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We characterize the 𝑘-smooth points in someBanach spaces.Wewill deal with injective tensor product, the Bochner space𝐿∞(𝜇, 𝑋)
of (equivalence classes of) 𝜇-essentially bounded measurable 𝑋-valued functions, and direct sums of Banach spaces.

1. Introduction

For a unit vector 𝑥 in a Banach space 𝑋, consider the state
space 𝑆

𝑥
= {𝑥
∗

∈ 𝑋
∗

: ‖𝑥
∗

‖ = 1 = 𝑥
∗

(𝑥)}. The point
𝑥 is a smooth point if 𝑆

𝑥
consists exactly of one point. The

set of all smooth points is denoted by smooth𝐵(𝑋). Smooth
points are important tools in the study of the geometry of
Banach spaces. For twoBanach spaces𝑋,𝑌Heinrich, [1], gave
a description of smooth points of the unit ball in the space
𝐾(𝑋, 𝑌) of compact operators from 𝑋 into 𝑌. The research
then turned to the space 𝐿(𝑋, 𝑌) of bounded operators.
Kittaneh and Younis, [2], were the first to deal with this
problem. They characterized smooth points in 𝐿(𝑙

2
). Their

result was then generalized in [3] to the space 𝐿(𝑙𝑝); 1 <

𝑝 < ∞. For smooth points in 𝐿(𝑙
𝑝

, 𝑋) see [4, 5]. In [6]
Werner gave a description of smooth points in 𝐿(𝑋, 𝑌) under
some conditions on𝑋 and𝑌. Smooth points in certain vector
valued function spaces were given in [7].

In [8] the authors generalize the notion of smoothness by
calling a unit vector 𝑥 in a Banach space𝑋 a 𝑘-smooth 𝑝𝑜𝑖𝑛𝑡,
or a multismooth point of order 𝑘 if 𝑆

𝑥
has exactly 𝑘 linearly

independent vectors, equivalently, if dim(sp 𝑆𝑥) = 𝑘. For a
natural number 𝑘, the set of 𝑘-smooth points in𝑋 is denoted
by 𝑘-smooth𝐵(𝑋). Note that 𝑆

𝑥
is a weak∗-compact convex

set and hence it is easy to see that 𝑥 ∈ 𝑘-smooth𝐵(𝑋)
if and only if dim(sp ext 𝑆𝑥) = 𝑘. Multismoothness in
Banach spaces was extensively studied by Lin and Rao in [9].
In paricular, they showed that, in a Banach space of finite
dimension 𝑘, any 𝑘-smooth point is unitary and hence a
strongly extreme point. The aim of this paper is to charac-
terize multismoothness in some Banach spaces. Indeed, we

will deal with injective tensor product, the Bochner space
𝐿
∞

(𝜇, 𝑋) of (equivalence classes of) 𝜇-essentially bounded
measurable 𝑋-valued functions, and direct sums of Banach
spaces.

The set of all extreme points of the unit ball of a Banach
space𝑋 is denoted by ext𝐵(𝑋).

2. Multismoothness in Injective
Tensor Products

In [9] the authors characterized multismoothness in the
completed injective tensor product 𝑋⊗

𝜖
𝑌 when 𝑋 is an

𝐿
1-predual space and 𝑌 is a smooth Banach space. We

generalize their result to any Banach space 𝑌. Note that
𝑋⊗
𝜖
𝑌 = 𝐾𝑊

∗

(𝑌
∗

, 𝑋) whenever either of 𝑋 and 𝑌 has the
approximation property. Here𝐾𝑊∗(𝑌∗, 𝑋) is the space of all
compact and weak∗ to weakly continuous operators from 𝑌

∗

to𝑋, endowed with usual operator norm.
Recall that if 𝑥∗ ∈ 𝑋

∗ and 𝑦
∗

∈ 𝑌
∗ then 𝑥

∗

⊗ 𝑦
∗

∈

(𝐾𝑊
∗

(𝑌
∗

, 𝑋))
∗ as follows:

For 𝑇 ∈ 𝐾𝑊
∗

(𝑌
∗

, 𝑋) , ⟨𝑥
∗

⊗ 𝑦
∗

, 𝑇⟩ = ⟨𝑦
∗

, 𝑇
∗

𝑥
∗

⟩ . (1)

Theorem 1. Let 𝑋 be an 𝐿1-predual space and 𝑌 any Banach
space. Let 𝑇 ∈ 𝑋⊗

𝜖
𝑌 = 𝐾𝑊

∗

(𝑌
∗

, 𝑋) with ‖𝑇‖ = 1. Then
𝑇 is a multismooth point of finite order in 𝑋⊗

𝜖
𝑌 if and only

if 𝑇∗ attains its norm at exactly finitely many independent
vectors, say at 𝑥∗1 , 𝑥

∗

2 , . . . , 𝑥
∗

𝑟
∈ ext𝐵(𝑋∗) such that 𝑇∗𝑥∗

𝑖
is

a multismooth point of finite order in 𝑌; 𝑖 = 1, 2, . . . , 𝑟.
In this case the order of smoothness of𝑇 is 𝑘 = 𝑚1+𝑚2+⋅ ⋅ ⋅+

𝑚
𝑟
, where𝑚

𝑖
is the order of smoothness of𝑇∗𝑥∗

𝑖
, 𝑖 = 1, 2, . . . , 𝑟.
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Proof. One can easily prove that if 𝑇∗ attains its norm at
infinitely many independent vectors in ext𝐵(𝑋∗) then 𝑇 ∈

