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We prove strong andΔ-convergence theorems for generalized nonexpansivemappings in uniformly convex hyperbolic spaces using
S-iteration process due to Agarwal et al. As uniformly convex hyperbolic spaces contain Banach spaces as well as CAT(0) spaces,
our results can be viewed as extension and generalization of several well-known results in Banach spaces as well as CAT(0) spaces.

1. Introduction

Let (𝑋, 𝑑) be a metric space and let 𝐶 be a nonempty subset
of𝑋. A mapping 𝑇 : 𝐶 → 𝐶 is said to be as follows:

(i) nonexpansive if 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝐶;

(ii) quasi-nonexpansive if 𝑑(𝑇𝑥, 𝑇𝑝) ≤ 𝑑(𝑥, 𝑝) for all 𝑥 ∈

𝐶 and 𝑝 ∈ 𝐹(𝑇), where 𝐹(𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}

denotes the set of fixed points of 𝑇.

We know that there exist many generalizations of nonex-
pansive and quasi-nonexpansive mappings. Garcia-Falset et
al. [1] introduced two generalizations of nonexpansive map-
pings which in turn include Suzuki generalized nonexpansive
mappings (see [2]).

Definition 1 (see [1]). Let 𝑇 be a mapping defined on a subset
𝐶 of metric space 𝑋 and 𝜇 ≥ 1. Then 𝑇 is said to satisfy the
condition (𝐸𝜇), if, for all 𝑥, 𝑦 ∈ 𝐶,

𝑑 (𝑥, 𝑇𝑦) ≤ 𝜇𝑑 (𝑥, 𝑇𝑥) + 𝑑 (𝑥, 𝑦) . (1)

𝑇 is said to satisfy the condition (𝐸) whenever 𝑇 satisfies the
condition (𝐸𝜇) for some 𝜇 ≥ 1.

Definition 2 (see [1]). Let 𝑇 be a mapping defined on a subset
𝐶 of a metric space 𝑋 and 𝜆 ∈ (0, 1). Then 𝑇 is said to satisfy
the condition (𝐶𝜆) if, for all 𝑥, 𝑦 ∈ 𝐶,

𝜆𝑑 (𝑥, 𝑇𝑥) ≤ 𝑑 (𝑥, 𝑦) ⇒ 𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑑 (𝑥, 𝑦) . (2)

In the case 0 < 𝜆1 < 𝜆2 < 1, then the condition (𝐶𝜆
1

)

implies the condition (𝐶𝜆
2

). Suzuki (see [2]) said that 𝑇
satisfies the condition (𝐶), when 𝜆 = 1/2.

The following example shows that the class of mappings
satisfying the conditions (𝐸) and (𝐶𝜆), for some 𝜆 ∈ (0, 1), is
larger than the class of mappings satisfying the condition (𝐶).

Example 3 (see [1]). For a given 𝜆 ∈ (0, 1), define a mapping
𝑇 on [0, 1] by

𝑇𝑥 =

{{{{

{{{{

{

𝑥

2
, if 𝑥 ̸= 1,

1 + 𝜆

2 + 𝜆
, if 𝑥 = 1.

(3)

Then themapping𝑇 satisfies the condition (𝐶𝜆) but it fails the
condition (𝐶𝜆

1

), whenever 0 < 𝜆1 < 𝜆. Moreover, 𝑇 satisfies
the condition (𝐸𝜇) for 𝜇 = (2 + 𝜆)/2.
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The basic properties and details of CAT(0) spaces can
be found in the literature [3–5]. In [6], Lim introduced a
concept of convergence in a general metric space which
is called “Δ-convergence.” In 2008, Kirk and Panyanak [7]
specialized Lim’s concept to CAT(0) spaces and showed that
many Banach space results involving weak convergence have
precise analogs in this setting. Since then, the existence prob-
lem and the Δ-convergence problem of iterative sequences to
a fixed point for various classes of nonexpansive mappings in
the framework ofCAT(0) spaces have been rapidly developed
(see [1, 8–12]).

In [13], Leustean proved thatCAT(0) spaces are uniformly
convex hyperbolic spaces withmodulus of uniform convexity
𝜂(𝑟, 𝜀) = 𝜀

2
/8 quadratic in 𝜀. Thus, the class of uniformly

convex hyperbolic spaces are a natural generalization of both
uniformly convex Banach spaces and CAT(0) spaces.

