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For 𝑛 ≥ 2, let 𝑀 be an 𝑛-dimensional smooth closed manifold and 𝑓 : 𝑀 → R a smooth function. We set min𝑓(𝑀) = 𝑚 and
assume that𝑚 is attained by unique point 𝑝 ∈ 𝑀 such that 𝑝 is a nondegenerate critical point. Then the Morse lemma tells us that
if 𝑎 is slightly bigger than𝑚, 𝑓−1(𝑎) is diffeomorphic to 𝑆𝑛−1. In this paper, we relax the condition on 𝑝 from being nondegenerate
to being an isolated critical point and obtain the same consequence. Some application to the topology of polygon spaces is also
included.

1. Introduction and Statement of the Result

Throughout this paper, 𝑆𝑘 denotes the standard topological
sphere equipped with the standard differential structure. For
𝑛 ≥ 2, let 𝑀 be an 𝑛-dimensional smooth closed manifold
and 𝑓 : 𝑀 → R a smooth function. We set min𝑓(𝑀) = 𝑚

and assume that 𝑚 is attained by unique point 𝑝 ∈ 𝑀. Then
the following result is a consequence of theMorse lemma (see,
e.g., [1]): If 𝑝 is a nondegenerate critical point and there are no
critical points in 𝑓

−1

((𝑚, 𝑎]) (where 𝑚 < 𝑎), then there is a
diffeomorphism 𝑓

−1

(𝑎) ≅ 𝑆
𝑛−1.

The purpose of this paper is to study the question of
whether the same result holds if we relax the condition on 𝑝

from being nondegenerate to being an isolated critical point.
We also give an application of our result to the topology of
polygon spaces.

Now our main result is the following.

Theorem A. For 𝑛 ≥ 2, let 𝑀 be an 𝑛-dimensional smooth
closed manifold and 𝑓 : 𝑀 → R a smooth function. One sets
min𝑓(𝑀) = 𝑚 and assumes that𝑚 is attained by unique point
𝑝 ∈ 𝑀. If 𝑝 is an isolated critical point and there are no critical
points in 𝑓−1((𝑚, 𝑎]) (where𝑚 < 𝑎), then the following results
hold:

(i) If 𝑛 ̸= 5, there is a diffeomorphism 𝑓
−1
(𝑎) ≅ 𝑆

𝑛−1.

(ii) If 𝑛 = 5, there is a homeomorphism 𝑓
−1
(𝑎) ≈ 𝑆

4.

Corollary B. For 𝑛 ≥ 2, let 𝑀 be an 𝑛-dimensional smooth
closed manifold and 𝑓 : 𝑀 → R a smooth function. One sets
max𝑓(𝑀) = 𝑚 and assumes that𝑚 is attained by unique point
𝑝 ∈ 𝑀. If 𝑝 is an isolated critical point and there are no critical
points in 𝑓−1([𝑎,𝑚)) (where 𝑎 < 𝑚), then the following results
hold:

(i) If 𝑛 ̸= 5, there is a diffeomorphism 𝑓
−1
(𝑎) ≅ 𝑆

𝑛−1.
(ii) If 𝑛 = 5, there is a homeomorphism 𝑓

−1
(𝑎) ≈ 𝑆

4.

This paper is organized as follows. In Section 2 we prove
Theorem A. In Section 3 we study an application of it.
Theorem 4 is the main result in this section. Remark 7(ii)
states the essential difference between the known map and
ours.

2. Proof of Theorem A

We keep the notations of Theorem A. For 𝑟 ∈ R, we set

𝑀
𝑟

:= 𝑓
−1
([𝑚, 𝑟]) ,

∘

𝑀
𝑟

:= 𝑓
−1
([𝑚, 𝑟)) .

(1)

Lemma 1. There is a diffeomorphism
∘

𝑀
𝑎

≅ R𝑛.

Proof. By [2, Lemma 3], it will suffice to prove that, for any
compact set 𝐾 ⊂

∘

𝑀
𝑎, there exists an open set 𝑉 of

∘

𝑀
𝑎 such

that𝐾 ⊂ 𝑉 and 𝑉 ≅ R𝑛.
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We fix an open set 𝑈 which satisfies that

𝑝 ∈ 𝑈 ⊂ 𝑈 ⊂

∘

𝑀
𝑎

, 𝑈 ≅ R
𝑛

. (2)

