k-2) | (kk-1) . (kkK)
_ak(stl +8,7 +$t1)

bk( (ke e~ 2)+S(kk 1)+S(kk))

(D ) m
(1) (4 1)y (5 1)

- (s’ -1)
= (5&11) — a5~y - st 1)) l+a+b

+1=A%Y 4 (aq +b,),

due to Theorem 5. Similarly (3) also follows from Theorem 5
such that

A(k,k—l) +A(k’k) +A(k,1)

_ St(k,kfl) + St(k’k) 4 ka ,1)

( (k,k—1) (k,k) (kl))

— ay +St1 +St1

(kk-1) | (k) | (k1)
bk(StZ t2+st2)

(kk-1) . (k) . (k1)
(t3 +53+5t3)

(45)

(k.2) (k,2) (k2) _ (k2) _ 3 (k2)

=St T AS; bkst =8y = AT
And the rest follows analogously. O
The identity A*" = s — g, 57

that {/\(k’r)} does not depend on ¢. Hence w1thout loss of
generality if we assume ¢ = 3 then

bks(k o (k r) implies

A(k,r) — sgk,r) a Sgk ) bks(lk,r) _ S(()k,r). (46)
But s1nce s =T, s = T 4T, s = T4 Ty, + T

and 53 =T, + Tirr + Topsr + Taprr = 2T, + (1 + )Ty, +
(I+ ak)TzkH, we have

A®n = (1= =b) T, + (1 = @) Teyy + oy (47)



Therefore we are able to have tails {1} for all k > 10; for
instance,

AU = {-305,105,81,- 119,67, 29,
~23,73,79,129,281},
AU} = {-564,212,131, - 220, 124, 36,
— 60,100,76, 116,292, 484}, (48)
AL = {-1071,387, 261, - 423,225, 63,

—135,153,81,99, 333,513,945},

We remark that a special case sglf’lk) = Zfzo T); was proved

in [5] by making use of the three roots of x> — x* —x - 1 =
0. Considering the difficulty of finding roots of the cubic
polynomial, the identity sglf’f) = (1/(ag + b)) (Ty(esr) + (b +
DTy + Trgony = A%K)Y in Theorem 4 seems a little bit simple
and easy.
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