Throughout this paper, we work in the setting of hyper-
bolic spaces introduced by Kohlenbach [14]. It is noted that
they are different from Gromov hyperbolic spaces [15] or
from other notions of hyperbolic spaces that can be found in
literature (see [16–19]).

A hyperbolic space (𝑋, 𝑑,𝑊) is a metric space (𝑋, 𝑑)

together with a convexity mapping 𝑊 : 𝑋
2
× [0, 1] → 𝑋

satisfying
(𝑊1) 𝑑(𝑢,𝑊(𝑥, 𝑦, 𝛼)) ≤ 𝛼𝑑(𝑢, 𝑥) + (1 − 𝛼)𝑑(𝑢, 𝑦);
(𝑊2) 𝑑(𝑊(𝑥, 𝑦, 𝛼),𝑊(𝑥, 𝑦, 𝛽)) = |𝛼 − 𝛽|𝑑(𝑥, 𝑦);
(𝑊3) 𝑊(𝑥, 𝑦, 𝛼) = 𝑊(𝑦, 𝑥, 1 − 𝛼);
(𝑊4) 𝑑(𝑊(𝑥, 𝑧, 𝛼),𝑊(𝑦, 𝑤, 𝛼)) ≤ (1 − 𝛼)𝑑(𝑥, 𝑦) +

𝛼𝑑(𝑧, 𝑤),
for all 𝑥, 𝑦, 𝑧, 𝑤 ∈ 𝑋 and 𝛼, 𝛽 ∈ [0, 1].

A metric space is said to be a convex metric space in
the sense of Takahashi [20], where a triple (𝑋, 𝑑,𝑊) satisfy
only (𝑊1) (see [21–23]). We get the notion of the space of
hyperbolic type in the sense of Goebel and Kirk [16], where
a triple (𝑋, 𝑑,𝑊) satisfies (𝑊1)–(𝑊3). The (𝑊4) was already
considered by Itoh [24] under the name of “condition III” and
it is used byReich and Shafrir [18] andKirk [17] to define their
notions of hyperbolic spaces.

The class of hyperbolic spaces include normed spaces
and convex subsets thereof, the Hilbert space ball equipped
with the hyperbolic metric [25], Hadrmardmanifold, and the
CAT(0) spaces in the sense of Gromov (see [15]).

If 𝑥, 𝑦 ∈ 𝑋 and 𝜆 ∈ [0, 1], then we use the notation
(1 − 𝜆)𝑥 ⊕ 𝜆𝑦 for 𝑊(𝑥, 𝑦, 𝜆). The following holds even for
the more general setting of convex metric space [20]: for all
𝑥, 𝑦 ∈ 𝑋 and 𝜆 ∈ [0, 1],

𝑑 (𝑥, (1 − 𝜆) 𝑥 ⊕ 𝜆𝑦) = 𝜆𝑑 (𝑥, 𝑦) ,

𝑑 (𝑦, (1 − 𝜆) 𝑥 ⊕ 𝜆𝑦) = (1 − 𝜆) 𝑑 (𝑥, 𝑦) .

(4)

A hyperbolic space (𝑋, 𝑑,𝑊) is uniformly convex [13] if,
for any 𝑟 > 0 and 𝜀 ∈ (0, 2], there exists 𝛿 ∈ (0, 1] such that,
for all 𝑎, 𝑥, 𝑦 ∈ 𝑋,

𝑑(
1

2
𝑥 ⊕

1

2
𝑦, 𝑎) ≤ (1 − 𝛿) 𝑟, (5)

provided 𝑑(𝑥, 𝑎) ≤ 𝑟, 𝑑(𝑦, 𝑎) ≤ 𝑟, and 𝑑(𝑥, 𝑦) ≥ 𝜀𝑟.

A mapping 𝜂 : (0,∞) × (0, 2] → (0, 1], providing such a
𝛿 = 𝜂(𝑟, 𝜀) for given 𝑟 > 0 and 𝜀 ∈ (0, 2], is called amodulus of
uniform convexity.We called that 𝜂 ismonotone if it decreases
with 𝑟 for fix 𝜀.

Recently, Agarwal et al. [26] introduced S-iteration pro-
cess as follows (see [27]).