(Such𝑈 indeed exists because 𝑝 ∈

∘

𝑀
𝑎.) Note that 𝑝 ∉ 𝑀

𝑎

\𝑈

and 𝑀
𝑎

\ 𝑈 is compact. Note also that 𝑈 is compact. Hence
there exist 𝜀0 and 𝜀1 ∈ R (where𝑚 < 𝜀0 < 𝜀1) such that

𝑀
𝜀0
⊂ 𝑈 ⊂ 𝑈 ⊂

∘

𝑀
𝜀1
⊂

∘

𝑀
𝑎

. (3)

We fix such 𝜀0 and 𝜀1.
For a compact set 𝐾 ⊂

∘

𝑀
𝑎, since max𝑓(𝐾) < 𝑎 holds,

there exists 𝑏 such that max𝑓(𝐾) < 𝑏 < 𝑎. This implies that

𝐾 ⊂

∘

𝑀
𝑏.

By assumption, there are no critical points in 𝑓−1((𝑚, 𝑎]).
Hence there is a diffeomorphism

𝜑 : (𝑀
𝜀1
,𝑀
𝜀0
)

≅

→ (𝑀
𝑎

,𝑀
𝑏

) . (4)

We set 𝑉 := 𝜑(𝑈). Then 𝑉 is an open set of
∘

𝑀
𝑎, 𝐾 ⊂ 𝑉 and

𝑉 ≅ R𝑛.

Lemma 2. The manifold 𝑓
−1
(𝑎) is homotopy equivalent to

𝑆
𝑛−1.

Proof. Since𝑓−1(𝑎) is amanifold, the assertion is clear for 𝑛 =

2. We assume 𝑛 ≥ 3. We claim that

𝐻
𝑞

(𝑓
−1
(𝑎) ;Z) ≅ 𝐻

𝑞

(𝑆
𝑛−1

;Z) ∀𝑞. (5)

To prove (5), note that𝑀𝑎 is a manifold with boundary such
that 𝜕𝑀𝑎 = 𝑓

−1
(𝑎). Lefschetz duality implies that

𝐻
𝑞

(𝑀
𝑎

, 𝜕𝑀
𝑎

;Z) ≅ 𝐻
𝑛−𝑞

(𝑀
𝑎

;Z) ∀𝑞. (6)

Recall that the inclusion 𝑖 :

∘

𝑀
𝑎

→ 𝑀
𝑎 is a homotopy equiv-

alence. Since
∘

𝑀
𝑎

≅ R𝑛 by Lemma 1,𝑀𝑎 has the cohomology
of a point. In the homology long exact sequence of the pair
(𝑀
𝑎

, 𝜕𝑀
𝑎

), we apply (6). Then we obtain (5).
Since the fundamental group at infinity of

∘

𝑀
𝑎 is trivial

by Lemma 1, 𝑓−1(𝑎) is simply connected. (See, e.g., [3, p. 389]
or [4, Examples 5 and 6] for this kind of argument.) Hence
𝑓
−1
(𝑎) is a homotopy sphere.

Proof of Theorem A. For 𝑛 = 2 or 3, Lemma 2 immediately
implies that 𝑓−1(𝑎) is diffeomorphic to 𝑆𝑛−1.

For 𝑛 ≥ 6, Lemma 2 tells us that 𝑀𝑎 is contractible with
simply connected boundary. Using the ℎ-cobordism theorem
(see [5, p. 108, Proposition A]), we have 𝑀

𝑎

≅ 𝐷
𝑛. Hence

𝑓
−1
(𝑎) ≅ 𝑆

𝑛−1.
For 𝑛 = 5, combining Freedman’s resolution of the 4-

dimensional Poincaré conjecture [6] and Lemma 2, we have
𝑓
−1
(𝑎) ≈ 𝑆

4.
For 𝑛 = 4, combining Perelman’s resolution of the 3-

dimensional Poincaré conjecture [7], Lemma 2, and the fact
[8] that the differential structure on 𝑆

3 is unique, we have
𝑓
−1
(𝑎) ≅ 𝑆

3.

Proof of Corollary B. If𝑓 satisfies the assumption of Corollary
B, the function 𝑔 := −𝑓 satisfies the assumption of 𝑓 in
Theorem A. Hence Corollary B follows.

z4

z2

z3

O
z1 = 1

𝓁z5

Figure 1: An element of𝑋5,ℓ.

3. An Application

Starting in [9–11], the topology of the configuration space of
planar polygons has been considered by many authors. We
refer to [12] for an excellent exposition.