𝑋⊗
𝜖
𝑌 is not amultismooth point of any finite order.The same

conclusion will be obtained if 𝑇∗ attains its norm at some
𝑥
∗

∈ ext𝐵(𝑋∗) and 𝑇∗𝑥∗ is not a multismooth point of finite
order in 𝑌. So, suppose 𝑇∗ attains its norm at exactly finitely
many independent vectors, say at 𝑥∗1 , 𝑥

∗

2 , . . . , 𝑥
∗

𝑟
∈ ext𝐵(𝑋∗)

such that 𝑇∗𝑥∗
𝑖
is a multismooth point of finite order𝑚

𝑖
in 𝑌;

𝑖 = 1, 2, . . . , 𝑟 and let 𝑘 = 𝑚1 + 𝑚2 + ⋅ ⋅ ⋅ + 𝑚𝑟. We will prove
that 𝑇 is a multismooth point of order 𝑘 in𝑋⊗

𝜖
𝑌.

For each 𝑖 there are exactly 𝑚
𝑖
linearly independent

functionals in ext𝐵(𝑌∗) attaining their norm at 𝑇∗𝑥∗
𝑖
, say

𝑦
∗

𝑖,1, 𝑦
∗

𝑖,2, . . . , 𝑦
∗

𝑖,𝑚𝑖

. Since 𝑋 is an 𝐿1-predual space, then there
are distinct atoms 𝐴

𝑖
with 𝑥

∗

𝑖
= ±(1/𝜇𝐴

𝑖
)𝜒
𝐴𝑖
. Set 𝐹

𝑖,𝑡
=

𝑥
∗

𝑖
⊗ 𝑦
∗

𝑖,𝑡
, where 1 ≤ 𝑖 ≤ 𝑟 and 1 ≤ 𝑡 ≤ 𝑚

𝑖
. These are 𝑘 extreme

functionals in (𝑋⊗
𝜖
𝑌)
∗ attaining their norms at 𝑇:

⟨𝑥
∗

𝑖
⊗𝑦
∗

𝑖,𝑡
, 𝑇⟩ = ⟨𝑦

∗

𝑖,𝑡
, 𝑇
∗

𝑥
∗

𝑖
⟩ = 1 = 𝑇

∗

𝑥
∗

𝑖

 . (2)

We claim that the 𝐹
𝑖,𝑡
’s are linearly independent. Indeed,

if ∑𝑟
𝑖=1∑
𝑚𝑖

𝑡=1 𝑎𝑖,𝑡𝐹𝑖,𝑡 = 0 for some scalars 𝑎
𝑖,𝑡
then ∑

𝑟

𝑖=1 𝑥
∗

𝑖
⊗

(∑
𝑚𝑖

𝑡=1 𝑎𝑖,𝑡𝑦
∗

𝑖,𝑡
) = 0. But since the 𝑥∗

𝑖
correspond to distinct

atoms then ∑
𝑚𝑖

𝑡=1 𝑎𝑖,𝑡𝑦
∗

𝑖,𝑡
= 0 for all 𝑖 = 1, 2, . . . , 𝑟. Since

{𝑦
∗

𝑖,𝑡
: 𝑡 = 1, 2, . . . , 𝑚

𝑖
} are linearly independent, then 𝑎

𝑖,𝑡
= 0,

∀1 ≤ 𝑖 ≤ 𝑟, 1 ≤ 𝑡 ≤ 𝑚
𝑖
.

Finally, Let 𝐹 ∈ (𝑋⊗
𝜖
𝑌)
∗ with ‖𝐹‖ = 1 = 𝐹(𝑇). We will

show that 𝐹 ∈ sp{𝐹
𝑖,𝑡
: 1 ≤ 𝑖 ≤ 𝑟, 1 ≤ 𝑡 ≤ 𝑚

𝑖
}. We can suppose

that 𝐹 ∈ ext𝐵((𝑋⊗
𝜖
𝑌)
∗

) (see Section 1). Now, by a result of
Ruess and Stegall [10], 𝐹 = 𝑥

∗

⊗ 𝑦
∗, where 𝑥∗ ∈ ext𝐵(𝑋∗)

and 𝑦∗ ∈ ext𝐵(𝑌∗). Then

𝐹 (𝑇) = ⟨𝑥
∗

⊗𝑦
∗

, 𝑇⟩ = ⟨𝑥
∗

, 𝑇𝑦
∗

⟩ = ⟨𝑇
∗

𝑥
∗

, 𝑦
∗

⟩ = 1. (3)

So, ‖𝑇∗𝑥∗‖ = 1 and hence 𝑥∗ ∈ sp{𝑥∗1 , 𝑥
∗

2 , . . . , 𝑥
∗

𝑟
}.

But since the 𝑥∗
𝑖
correspond to distinct atoms then 𝑥

∗

=

𝑥
∗

𝑖
for some 𝑖 = 1, 2, . . . , 𝑟 and consequently 𝑦

∗

∈

sp{𝑦∗
𝑖,1, 𝑦
∗

𝑖,2, . . . , 𝑦
∗

𝑖,𝑚𝑖

}. Therefore 𝑥∗ ⊗ 𝑦∗ = 𝑥∗
𝑖
⊗ 𝑦
∗

∈ sp{𝑥∗
𝑖
⊗

𝑦
∗

𝑖,1, 𝑥
∗

𝑖
⊗𝑦
∗

𝑖,2, . . . , 𝑥
∗

𝑖
⊗𝑦
∗

𝑖,𝑚𝑖

}. Hence 𝐹 ∈ sp{𝐹
𝑖,𝑡
: 1 ≤ 𝑖 ≤ 𝑟, 1 ≤

𝑡 ≤ 𝑚
𝑖
}. This proves that the 𝐹

𝑖,𝑡
’s form a maximal linearly

independent set in 𝑆
𝑇
.