Let𝐶 be a convex subset of a linear space𝑋 and let 𝑇 be a
mapping from 𝐶 into itself. Then the iterative sequence {𝑥𝑛}
generated from 𝑥1 ∈ 𝐶 and defined by

𝑥𝑛+1 = (1 − 𝛼𝑛) 𝑇𝑥𝑛 + 𝛼𝑛𝑇𝑦𝑛,

𝑦𝑛 = (1 − 𝛽𝑛) 𝑥𝑛 + 𝛽𝑛𝑇𝑥𝑛, 𝑛 ∈ N,
(6)

where {𝛼𝑛} and {𝛽𝑛} are sequences in (0, 1) satisfying the
certain condition. It is observed that rate of convergence of
S-iteration process is similar to the Picard iteration process
but faster than the Mann iteration process for contraction
mapping (see [26, 27]).

The purpose of this paper is to prove the strong and Δ-
convergence theorems for generalized nonexpansive map-
pings in uniformly convex hyperbolic spaces by using S-
iteration process. Our results can be viewed as extension and
generalization of several well-known results in Banach spaces
as well as CAT(0) spaces [10–12, 28, 29].

2. Preliminaries

Let 𝐶 be a nonempty subset of metric space 𝑋 and let
{𝑥𝑛} be any bounded sequence in 𝐶. Consider a continuous
functional 𝑟𝑎(⋅, {𝑥𝑛}) : 𝑋 → R+ defined by

𝑟𝑎 (𝑥, {𝑥𝑛}) = lim sup
𝑛→∞

𝑑 (𝑥𝑛, 𝑥) , 𝑥 ∈ 𝑋. (7)

Then, the infimum of 𝑟𝑎(⋅, {𝑥𝑛}) over 𝐶 is said to be the
asymptotic radius of {𝑥𝑛} with respect to 𝐶 and is denoted by
𝑟𝑎(𝐶, {𝑥𝑛}).

A point 𝑧 ∈ 𝐶 is said to be an asymptotic center of the
sequence {𝑥𝑛} with respect to 𝐶 if

𝑟𝑎 (𝑧, {𝑥𝑛}) = inf {𝑟𝑎 (𝑥, {𝑥𝑛}) : 𝑥 ∈ 𝐶} ; (8)

the set of all asymptotic centers of {𝑥𝑛} with respect to 𝐶 is
denoted by𝐴𝐶(𝐶, {𝑥𝑛}). This set may be empty or a singleton
or contain infinitely many points.

If the asymptotic radius and the asymptotic center are
taken with respect to 𝑋, then these are simply denoted
by 𝑟𝑎(𝑋, {𝑥𝑛}) = 𝑟𝑎({𝑥𝑛}) and 𝐴𝐶(𝑋, {𝑥𝑛}) = 𝐴𝐶({𝑥𝑛}),
respectively. We know that, for 𝑥 ∈ 𝑋, 𝑟𝑎(𝑥, {𝑥𝑛}) = 0 if and
only if lim𝑛→∞𝑥𝑛 = 𝑥.

It is known that every bounded sequence has a unique
asymptotic center with respect to each closed convex subset
in uniformly convex Banach spaces and even CAT(0) spaces.

The following lemma is due to Leuştean [30] and ensures
that this property also holds in a complete uniformly convex
hyperbolic space.

Lemma 4 (see [30]). Let (𝑋, 𝑑,𝑊) be a complete uniformly
convex hyperbolic space with monotone modulus of uniform
convexity 𝜂. Then every bounded sequence {𝑥𝑛} in 𝑋 has
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a unique asymptotic center with respect to any nonempty closed
convex subset 𝐶 of𝑋.

Recall that a sequence {𝑥𝑛} in𝑋 is said to be Δ-convergent
to 𝑥 ∈ 𝑋, if 𝑥 is the unique asymptotic center of {𝑢𝑛} for every
subsequence {𝑢𝑛} of {𝑥𝑛}. In this case, we write Δ-lim𝑛 𝑥𝑛 = 𝑥

and call 𝑥 the Δ-limit of {𝑥𝑛}.

Lemma 5 (see [31]). Let (𝑋, 𝑑,𝑊) be a uniformly convex
hyperbolic space with monotone modulus of uniform convexity
𝜂. Let 𝑥 ∈ 𝑋 and {𝑡𝑛} be a sequence in [𝑎, 𝑏] for some 𝑎, 𝑏 ∈

(0, 1). If {𝑥𝑛} and {𝑦𝑛} are sequences in𝑋 such that

lim sup
𝑛→∞

𝑑 (𝑥𝑛, 𝑥) ≤ 𝑐, lim sup
𝑛→∞

𝑑 (𝑦𝑛, 𝑥) ≤ 𝑐,

lim
𝑛→∞

𝑑 (𝑊 (𝑥𝑛, 𝑦𝑛, 𝑡𝑛) , 𝑥) = 𝑐,

(9)

for some 𝑐 ≥ 0, then we have lim𝑛→∞ 𝑑(𝑥𝑛, 𝑦𝑛) = 0.