For simplicity, we consider the case that the edge lengths
are 1, . . . , 1 and ℓ. Let 𝑆𝑂(2) act on the 𝑛-dimensional torus
𝑇
𝑛

= (𝑆
1
)
𝑛 diagonally. For ℓ > 0, we set

𝑋
𝑛,ℓ

=

{(𝑧1, . . . , 𝑧𝑛) ∈ 𝑇
𝑛

| (∑
𝑛−1
𝑖=1 𝑧
𝑖

) + ℓ𝑧
𝑛

= 0}
𝑆𝑂 (2)

. (7)

Here 𝑧
𝑖

∈ 𝑆
1
⊂ C denotes the unit vectors in the direction of

the sides of a polygon.
It is clear that 𝑋

𝑛,ℓ

= ⌀ for ℓ > 𝑛 − 1 and 𝑋
𝑛,𝑛−1 =

{one point}. It is also known that there is a diffeomorphism

𝑋
𝑛,ℓ

≅ 𝑆
𝑛−3 for 𝑛 − 3 < ℓ < 𝑛 − 1. (8)

Recall that (8) can be understood Morse-theoretically.
The following arguments are particularly well described in
[12]: Using the 𝑆𝑂(2)-action in the definition of 𝑋

𝑛,ℓ

, we
normalize 𝑧1 to be 1 and write𝑋

𝑛,ℓ

as

𝑋
𝑛,ℓ

= {(𝑧1, . . . , 𝑧𝑛) ∈ 𝑇
𝑛

| 𝑧1 = 1, (
𝑛−1
∑

𝑖=1
𝑧
𝑖

)+ℓ𝑧
𝑛

= 0} .

(9)

(See Figure 1.)
We identify 𝑇𝑛−2 = {(𝑧1, . . . , 𝑧𝑛−1) ∈ 𝑇

𝑛−1
| 𝑧1 = 1} and

define a function 𝑓
𝑛

: 𝑇
𝑛−2

→ R by

𝑓
𝑛

(𝑧1, . . . , 𝑧𝑛−1) =












𝑛−1
∑

𝑖=1
𝑧
𝑖












2

. (10)

Then (9) gives an identification 𝑋
𝑛,ℓ

= 𝑓
−1
𝑛

(ℓ
2
). It is elemen-

tary to prove that an element (𝑧1, . . . , 𝑧𝑛−1) ∈ 𝑇
𝑛−2

\𝑓
−1
𝑛

(0) is a
critical point of𝑓

𝑛

if and only if 𝑧
𝑖

∈ {−1, 1} for all 2 ≤ 𝑖 ≤ 𝑛−1.
All these critical points are nondegenerate and their indices
are known. (See, e.g., [9, 12–14].) In particular, 𝑓

𝑛

attains its
maximum value at (𝑧1, . . . , 𝑧𝑛−1) = (1, . . . , 1) and this is a
nondegenerate critical point. Hence, using theMorse lemma,
(8) follows.
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The configuration space of spatial polygons has also been
studied by many authors. (See, e.g., [12, 14, 15].) In this case,
our object is defined by

𝑌
𝑛,ℓ

=

{(𝑎1, . . . , 𝑎𝑛) ∈ (𝑆
2
)

𝑛

| (∑
𝑛−1
𝑖=1 𝑎
𝑖

) + ℓ𝑎
𝑛

= 0}
𝑆𝑂 (3)

.
(11)

Recently, motivated by chemistry, Crippen [16], Goto and
Komatsu [17], and O’Hara [18] studied certain subspaces of
𝑌
𝑛,1. Namely, they studied the configuration space of equilat-

eral polygons with restriction on the splay angle of each ver-
tex.

First, we define the angle 𝛼
𝑛

to be (7/12)𝜋 and arccos(−1/
3) as 𝑛 = 5 and 𝑛 ≥ 6, respectively. Goto and Komatsu [17]
chose the angle 𝛼

𝑛

with molecular model in mind. Then they
studied the space defined by

𝑍
𝑛

= {(𝑎1, . . . , 𝑎𝑛) ∈ 𝑌𝑛,1 | − ⟨𝑎
𝑖

, 𝑎
𝑖+1⟩ = cos𝛼

𝑛

for 1

≤ 𝑖 ≤ 𝑛 − 2} ,
(12)

where ⟨, ⟩ denotes the standard inner product on R3. The
closed chains in 𝑍

𝑛

are equilateral polygons in R3 with 𝑛

vertices such that the interior angles are all equal to 𝛼
𝑛

except
for the two angles at the successive vertices O and ∑

𝑛−1
𝑖=1 𝑎
𝑖

.
The main result in [17] states that when 𝑛 = 5, 6, 7, 𝑍

𝑛

is a manifold homeomorphic to 𝑆
𝑛−4. Since they use Reeb’s

theorem, they state their result as a homeomorphism. But
actually 𝑍

𝑛

and 𝑆
𝑛−4 are diffeomorphic because the differen-

tial structure on 𝑆
𝑘 is unique for 𝑘 ≤ 3. But what is more

important is that it is not known whether𝑍
𝑛

is a manifold for
𝑛 ≥ 8.