Therefore 𝑇 ∈ 𝑘-smooth𝐵(𝑋⊗
𝜖
𝑌).

As a corollary, we get the following.

Corollary 2 (see [9]). Let 𝑋 be an 𝐿
1-predual space and 𝑌

a smooth Banach space. Let 𝑇 ∈ 𝑋⊗
𝜖
𝑌 = 𝐾𝑊

∗

(𝑌
∗

, 𝑋)

with ‖𝑇‖ = 1. Then 𝑇 is a multismooth point of finite order
𝑘 in 𝑋⊗

𝜖
𝑌 if and only if 𝑇∗ attains its norm at exactly 𝑘

independent vectors in ext𝐵(𝑋∗).

Open Problem. For Banach spaces 𝑋 and 𝑌 let 𝑇 ∈ 𝐾(𝑋, 𝑌)

with ‖𝑇‖ = 1. Is it true that 𝑇 is a multismooth point of finite
order 𝑘 in 𝐾(𝑋, 𝑌) if and only if 𝑇∗ attains its norm at only
finitely many independent vectors, say at 𝑦∗1 , 𝑦

∗

2 , . . . , 𝑦
∗

𝑟
∈

ext𝐵(𝑌∗) such that each𝑇∗𝑦∗
𝑖
is amultismooth point of finite

order, say𝑚
𝑖
, in𝑋∗, where 𝑘 = 𝑚1 + 𝑚2 + ⋅ ⋅ ⋅ + 𝑚𝑟?

Theorem 1 above tells us that the answer is yes when 𝑌 is
an 𝐿1-predual space, since in this case 𝐾(𝑋, 𝑌) = 𝑌⊗

𝜖
𝑋
∗

=

𝐾𝑊
∗

(𝑋
∗∗

, 𝑌).

3. Multismoothness in Bochner Spaces

Let 𝑋 be a Banach space. In this section we discuss multi-
smoothness in the Bochner space 𝐿∞(𝜇, 𝑋) of (equivalence
classes of) 𝜇-essentially boundedmeasurable𝑋-valued func-
tions. Recall that measurable functions are constants on the
atoms.

Lemma 3. Let 𝑓 ∈ 𝐿
∞

(𝜇, 𝑋) and suppose that there is no
𝜇-atom 𝐴 such that ‖𝑓(𝐴)‖ = 1. Then 𝑓 is not a multismooth
point of any finite order.

Proof. Fix 𝑟 ∈ N. We will prove that 𝑓 is not a multismooth
point of order 𝑟. Write Ω = ∪

𝑟+1
𝑖=1𝐸𝑖, where 𝐸𝑖’s are disjoint

measurable sets of positive measure, with sup{‖𝑓(𝑡)‖ : 𝑡 ∈

𝐸
𝑖
} = 1. For 1 ≤ 𝑖 ≤ 𝑟 + 1, define

𝑓
𝑖
(𝑡) =

{

{

{

𝑓 (𝑡) , if 𝑡 ∈ 𝐸
𝑖

0, if 𝑡 ∉ 𝐸
𝑖
.

(4)

Then𝑓 = 𝑓1+𝑓2+⋅ ⋅ ⋅+𝑓𝑟+1 and ‖𝑓𝑖‖ = sup{‖𝑓(𝑡)‖ : 𝑡 ∈ 𝐸
𝑖
} =

1. Moreover, ‖𝑓
𝑖
± 𝑓
𝑗
‖ ≤ 1 for all 𝑖 ̸= 𝑗. This shows that 𝑓 is

not a smooth point of any order𝑚 ≤ 𝑟; see [8]. In particular,
𝑓 is not a multismooth point of order 𝑟.

Lemma 4. Let 𝑓 ∈ 𝐿
∞

(𝜇, 𝑋) and suppose that there are
exactly 𝑛𝜇-atoms 𝐴1, 𝐴2, . . . , 𝐴𝑛 such that ‖𝑓(𝐴

𝑗
)‖ = 1. If

sup{‖𝑓(𝑡)‖ : 𝑡 ∉ ∪
𝑛

𝑗=1𝐴𝑗} = 1, then 𝑓 is not a multismooth
point of any finite order.

Proof. Fix 𝑟 ∈ N and writeΩ \ ∪
𝑛

𝑖=1𝐴 𝑖 as a disjoint union of 𝑟
measurable sets 𝐸

𝑖
of positive measure and proceed as in the

above proof.

Theorem 5. Let 𝑓 ∈ 𝐿
∞

(𝜇, 𝑋) with ‖𝑓‖ = 1. Then 𝑓 is
a multismooth point of finite order if and only if there are
exactly finitely many distinct atoms 𝐴1, 𝐴2, . . . , 𝐴𝑟 such that
‖𝑓(𝐴
𝑗
)‖ = 1, 𝑗 = 1, 2, . . . , 𝑟 and sup{‖𝑓(𝑡)‖ : 𝑡 ∉ ∪

∞

𝑗=1𝐴𝑗} < 1
and each 𝑓(𝐴

𝑗
) is a multismooth point of finite order, say

𝑚
𝑗
, in 𝑋. In this case the order of smoothness of 𝑓 is 𝑘 =

𝑚1 + 𝑚2 + ⋅ ⋅ ⋅ + 𝑚𝑟.