3. Main Results

We begin with the definition of Fejér monotone sequences.

Definition 6. Let 𝐶 be a nonempty subset of hyperbolic space
𝑋 and let {𝑥𝑛} be a sequence in𝑋.Then {𝑥𝑛} is said to be Fejér
monotone with respect to 𝐶 if for all 𝑥 ∈ 𝐶 and 𝑛 ∈ N

𝑑 (𝑥𝑛+1, 𝑥) ≤ 𝑑 (𝑥𝑛, 𝑥) . (10)

Example 7. Let 𝐶 be a nonempty subset of hyperbolic space
𝑋 and let 𝑇 : 𝐶 → 𝐶 be a quasi-nonexpansive (in particular,
nonexpansive) mapping such that 𝐹(𝑇) ̸= 0. Then the
sequence {𝑥𝑛} of Picard iteration is Fejér monotone with
respect to 𝐹(𝑇).

We can easily prove the following proposition.

Proposition 8. Let {𝑥𝑛} be a sequence in 𝑋 and let 𝐶 be a
nonempty subset of𝑋. Suppose that {𝑥𝑛} is Fejérmonotonewith
respect to 𝐶. Then we have the following:

(1) {𝑥𝑛} is bounded;
(2) the sequence {𝑑(𝑥𝑛, 𝑝)} is decreasing and convergent for

all 𝑝 ∈ 𝐹(𝑇).

We now define S-iteration process in hyperbolic spaces:
Let𝐶 be a nonempty closed convex subset of a hyperbolic

space𝑋 and let𝑇 be amapping of𝐶 into itself. For any 𝑥1 ∈ 𝐶
the sequence {𝑥𝑛} of S-iteration process is defined as

𝑥𝑛+1 = 𝑊(𝑇𝑥𝑛, 𝑇𝑦𝑛, 𝛼𝑛)

𝑦𝑛 = 𝑊(𝑥𝑛, 𝑇𝑥𝑛, 𝛽𝑛) , 𝑛 ∈ N,
(11)

where {𝛼𝑛} and {𝛽𝑛} are real sequences with 0 < 𝑎 ≤ 𝛼𝑛, 𝛽𝑛 ≤
𝑏 < 1.

Lemma 9. Let 𝐶 be a nonempty closed convex subset of a
hyperbolic space 𝑋 and let 𝑇 : 𝐶 → 𝐶 be a mapping which
satisfies the condition (𝐶𝜆) for some 𝜆 ∈ (0, 1). If {𝑥𝑛} is
a sequence defined by (11), then {𝑥𝑛} is Fejér monotone with
respect to 𝐹(𝑇).

Proof. Let 𝑝 ∈ 𝐹(𝑇). Then we have

𝜆𝑑 (𝑝, 𝑇𝑝) = 0 ≤ 𝑑 (𝑝, 𝑦𝑛) ,

𝜆𝑑 (𝑝, 𝑇𝑝) = 0 ≤ 𝑑 (𝑝, 𝑥𝑛) ,

(12)

for all 𝑛 ∈ N. Since 𝑇 satisfies the condition (𝐶𝜆), for some
𝜆 ∈ (0, 1), we have

𝑑 (𝑇𝑝, 𝑇𝑦𝑛) ≤ 𝑑 (𝑝, 𝑦𝑛) ,

𝑑 (𝑇𝑝, 𝑇𝑥𝑛) ≤ 𝑑 (𝑝, 𝑥𝑛) .

(13)

Using (11), we have

𝑑 (𝑦𝑛, 𝑝) = 𝑑 (𝑊 (𝑥𝑛, 𝑇𝑥𝑛, 𝛽𝑛) , 𝑝)

≤ (1 − 𝛽𝑛) 𝑑 (𝑥𝑛, 𝑝) + 𝛽𝑛𝑑 (𝑇𝑥𝑛, 𝑝)

≤ 𝑑 (𝑥𝑛, 𝑝) .