Second, for all 𝛽 ∈ R, we define a space by

𝑊
𝑛

(𝛽) = {(𝑎1, . . . , 𝑎𝑛) ∈ 𝑌𝑛,1 | − ⟨𝑎
𝑖

, 𝑎
𝑖+1⟩

= cos𝛽 for 1≤ 𝑖 ≤ 𝑛} .

(13)

Here we understand 𝑎
𝑛+1 to be 𝑎1.The closed chains in𝑊

𝑛

(𝛽)

are equilateral polygons in R3 with 𝑛 vertices such that the
interior angles are all equal to 𝛽. Crippen [16] studied the
topological type of 𝑊

𝑛

(𝛽) for various 𝛽 when 𝑛 = 3, 4, 5.
The result is that𝑊

𝑛

(𝛽) is either ⌀, one point, or two points
depending on 𝛽. Next, O’Hara [18] studied𝑊6(𝛽) for various
𝛽. The result is that 𝑊6(𝛽) is disjoint union of a certain
number of 𝑆

1’s and points. It is to be noted that since
dim𝑌
𝑛,1 = 2𝑛 − 6, it is natural to expect that dim𝑊

𝑛

(𝛽) =

2𝑛−6−𝑛 = 𝑛−6. But the above results imply that the defining
equations for 𝑊

𝑛

(𝛽) do not intersect transversally when 𝑛 is
small.

Note that the above results in [16–18] concentrate on the
case for small 𝑛. This is understandable because imposing
some conditions on the interior angles causes difficulties in
computations. Nevertheless, we would like to prove some
assertion which holds for general 𝑛. Modifying the definition
of 𝑍
𝑛

, we define a space as follows:

𝐴
𝑛,ℓ

= {(𝑎1, . . . , 𝑎𝑛) ∈ 𝑌𝑛,ℓ | ⟨𝑎𝑖, 𝑎𝑖+1⟩ = 0 for 1≤ 𝑖

≤ 𝑛 − 2} .
(14)

O
𝓁a5

a4

a3

a2 = e2

a1 = e1

Figure 2: An element of 𝐴5,ℓ.

The closed chains in𝐴
𝑛,ℓ

are polygons inR3 with edge lengths
1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛−1
and ℓ such that the interior angles are all equal to 𝜋/2

except for the two angles at the endpoints of the edge of length
ℓ.

Let us obtain a similar description to (9). We set 𝑒1 =

(1, 0, 0) and 𝑒2 = (0, 1, 0). By the 𝑆𝑂(3)-action in the defi-
nition of 𝑌

𝑛,ℓ

, we can normalize 𝑎1 and 𝑎2 to be 𝑒1 and 𝑒2,
respectively. Thus we have the following description of 𝐴

𝑛,ℓ

:

𝐴
𝑛,ℓ

= {(𝑎1, . . . , 𝑎𝑛) ∈ (𝑆
2
)

𝑛

| 𝑎1 = 𝑒1, 𝑎2

= 𝑒2, (
𝑛−1
∑

𝑖=1
𝑎
𝑖

)+ℓ𝑎
𝑛

= 0, ⟨𝑎
𝑖

, 𝑎
𝑖+1⟩

= 0 (2≤ 𝑖 ≤ 𝑛 − 2)} .

(15)

Hereafter we use description (15). (See Figure 2.)
We recall the following.

Theorem3 (see [19,Theorem 5.6], [20,Theorem 4]). One sets

𝑟
𝑛

:=

{

{

{

√2𝑚 𝑛 = 2𝑚 + 1,

√2𝑚2
− 2𝑚 + 1 𝑛 = 2𝑚.