Proof. The above two lemmas prove the “only if ” part. For
the converse, we choose, for any 𝑗 = 1, 2, . . . , 𝑟, linearly
independent set {𝑥∗

𝑗,1, 𝑥
∗

𝑗,2, . . . , 𝑥
∗

𝑗,𝑚𝑗

} ⊆ 𝑆
𝑓(𝐴𝑗)

. So, ‖𝑥∗
𝑗,𝑖
‖ =

1 = ⟨𝑥
∗

𝑗,𝑖
, 𝑓(𝐴
𝑗
)⟩. For 1 ≤ 𝑗 ≤ 𝑟 and 1 ≤ 𝑖 ≤ 𝑚

𝑗
define

𝐹
𝑗,𝑖
∈ (𝐿
∞

(𝜇, 𝑋))
∗ by 𝐹

𝑗,𝑖
(𝑔) = ⟨𝑥

∗

𝑗,𝑖
, 𝑔(𝐴
𝑗
)⟩. These are 𝑚1 +

𝑚2 + ⋅ ⋅ ⋅ +𝑚𝑟 = 𝑘 linear functionals attaining their norm at 𝑓.
Suppose that ∑𝑟

𝑗=1∑
𝑚𝑗

𝑖=1 𝑎𝑗,𝑖𝐹𝑗,𝑖 = 0 for some scalars 𝑎
𝑗,𝑖
. Then

∑
𝑟

𝑗=1∑
𝑚𝑗

𝑖=1 𝑎𝑗,𝑖⟨𝑥
∗

𝑗,𝑖
, 𝑔(𝐴
𝑗
)⟩ = 0, ∀𝑔 ∈ 𝐿

∞

(𝜇, 𝑋). Choosing
𝑔
𝑗
(𝑡) = 𝑥; if 𝑡 ∈ 𝐴

𝑗
and 𝑔

𝑗
(𝑡) = 0; if 𝑡 ∉ 𝐴

𝑗
, where 𝑥 ∈ 𝑋,

we get (∑𝑚𝑗
𝑖=1 𝑎𝑗,𝑖𝑥

∗

𝑗,𝑖
)(𝑥) = 0 for all 𝑥 ∈ 𝑋 and 𝑗 = 1, 2, . . . , 𝑟.

Consequently, ∑𝑚𝑗
𝑖=1 𝑎𝑗,𝑖𝑥

∗

𝑗,𝑖
= 0 for all 𝑗 = 1, 2, . . . , 𝑟. Since

{𝑥
∗

𝑗,1, 𝑥
∗

𝑗,2, . . . , 𝑥
∗

𝑗,𝑚𝑗

} ⊆ 𝑆
𝑓(𝐴𝑗)

is linearly independent, then
𝑎
𝑗,𝑖
= 0 for all 𝑗 = 1, 2, . . . , 𝑟 and 𝑖 = 1, 2, . . . , 𝑚

𝑗
. Therefore,

the 𝐹
𝑗,𝑖
’s are linearly independent.



International Journal of Mathematics and Mathematical Sciences 3

For an atom 𝐴 and 𝑔 ∈ 𝐿
∞

(𝜇, 𝑋) let 𝑔
𝐴
= 𝑔(𝐴)𝜒

𝐴
∈

𝐿
∞

(𝜇, 𝑋). We will prove that if 𝐹 ∈ (𝐿
∞

(𝜇, 𝑋))
∗ with ‖𝐹‖ =

1 = 𝐹(𝑓) then 𝐹(𝑔) = ∑
𝑟

𝑗=1 𝐹(𝑔𝐴𝑗) for all 𝑔 ∈ 𝐿
∞

(𝜇, 𝑋).
Without loss of generality, say ‖𝑔‖ = 1. We claim that there
is 𝜖 > 0 such that ‖𝑓 ± 𝜖𝑔‖ ≤ 1. Indeed, if such 𝜖 does not
exist, we would have a sequence (𝑡

𝑘
) outside ∪𝑟

𝑗=1𝐴𝑗 such that
‖𝑓(𝑡
𝑘
) ± (1/𝑘)𝑔(𝑡

𝑘
)‖ > 1. But then

1 <

𝑓 (𝑡
𝑘
) ±

1
𝑘
𝑔 (𝑡
𝑘
)


≤
𝑓 (𝑡𝑘)

 +
1
𝑘

𝑔 (𝑡𝑘)


≤
𝑓 (𝑡𝑘)

 +
1
𝑘
.

(5)

Hence, ‖𝑓(𝑡
𝑘
)‖ > 1 − 1/𝑘 for all 𝑘, a contradiction to our

assumption. Thus, |𝐹(𝑓 ± 𝜖𝑔)| ≤ 1 and therefore 𝐹(𝑔) = 0
for all 𝑔 ∈ 𝐿

∞

(𝜇, 𝑋) such that 𝑔(𝐴
𝑗
) = 0, ∀1 ≤ 𝑗 ≤ 𝑟.