(14)

Again, using (11) and (14), we have

𝑑 (𝑥𝑛+1, 𝑝) = 𝑑 (𝑊 (𝑇𝑥𝑛, 𝑇𝑦𝑛, 𝛼𝑛) , 𝑝)

≤ (1 − 𝛼𝑛) 𝑑 (𝑇𝑥𝑛, 𝑝) + 𝛼𝑛𝑑 (𝑇𝑦𝑛, 𝑝)

≤ (1 − 𝛼𝑛) 𝑑 (𝑥𝑛, 𝑝) + 𝛼𝑛𝑑 (𝑦𝑛, 𝑝)

= 𝑑 (𝑥𝑛, 𝑝) ;

(15)

that is, 𝑑(𝑥𝑛+1, 𝑝) ≤ 𝑑(𝑥𝑛, 𝑝) for all 𝑝 ∈ 𝐹(𝑇). Thus, {𝑥𝑛} is
Fejér monotone with respect to 𝐹(𝑇).

Lemma 10. Let 𝐶 be a nonempty closed convex subset of a
complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity 𝜂 and let 𝑇 : 𝐶 → 𝐶 be a
mapping which satisfies the conditions (𝐶𝜆) and (𝐸) on 𝐶. If
{𝑥𝑛} is a sequence defined by (11), then 𝐹(𝑇) is nonempty if and
only if {𝑥𝑛} is bounded and lim𝑛→∞ 𝑑(𝑥𝑛, 𝑇𝑥𝑛) = 0.

Proof. Suppose that the fixed point set 𝐹(𝑇) is nonempty and
𝑝 ∈ 𝐹(𝑇). From Lemma 9, we know that {𝑥𝑛} is Fejér mono-
tone with respect to 𝐹(𝑇). Hence, by Proposition 8, {𝑥𝑛} is
bounded and lim𝑛→∞ 𝑑(𝑥𝑛, 𝑝) exists. Let lim𝑛→∞ 𝑑(𝑥𝑛, 𝑝) =
𝑐. Since

𝜆𝑑 (𝑝, 𝑇𝑝) = 0 ≤ 𝑑 (𝑝, 𝑦𝑛) ,

𝜆𝑑 (𝑝, 𝑇𝑝) = 0 ≤ 𝑑 (𝑝, 𝑥𝑛) ,

(16)

for all 𝑛 ∈ N, from the condition (𝐶𝜆), we have

𝑑 (𝑇𝑝, 𝑇𝑦𝑛) ≤ 𝑑 (𝑝, 𝑦𝑛) ,

𝑑 (𝑇𝑝, 𝑇𝑥𝑛) ≤ 𝑑 (𝑝, 𝑥𝑛) .

(17)

Therefore,

𝑑 (𝑇𝑥𝑛, 𝑝) ≤ 𝑑 (𝑇𝑥𝑛, 𝑇𝑝) ≤ 𝑑 (𝑥𝑛, 𝑝) , (18)

for all 𝑛 ∈ N. Taking the limit supremum on both sides, we
get

lim sup
𝑛→∞

𝑑 (𝑇𝑥𝑛, 𝑝) ≤ 𝑐. (19)
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Similarly, we have

lim sup
𝑛→∞

𝑑 (𝑇𝑦𝑛, 𝑝) ≤ 𝑐. (20)

Taking the limit supremum on both sides of (14), we have

lim sup
𝑛→∞

𝑑 (𝑦𝑛, 𝑝) ≤ 𝑐. (21)

Since
𝑐 = lim sup
𝑛→∞

𝑑 (𝑥𝑛+1, 𝑝) = lim
𝑛→∞

𝑑 (𝑊 (𝑇𝑥𝑛, 𝑇𝑦𝑛, 𝛼𝑛) , 𝑝) ,

(22)

by using (19), (20), and Lemma 5, we get

lim
𝑛→∞

𝑑 (𝑇𝑥𝑛, 𝑇𝑦𝑛) = 0. (23)

Next, we know that

𝑑 (𝑥𝑛+1, 𝑇𝑥𝑛) = 𝑑 (𝑊 (𝑇𝑥𝑛, 𝑇𝑦𝑛, 𝛼𝑛) , 𝑇𝑥𝑛)

≤ 𝑏𝑑 (𝑇𝑦𝑛, 𝑇𝑥𝑛)

→ 0, as 𝑛 → ∞.