This proves that 𝐹(𝑔) = ∑
𝑟

𝑗=1 𝐹(𝑔𝐴𝑗) for all 𝑔 ∈ 𝐿
∞

(𝜇, 𝑋).
Let 𝑍 = ⊕

𝑟

𝑗=1𝑋(𝑙
∞-sum) and let 𝐸 = {ℎ ∈ 𝑍

∗

: ‖ℎ‖ =

1 = ℎ(𝑓(𝐴1), 𝑓(𝐴2), . . . , 𝑓(𝐴𝑟))}. Then by Krein-Millman
Theorem we have 𝐸 = co ext𝐸 with ext𝐸 ⊆ ext𝐵(𝑍∗). So,
any ℎ ∈ ext𝐸 has the form ℎ = (0, 0, . . . , 0, 𝑥∗, 0, . . . , 0) for
some 𝑥∗ ∈ ext𝐵(𝑋∗). Note that if, for example, ℎ1, ℎ2 ∈ ext𝐸
has the form ℎ1 = (𝑥

∗

, 0, 0, . . . , 0), ℎ2 = (𝑦
∗

, 0, 0, . . . , 0),
then ⟨𝑥

∗

, 𝑓(𝐴1)⟩ = ⟨𝑦
∗

, 𝑓(𝐴1)⟩ = 1. Since 𝑓(𝐴1) ∈

𝑚1-smooth𝐵(𝑋), then any𝑚1 + 1ℎ’s of the above form must
be linearly dependent. Consequently, any𝑚1+𝑚2+⋅ ⋅ ⋅+𝑚𝑟+
1 = 𝑘 + 1 elements ℎ ∈ 𝐸must be linearly dependent.

Now, let 𝐹1, 𝐹2, . . . , 𝐹𝑘+1 ∈ 𝐿
∞

(𝜇, 𝑋)
∗ such that ‖𝐹

𝑖
‖ =

1 = 𝐹
𝑖
(𝑓). We will prove that the 𝐹

𝑖
’s are linearly dependent.

By the argument above we see that 𝐹
𝑖
(𝑔) = ∑

𝑟

𝑗=1 𝐹𝑖(𝑔𝐴𝑗)

for all 𝑔 ∈ 𝐿
∞

(𝜇, 𝑋). For 1 ≤ 𝑖 ≤ 𝑘 + 1 define ℎ
𝑖
∈

𝑍
∗

= ⊕
𝑟

𝑗=1𝑋
∗

(𝑙
1-sum) by ℎ

𝑖
(𝑥1, 𝑥2, . . . , 𝑥𝑟) = 𝐹

𝑖
(∑
𝑟

𝑗=1 ℎ𝑥𝑗),
where ℎ

𝑥𝑗
= 𝑥
𝑗
𝜒
𝐴𝑗
. Then ℎ

𝑖
∈ 𝑍
∗ with ‖ℎ

𝑖
‖ = 1 =

ℎ
𝑖
(𝑓(𝐴1), 𝑓(𝐴2), . . . , 𝑓(𝐴𝑟)) = ∑

𝑟

𝑗=1 𝐹𝑖(𝑓𝐴𝑗) = 𝐹
𝑖
(𝑓) so that

ℎ
𝑖
∈ 𝐸 for all 𝑖 = 1, 2, . . . , 𝑘 + 1 and therefore {ℎ1, ℎ2, . . . , ℎ𝑘+1}

is linearly dependent. Hence, there are scalars 𝑎1, 𝑎2, . . . , 𝑎𝑘+1,
not all zeros, with ∑𝑘+1

𝑖=1 𝑎𝑖ℎ𝑖 = 0. The proof will be complete
if we show that ∑𝑘+1

𝑖=1 𝑎𝑖𝐹𝑖 = 0. Indeed, if 𝑔 ∈ 𝐿
∞

(𝜇, 𝑋) then
∑
𝑘+1
𝑖=1 𝑎𝑖ℎ𝑖(𝑔(𝐴1), 𝑔(𝐴2), . . . , 𝑔(𝐴𝑟)) = ∑

𝑘+1
𝑖=1 𝑎𝑖𝐹𝑖(∑

𝑟

𝑗=1 𝑔𝐴𝑗) =

∑
𝑘+1
𝑖=1 𝑎𝑖𝐹𝑖(𝑔) = 0. This shows that 𝑓 ∈ 𝑘-smooth𝐵(𝐿∞(𝜇, 𝑋))

and completes the proof of the “if ” part.

4. Multismoothness in Direct Sums of
Banach Spaces

Lin and Rao characterized in [9] multisoothness in 𝑙∞-direct
sums and proved the following theorem.

Theorem 6 (see [9]). Let {𝑋
𝑖
: 𝑖 ∈ 𝐼} be an infinite family of

nonzero Banach spaces. Let 𝑋 = ⊕
∞
𝑋
𝑖
and let 𝑥 = (𝑥

𝑖
) be a

unit vector in 𝑋. Let 𝐼1 = {𝑖 ∈ 𝐼 : ‖𝑥
𝑖
‖ < 1}, let 𝐼2 = {𝑖 ∈ 𝐼 :

‖𝑥
𝑖
‖ = 1 𝑎𝑛𝑑 𝑥

𝑖
𝑖𝑠 𝑎 𝑚𝑢𝑙𝑡𝑖𝑠𝑚𝑜𝑜𝑡ℎ 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑓𝑖𝑛𝑖𝑡𝑒 𝑜𝑟𝑑𝑒𝑟},

and let 𝐼3 = 𝐼\(𝐼1∪𝐼2). Then, 𝑥 is a multismooth point of finite
order if and only if 𝐼3 = 0, 𝐼2 is finite, and sup

𝑖∈𝐼1
‖𝑥
𝑖
‖ < 1. In

this case the order of smoothness of 𝑥 is 𝑘 = ∑
𝑖∈𝐼2

𝑚
𝑖
, where𝑚

𝑖

is the order of smoothness of 𝑥
𝑖
in𝑋
𝑖
, 𝑖 ∈ 𝐼2.

In this section we deal with 𝑙
1-direct sums. Indeed we

prove the following result.

Theorem 7. Let {𝑋
𝑖
: 𝑖 ∈ 𝐼} be any family of nonzero Banach

spaces. Let 𝑋 = ⊕1𝑋𝑖 and let 𝑥 = (𝑥
𝑖
) be a unit vector in 𝑋.