(24)

Hence, from (23) and (24), we have

𝑑 (𝑥𝑛+1, 𝑇𝑦𝑛) ≤ 𝑑 (𝑥𝑛+1, 𝑇𝑥𝑛) + 𝑑 (𝑇𝑥𝑛, 𝑇𝑦𝑛)

→ 0, as 𝑛 → ∞.

(25)

Now we observe that
𝑑 (𝑥𝑛+1, 𝑝) ≤ 𝑑 (𝑥𝑛+1, 𝑇𝑦𝑛) + 𝑑 (𝑇𝑦𝑛, 𝑝)

≤ 𝑑 (𝑥𝑛+1, 𝑇𝑦𝑛) + 𝑑 (𝑦𝑛, 𝑝) ,

(26)

which yields that

𝑐 ≤ lim inf
𝑛→∞

𝑑 (𝑦𝑛, 𝑝) . (27)

From the estimates of (21) and (27), we have that
lim
𝑛→∞

𝑑 (𝑦𝑛, 𝑝) = 𝑐. (28)

Thus, from (11), we have
lim
𝑛→∞

𝑑 (𝑊 (𝑥𝑛, 𝑇𝑥𝑛, 𝛽𝑛) , 𝑝) = 𝑐, (29)

which gives

lim
𝑛→∞

𝑑 (𝑥𝑛, 𝑇𝑥𝑛) = 0. (30)

Conversely, suppose that {𝑥𝑛} is bounded and
lim𝑛→∞ 𝑑(𝑥𝑛, 𝑇𝑥𝑛) = 0. Let 𝐴𝐶(𝐶, {𝑥𝑛}) = {𝑥}. Then,
by Lemma 4, 𝑥 ∈ 𝐶. As 𝑇 satisfies the condition (𝐸𝜇) on 𝐶,
there exists 𝜇 > 1 such that

𝑑 (𝑥𝑛, 𝑇𝑥) ≤ 𝜇𝑑 (𝑥𝑛, 𝑇𝑥𝑛) + 𝑑 (𝑥𝑛, 𝑥) , (31)

which implies that

lim sup
𝑛→∞

𝑑 (𝑥𝑛, 𝑇𝑥) ≤ lim sup
𝑛→∞

{𝜇𝑑 (𝑥𝑛, 𝑇𝑥𝑛) + 𝑑 (𝑥𝑛, 𝑥)}

= lim sup
𝑛→∞

𝑑 (𝑥𝑛, 𝑥) .

(32)

By using the uniqueness of asymptotic center, 𝑇𝑥 = 𝑥, so 𝑥 is
a fixed point of 𝑇.

Theorem 11. Let 𝐶 be a nonempty closed convex subset of a
complete uniformly convex hyperbolic space 𝑋 with monotone
modulus of uniform convexity 𝜂 and let 𝑇 : 𝐶 → 𝐶 be
a mapping which satisfies conditions (𝐶𝜆) and (𝐸), for some
𝜆 ∈ (0, 1) on 𝐶 with 𝐹(𝑇) ̸= 0. Then the sequence {𝑥𝑛} which
is defined by (11), is Δ-convergent to a fixed point of 𝑇.

Proof. From Lemma 10, we know that {𝑥𝑛} is a bounded
sequence; therefore, {𝑥𝑛} has a Δ-convergent subsequence.
We now prove that every Δ-convergent subsequence
of {𝑥𝑛} has unique Δ-limt in 𝐹(𝑇). For this, let 𝑢 and
V be Δ-limits of the subsequences {𝑢𝑛} and {V𝑛} of
{𝑥𝑛}, respectively. By Lemma 4, 𝐴𝐶(𝐶, {𝑢𝑛}) = {𝑢} and
𝐴𝐶(𝐶, {V𝑛}) = {V}. Since {𝑢𝑛} is bounded sequence, by
Lemma 10, lim𝑛→∞ 𝑑(𝑢𝑛, 𝑇𝑢𝑛) = 0. We claim that 𝑢 is a fixed
point of 𝑇. Since 𝑇 satisfies the condition (𝐸), there exists a
𝜇 ≥ 1 such that

𝑑 (𝑢𝑛, 𝑇𝑢) ≤ 𝜇𝑑 (𝑢𝑛, 𝑇𝑢𝑛) + 𝑑 (𝑢𝑛, 𝑢) . (33)

Taking the limit supremum on both sides, we have

𝑟𝑎 ({𝑢𝑛} , 𝑇𝑢) = lim sup
𝑛→∞

𝑑 (𝑢𝑛, 𝑇𝑢)

≤ lim sup
𝑛→∞

{𝜇𝑑 (𝑢𝑛, 𝑇𝑢𝑛) + 𝑑 (𝑢𝑛, 𝑢)}

≤ lim sup
𝑛→∞

𝑑 (𝑢𝑛, 𝑢)

= 𝑟𝑎 ({𝑢𝑛} , 𝑢) .

(34)

Hence, we obtain

𝑟𝑎 ({𝑢𝑛} , 𝑇𝑢) ≤ 𝑟𝑎 ({𝑢𝑛} , 𝑢) . (35)

By uniqueness of the asymptotic center, 𝑇𝑢 = 𝑢.
Similarly, we can prove that 𝑇V = V. Thus, 𝑢 and V are

fixed points of 𝑇. Now we show that 𝑢 = V. If not, then by the
uniqueness of asymptotic center,

lim sup
𝑛→∞

𝑑 (𝑥𝑛, 𝑢) = lim sup
𝑛→∞

𝑑 (𝑢𝑛, 𝑢)

< lim sup
𝑛→∞

𝑑 (𝑢𝑛, V)

= lim sup
𝑛→∞

𝑑 (𝑥𝑛, V)

= lim sup
𝑛→∞

𝑑 (V𝑛, V)

< lim sup
𝑛→∞

𝑑 (V𝑛, 𝑢)

= lim sup
𝑛→∞

𝑑 (𝑥𝑛, 𝑢) ,

(36)

which is a contradiction. Hence 𝑢 = V.

Theorem 12. Let 𝐶 be a nonempty closed convex subset of a
complete uniformly convex hyperbolic space 𝑋 with monotone
modulus of uniform convexity 𝜂 and let 𝑇 : 𝐶 → 𝐶 be
a mapping which satisfies conditions (𝐶𝜆) and (𝐸), for some
𝜆 ∈ (0, 1) on 𝐶 with 𝐹(𝑇) ̸= 0. Then the sequence {𝑥𝑛} which
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is defined by (11) converges strongly to a fixed point of 𝑇 if and
only if

lim inf
𝑛→∞

𝐷(𝑥𝑛, 𝐹 (𝑇)) = 0, (37)

where𝐷(𝑥𝑛, 𝐹(𝑇)) = inf𝑥∈𝐹(𝑇) 𝑑(𝑥𝑛, 𝑥).

Proof. Necessity is obvious; we have to prove only sufficient
part. First, we show that the fixed point set 𝐹(𝑇) is closed; let
{𝑥𝑛} be a sequence in 𝐹(𝑇) which converges to some point
𝑧 ∈ 𝐶. Since

𝜆𝑑 (𝑥𝑛, 𝑇𝑥𝑛) = 0 ≤ 𝑑 (𝑥𝑛, 𝑧) , (38)

from the condition (𝐶𝜆), we have

𝑑 (𝑥𝑛, 𝑇𝑧) = 𝑑 (𝑇𝑥𝑛, 𝑇𝑧) ≤ 𝑑 (𝑥𝑛, 𝑧) . (39)

By taking the limit on both sides, we obtain

lim
𝑛→∞

𝑑 (𝑥𝑛, 𝑇𝑧) ≤ lim
𝑛→∞

𝑑 (𝑥𝑛, 𝑧) = 0. (40)

In view of the uniqueness of the limit, we have 𝑧 = 𝑇𝑧, so that
𝐹(𝑇) is closed. Suppose that

lim inf
𝑛→∞

𝐷(𝑥𝑛, 𝐹 (𝑇)) = 0. (41)

Then, from (15)

𝐷(𝑥𝑛+1, 𝐹 (𝑇)) ≤ 𝐷 (𝑥𝑛, 𝐹 (𝑇)) ; (42)

it follows from Lemma 9 and Proposition 8 that lim𝑛→∞𝐷
(𝑥𝑛, 𝐹(𝑇)) exists. Hence we know that lim𝑛→∞𝐷(𝑥𝑛, 𝐹(𝑇)) =
0.