Let 𝐼1 = {𝑖 ∈ 𝐼 : 𝑥
𝑖
= 0 𝑎𝑛𝑑 dim𝑋

𝑖
< ∞}, 𝐼2 = {𝑖 ∈ 𝐼 : 𝑥

𝑖
=

0 𝑎𝑛𝑑 dim𝑋
𝑖
= ∞}, 𝐼3 = {𝑖 ∈ 𝐼 : 𝑥

𝑖
̸= 0 𝑎𝑛𝑑 𝑥

𝑖
/‖𝑥
𝑖
‖ ∈

smooth𝐵(𝑋
𝑖
)}, 𝐼4 = {𝑖 ∈ 𝐼 : 𝑥

𝑖
̸= 0 𝑎𝑛𝑑 𝑥

𝑖
/‖𝑥
𝑖
‖ ∈

𝑟-smooth𝐵(𝑋
𝑖
) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑛𝑎𝑡𝑢𝑟𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑟 ≥ 2}, and 𝐼5 =

𝐼 \ ∪
4
𝑖=1𝐼𝑖. Then 𝑥 is a multismooth point of finite order if and

only if 𝐼2 = 𝐼5 = 0 and 𝐼1 ∪ 𝐼4 is finite. In this case the order of
smoothness of 𝑥 is 𝑘 = ∑

𝑖∈𝐼1
dim𝑋

𝑖
+∑
𝑖∈𝐼4

𝑚
𝑖
− |𝐼4| + 1, where

𝑚
𝑖
is the order of smoothness of 𝑥

𝑖
in 𝑋
𝑖
, 𝑖 ∈ 𝐼4 and |𝐼4| is the

number of elements in 𝐼4.

For the sake of completeness, let us first state and prove
the characterization of smoothness.

Theorem 8. Let {𝑋
𝑖
: 𝑖 ∈ 𝐼} be any family of nonzero Banach

spaces. Let 𝑋 = ⊕1𝑋𝑖 and let 𝑥 = (𝑥
𝑖
) be a unit vector in 𝑋.

Then 𝑥 is a smooth point if and only if for any 𝑖 ∈ 𝐼, 𝑥
𝑖

̸=

0 𝑎𝑛𝑑 𝑥
𝑖
/‖𝑥
𝑖
‖ ∈ smooth𝐵(𝑋

𝑖
).

Proof. Suppose 𝑗 ∈ 𝐼 and 𝑥
𝑗
= 0, or 𝑥

𝑗
̸= 0 but 𝑥

𝑖
/‖𝑥
𝑖
‖ is not

a smooth point in𝑋
𝑗
.Then there are distinct unit functionals

𝑦
∗

0 , 𝑧
∗

0 ∈ 𝑋
∗

𝑗
with 𝑦∗0 (𝑥𝑗) = 𝑧

∗

0 (𝑥𝑗) = ‖𝑥
𝑗
‖. For 𝑖 ̸= 𝑗, choose

any unit functional 𝑥∗
𝑖
∈ 𝑋
∗

𝑖
with 𝑥∗

𝑖
(𝑥
𝑖
) = ‖𝑥

𝑖
‖. Let 𝑦∗ =

(𝑦
∗

𝑖
) and 𝑧∗ = (𝑧∗

𝑖
) where 𝑦∗

𝑖
= 𝑧
∗

𝑖
= 𝑥
∗

𝑖
, 𝑖 ̸= 𝑗, 𝑦

∗

𝑗
= 𝑦
∗

0 and
𝑧
∗

𝑗
= 𝑧
∗

0 . Clearly, 𝑦
∗ and 𝑧∗ are distinct elements in 𝑆

𝑥
. So 𝑥

is not a smooth point.
Conversely, suppose 𝑥∗

𝑖
∈ 𝑋
∗

𝑖
is the unique element in

𝑆
𝑥𝑖/‖𝑥𝑖‖

, 𝑖 ∈ 𝐼. Let 𝑥∗ = (𝑥
∗

𝑖
). Then 𝑥

∗

∈ 𝑋
∗ with ‖𝑥

∗

‖ =

sup
𝑖∈𝐼
‖𝑥
∗

𝑖
‖ = 1 and 𝑥∗(𝑥) = ∑

𝑖∈𝐼
𝑥
∗

𝑖
(𝑥
𝑖
) = ∑

𝑖∈𝐼
‖𝑥
𝑖
‖ = ‖𝑥‖ =

1. Now if 𝑦∗ = (𝑦
∗

𝑖
) ∈ 𝑆
𝑥
then ∑

𝑖∈𝐼
𝑦
∗

𝑖
(𝑥
𝑖
) = 1 = ∑

𝑖∈𝐼
‖𝑥
𝑖
‖.

Since 𝑦∗
𝑖
(𝑥
𝑖
) ≤ ‖𝑥

𝑖
‖ then 𝑦∗

𝑖
(𝑥
𝑖
/‖𝑥
𝑖
‖) = 1 for all 𝑖 ∈ 𝐼 and

hence 𝑦∗ = 𝑥∗.

Lemma 9. Let 𝑌 and 𝑍 be nonzero Banach spaces and 𝑋 =

𝑌⊕1𝑍. Let 𝑥 = (0, 𝑧) ∈ 𝑋 where 𝑧 ∈ 𝑘-smooth𝐵(𝑍). If
dim𝑌 = 𝑛 < ∞ then 𝑥 ∈ (𝑘 + 𝑛)-smooth𝐵(𝑋).

Proof. Let 𝑧
∗

1 , 𝑧
∗

2 , . . . , 𝑧
∗

𝑘
∈ 𝑆
𝑧
be linearly independent

and choose 𝑛 linearly independent unit functionals 𝑦∗1 , 𝑦
∗

2 ,
. . . , 𝑦
∗

𝑛
∈ 𝑌
∗. Let

𝑥
∗

𝑖
=
{

{

{

(0, 𝑧∗
𝑖
) , if 1 ≤ 𝑖 ≤ 𝑘,

(𝑦
∗

𝑖−𝑘
, 𝑧
∗

1 ) , if 𝑘 + 1 ≤ 𝑖 ≤ 𝑘 + 𝑛.
(6)

Clearly 𝑥
∗

𝑖
∈ 𝑆
𝑥
; 1 ≤ 𝑖 ≤ 𝑘 + 𝑛. They are linearly

independent. Indeed if ∑𝑘+𝑛
𝑖=1

𝑎
𝑖
𝑥
∗

𝑖
= 0 then ∑

𝑛

𝑖=1 𝑎𝑘+𝑖𝑦
∗

𝑖
=

0 and ∑
𝑘

𝑖=1 𝑎𝑖𝑧
∗

𝑖
+ (∑
𝑛

𝑖=1 𝑎𝑘+𝑖)𝑧
∗

1 = 0. Since {𝑦∗1 , 𝑦
∗

2 , . . . , 𝑦
∗

𝑛
}

is lineraly independent then 𝑎
𝑘+𝑖

= 0; 1 ≤ 𝑖 ≤ 𝑛 and
thus ∑

𝑘

𝑖=1 𝑎𝑖𝑧
∗

𝑖
= 0. But {𝑧∗1 , 𝑧

∗

2 , . . . , 𝑧
∗

𝑘
} is also lineraly

independent. So 𝑎
𝑖
= 0; 1 ≤ 𝑖 ≤ 𝑘. Hence {𝑥∗1 , 𝑥

∗

2 , . . . , 𝑥
∗

𝑘+𝑛
} is

lineraly independent.
Now suppose 𝑔∗

𝑖
= (ℎ
∗

𝑖
, 𝑘
∗

𝑖
) ∈ 𝑋

∗

= 𝑌
∗

⊕
∞
𝑍
∗; 1 ≤

𝑖 ≤ 𝑘 + 𝑛 + 1, where ℎ
∗

𝑖
∈ 𝑌
∗ and 𝑘

∗

𝑖
∈ 𝑍
∗ with

‖𝑔
∗

𝑖
‖ = 1 = 𝑔

∗

𝑖
(𝑥) = 𝑘

∗

𝑖
(𝑧). Thus 𝑔∗

𝑖
= (ℎ

∗

𝑖
, 𝑘
∗

𝑖
) ∈
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𝑌
∗

⊕
∞
sp 𝑆
𝑧
. Since dim(𝑌∗⊕

∞
sp 𝑆
𝑧
) = 𝑘 + 𝑛 then we see

that 𝑔∗1 , 𝑔
∗

2 , . . . , 𝑔
∗

𝑘+𝑛+1 must be linearly dependent. Therfore
𝑥 ∈ (𝑘 + 𝑛)-smooth𝐵(𝑋).

Lemma 10. Let 𝑌 and 𝑍 be nonzero Banach spaces and 𝑋 =

𝑌⊕1𝑍. Let 𝑥 = (𝑦, 𝑧) ∈ 𝑋 where 𝑦, 𝑧 ̸= 0, 𝑦/‖𝑦‖ ∈

𝑚-smooth𝐵(𝑌) and 𝑧/‖𝑧‖ ∈ 𝑘-smooth𝐵(𝑍). Then 𝑥 ∈ (𝑚 +

𝑘 − 1)-smooth𝐵(𝑋).

Proof. Say 𝑚 ≥ 𝑘. Let {𝑦∗1 , 𝑦
∗

2 , . . . , 𝑦
∗

𝑚
} ⊆ 𝑆

𝑦/‖𝑦‖
and let

{𝑧
∗

1 , 𝑧
∗

2 , . . . , 𝑧
∗

𝑘
} ⊆ 𝑆
𝑧/‖𝑧‖

be linearly independent sets. Let

𝑥
∗

𝑖
=
{

{

{

(𝑦
∗

𝑖
, 𝑧
∗

1 ) , if 1 ≤ 𝑖 ≤ 𝑚,

(𝑦
∗

𝑖−𝑚+1, 𝑧
∗

𝑖−𝑚+1) , if 𝑚 + 1 ≤ 𝑖 ≤ 𝑚 + 𝑘 − 1.
(7)

Clearly 𝑥∗
𝑖
∈ 𝑆
𝑥
; 1 ≤ 𝑖 ≤ 𝑚 + 𝑘 − 1. They are linearly

independent. Indeed if ∑𝑚+𝑘−1
𝑖=1 𝑎

𝑖
𝑥
∗

𝑖
= 0 then ∑

𝑚

𝑖=1 𝑎𝑖𝑦
∗

𝑖
+

∑
𝑚+𝑘−1
𝑖=𝑚+1 𝑎𝑖𝑦

∗

𝑖−𝑚+1 = 0 and ∑
𝑚+𝑘−1
𝑖=𝑚+1 𝑎𝑖𝑧

∗

𝑖−𝑚+1 + (∑
𝑚

𝑖=1 𝑎𝑖)𝑧
∗

1 =

0. Since {𝑦
∗

1 , 𝑦
∗

2 , . . . , 𝑦
∗

𝑚
} and {𝑧

∗

1 , 𝑧
∗

2 , . . . , 𝑧
∗

𝑘
} are linearly

independent sets then 𝑎1 = 0, 𝑎
𝑖
= 0; 𝑘 + 1 ≤ 𝑖 ≤ 𝑚, 𝑎

𝑖
+

𝑎
𝑚+𝑖−1 = 0; 2 ≤ 𝑖 ≤ 𝑛 and 𝑎

𝑖
= 0; 𝑚 + 1 ≤ 𝑖 ≤ 𝑚 + 𝑘 − 1.