Consider a subsequence {𝑥𝑛
𝑘

} of {𝑥𝑛} such that

𝑑 (𝑥𝑛
𝑘

, 𝑝𝑘) <
1

2𝑘
, ∀𝑘 ≥ 1, (43)

where {𝑝𝑘} is in 𝐹(𝑇). By Lemma 9, we have

𝑑 (𝑥𝑛
𝑘+1

, 𝑝𝑘) ≤ 𝑑 (𝑥𝑛
𝑘

, 𝑝𝑘) <
1

2𝑘
, (44)

which implies that

𝑑 (𝑝𝑘+1, 𝑝𝑘) ≤ 𝑑 (𝑝𝑘+1, 𝑥𝑛
𝑘+1

) + 𝑑 (𝑥𝑛
𝑘+1

, 𝑝𝑘)

<
1

2𝑘+1
+
1

2𝑘
<

1

2𝑘−1
.

(45)

This shows that {𝑝𝑘} is a Cauchy sequence. Since 𝐹(𝑇) is
closed, {𝑝𝑘} is a convergent sequence. Let lim𝑘→∞ 𝑝𝑘 = 𝑝.
Then, we know that {𝑥𝑛} converges to 𝑝. In fact, since

𝑑 (𝑥𝑛
𝑘

, 𝑝) ≤ 𝑑 (𝑥𝑛
𝑘

, 𝑝𝑘) + 𝑑 (𝑝𝑘, 𝑝) → 0 as 𝑘 → ∞,

(46)

we have

lim
𝑘→∞

𝑑 (𝑥𝑛
𝑘

, 𝑝) = 0. (47)

Since lim𝑛→∞ 𝑑(𝑥𝑛, 𝑝) exists, the sequence {𝑥𝑛} is convergent
to 𝑝.

We recall the definition of condition (𝐼) due to Senter and
Doston [32].

Let 𝐶 be a nonempty subset of a metric space 𝑋. A
mapping 𝑇 : 𝐶 → 𝐶 is said to satisfy condition (𝐼), if there is
a nondecreasing function 𝑓[0,∞) → [0,∞) with 𝑓(0) = 0,
𝑓(𝑡) > 0 for all 𝑡 ∈ (0,∞) such that

𝑑 (𝑥, 𝑇𝑥) ≥ 𝑓 (𝐷 (𝑥, 𝐹 (𝑇))) , (48)

for all 𝑥 ∈ 𝐶, where𝐷(𝑥, 𝐹(𝑇)) = inf{𝑑(𝑥, 𝑝) : 𝑝 ∈ 𝐹(𝑇)}.

Theorem 13. Let 𝐶 be a nonempty closed convex subset of a
complete uniformly convex hyperbolic space 𝑋 with monotone
modulus of uniform convexity 𝜂 and let 𝑇 : 𝐶 → 𝐶 be
a mapping which satisfies conditions (𝐶𝜆) and (𝐸), for some
𝜆 ∈ (0, 1) on𝐶. Moreover,𝑇 satisfies condition (𝐼)with 𝐹(𝑇) ̸=

0. Then the sequence {𝑥𝑛} which is defined by (11) converges
strongly to some fixed point of 𝑇.

Proof. As in the proof of Theorem 12, it can be shown
that 𝐹(𝑇) is closed. Observe that, by Lemma 9, we have
lim𝑛→∞ 𝑑(𝑥𝑛, 𝑇𝑥𝑛) = 0. It follows from condition (𝐼) that

lim
𝑛→∞

𝑓 (𝐷 (𝑥𝑛, 𝐹 (𝑇))) ≤ lim
𝑛→∞

𝑑 (𝑥𝑛, 𝑇𝑥𝑛) = 0. (49)

Therefore, we have

lim
𝑛→∞

𝑓 (𝐷 (𝑥𝑛, 𝐹 (𝑇))) = 0. (50)

Since 𝑓 : [0,∞] → [0,∞) is a nondecreasing mapping sat-
isfying 𝑓(0) = 0, 𝑓(𝑡) > 0 for all 𝑡 ∈ (0,∞), we have

lim
𝑛→∞

𝐷(𝑥𝑛, 𝐹 (𝑇)) = 0. (51)

Rest of the proof follows in lines of Theorem 12.

Remark 14. Our Theorems 11, 12, and 13 improve and extend
the previous well-known results from Banach spaces and
CAT(0) spaces to more general class of uniformly convex
hyperbolic spaces (see [10, 28, 29], in particular, Theorems
3.4 and 3.6 of [12]). In our results, we considered the faster
iteration process to approximate the fixed point of underlying
mapping 𝑇 in the framework of uniformly convex hyperbolic
spaces.
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