This makes 𝑎
𝑖
= 0 for all 1 ≤ 𝑖 ≤ 𝑚 + 𝑘 − 1. Hence

{𝑥
∗

1 , 𝑥
∗

2 , . . . , 𝑥
∗

𝑚+𝑘−1} is linearly independent.
Now to prove that 𝑥 ∈ (𝑚 + 𝑘 − 1)-smooth𝐵(𝑋) it

is clearly enough to show that any 𝑥
∗

∈ 𝑆
𝑥
must be in

sp{𝑥∗1 , 𝑥
∗

2 , . . . , 𝑥
∗

𝑚+𝑘−1}. So suppose 𝑥
∗

= (ℎ
∗

, 𝑘
∗

) ∈ S
𝑥
, where

ℎ
∗

∈ 𝑌
∗ and 𝑘∗ ∈ 𝑍∗. Then

1 = 𝑥∗ (𝑥) = ℎ∗ (𝑦) + 𝑘∗ (𝑧) ≤ ℎ
∗
𝑦
 +

𝑘
∗ ‖𝑧‖

≤
𝑦
 + ‖𝑧‖ = ‖𝑥‖ = 1.

(8)

So ℎ∗ ∈ 𝑆
𝑦/‖𝑦‖

and 𝑘∗ ∈ 𝑆
𝑧/‖𝑧‖

and hence there are scalars 𝛼
𝑖
;

1 ≤ 𝑖 ≤ 𝑚 and 𝛽
𝑗
; 1 ≤ 𝑗 ≤ 𝑘 such that ℎ∗ = ∑

𝑚

𝑖=1 𝛼𝑖𝑦
∗

𝑖
and

𝑘
∗

= ∑
𝑘

𝑗=1 𝛽𝑗𝑧
∗

𝑗
. Thus 1 = ℎ

∗

(𝑦/‖𝑦‖) = ∑
𝑚

𝑖=1 𝛼𝑖𝑦
∗

𝑖
(𝑦/‖𝑦‖) =

∑
𝑚

𝑖=1 𝛼𝑖. Similarly ∑𝑘
𝑗=1 𝛽𝑗 = 1.

let 𝐺 = (𝑦
∗∗

, 𝑧
∗∗

) ∈ 𝑋
∗∗

= 𝑌
∗∗

⊕1𝑍
∗∗ with 𝐺(𝑥∗

𝑖
) = 0

for all 1 ≤ 𝑖 ≤ 𝑚 + 𝑘 − 1. Then 𝑦
∗∗

(𝑦
∗

𝑖
) + 𝑧
∗∗

(𝑧
∗

1 ) = 0;
1 ≤ 𝑖 ≤ 𝑚 and 𝑦

∗∗

(𝑦
∗

𝑖−𝑚+1) + 𝑧
∗∗

(𝑧
∗

𝑖−𝑚+1) = 0; 𝑚 +

1 ≤ 𝑖 ≤ 𝑚 + 𝑘 − 1. Thus 𝐺(𝑥∗) = 𝑦
∗∗

(ℎ
∗

) + 𝑧
∗∗

(𝑘
∗

) =
𝑦
∗∗

(∑
𝑚

𝑖=1 𝛼𝑖𝑦
∗

𝑖
) + 𝑧

∗∗

(∑
𝑘

𝑗=1 𝛽𝑗𝑧
∗

𝑗
) = −∑

𝑚

𝑖=1 𝛼𝑖𝑧
∗∗

(𝑧
∗

1 ) +

𝛽1𝑧
∗∗

(𝑧
∗

1 ) − ∑
𝑘

𝑗=2 𝛽𝑗𝑧
∗∗

(𝑧
∗

1 ) = 0 since ∑𝑚
𝑖=1 𝛼𝑖 = 1 = ∑

𝑘

𝑗=1 𝛽𝑗.
This proves that 𝑥∗ ∈ 𝑠p{𝑥∗1 , 𝑥

∗

2 , . . . , 𝑥
∗

𝑚+𝑘−1}. Therefore 𝑥 ∈

(𝑚 + 𝑘 − 1)-smooth𝐵(𝑋).

We now can easily proveTheorem 7.

Proof of Theorem 7. First note that if 𝐼2 ̸= 0, 𝐼5 ̸= 0, 𝐼1
is infinite, or 𝐼4 is infinite, then one can easily construct an
infinite linearly independent subset of 𝑆

𝑥
. On the other hand,

if 𝐼2 = 𝐼5 = 0 and 𝐼1 ∪ 𝐼4 is finite, then writing 𝑋 = ⊕1𝑋𝑖
as 𝑋 = 𝑊1⊕1𝑊2⊕1𝑊3, where 𝑊1 = ⊕1{𝑋𝑖 : 𝑖 ∈ 𝐼1},
𝑊2 = ⊕1{𝑋𝑖 : 𝑖 ∈ 𝐼3}, 𝑊3 = ⊕1{𝑋𝑖 : 𝑖 ∈ 𝐼4} and applying
Theorem 8 and Lemmas 9 and 10 we get the result.
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