(16)

Then the following results hold:
(i) 𝐴
𝑛,ℓ

= ⌀ if ℓ > 𝑟
𝑛

.
(ii) 𝐴

𝑛,𝑟

𝑛

= {𝑜𝑛𝑒 𝑝𝑜𝑖𝑛𝑡}. We write the element of 𝐴
𝑛,𝑟

𝑛

by
𝑃
𝑛

= (𝑎1, . . . , 𝑎𝑛) in the notation of (15). Then 𝑃
𝑛

is
given as follows: For 1 ≤ 𝑖 ≤ 𝑛 − 1, 𝑎

𝑖

is given by

𝑎
𝑖

=

{

{

{

𝑒1 𝑖 𝑖𝑠 𝑜𝑑𝑑,

𝑒2 𝑖 𝑖𝑠 𝑒V𝑒𝑛.
(17)

As a consequence, 𝑎
𝑛

is given by

𝑎
𝑛

=

{
{
{

{
{
{

{

−

𝑚

𝑟
𝑛

(𝑒1 + 𝑒2) 𝑛 = 2𝑚 + 1,

−

1
𝑟
𝑛

(𝑚𝑒1 + (𝑚 − 1) 𝑒2) 𝑛 = 2𝑚.

(18)

Note that 𝑃
𝑛

is a planar 𝑛-gon. (See Figure 3.)
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O O

a4 = e2

a3 = e1

a2 = e2

a1 = e1

r6a6

r5a5

a4 = e2

a3 = e1

a2 = e2

a1 = e1

a5 = e1

Figure 3: 𝑃5 and 𝑃6.

Now we state the main result in this section (cf. (8)).

Theorem 4. Let ℓ be slightly smaller than 𝑟
𝑛

. Then, for all 𝑛 ≥

5, there is a diffeomorphism 𝐴
𝑛,ℓ

≅ 𝑆
𝑛−4

.

For the rest of this paper, we prove Theorem 4. For that
purpose, we define

𝐵
𝑛

= {(𝑎1, . . . , 𝑎𝑛−1) ∈ (𝑆
2
)

𝑛−1
| 𝑎1 = 𝑒1, 𝑎2

= 𝑒2, ⟨𝑎𝑖, 𝑎𝑖+1⟩ = 0 (2≤ 𝑖 ≤ 𝑛 − 2)} .
(19)

Moreover, similarly to 𝑓
𝑛

in (10), we define a map 𝑔
𝑛

: 𝐵
𝑛

→

R by

𝑔
𝑛

(𝑎1, . . . , 𝑎𝑛−1) =












𝑛−1
∑

𝑖=1
𝑎
𝑖












2

. (20)

Then (15) gives an identification 𝐴
𝑛,ℓ

= 𝑔
−1
𝑛

(ℓ
2
) and

Theorem 3 tells us that max𝑔
𝑛

(𝐵
𝑛

) is attained by 𝑃
𝑛

. In order
to compute the Hessian matrix of 𝑔

𝑛

at 𝑃
𝑛

, we construct the
commutative diagram shown in Figure 4.

First, we set

𝜋
𝑛

(𝜃1, . . . , 𝜃𝑛−3) = (𝑒
𝑖𝜃1
, . . . , 𝑒

𝑖𝜃

𝑛−3
) . (21)

Namely, 𝜋
𝑛

is the universal cover.
Second, we construct 𝜓

𝑛

by induction on 𝑛. We define 𝜓3
to be the unique map between one-point spaces.

Assuming that 𝜓
𝑛

is constructed, we construct 𝜓
𝑛+1. We

write

𝜓
𝑛

(𝜃1, . . . , 𝜃𝑛−3) = (𝑎1, . . . , 𝑎𝑛−1) . (22)

Since ⟨𝑎
𝑛−2, 𝑎𝑛−1⟩ = 0, there are two choices for 𝜉 ∈ 𝑆

2

which satisfies that ⟨𝜉, 𝑎
𝑛−2⟩ = ⟨𝜉, 𝑎

𝑛−1⟩ = 0. Among these
𝜉’s, we choose the one which satisfies the condition that
det(𝑎
𝑛−2, 𝑎𝑛−1, 𝜉) = (−1)𝑛+1. Using this, we define

𝜂 := (cos 𝜃
𝑛−2) 𝑎𝑛−2 + (sin 𝜃

𝑛−2) 𝜉. (23)

And we set

𝜓
𝑛+1 (𝜃1, . . . , 𝜃𝑛−3, 𝜃𝑛−2) := (𝑎1, . . . , 𝑎𝑛−1, 𝜂) . (24)

n−3

𝜋n

Tn−3
≅

gn

hn

𝜑n

𝜓n

Bn

Figure 4

From the construction,𝜓
𝑛

induces amap𝜑
𝑛

: 𝑇
𝑛−3

→ 𝐵
𝑛

such that 𝜓
𝑛

= 𝜑
𝑛

∘ 𝜋
𝑛

. It is easy to see that 𝜑
𝑛

is a diffeomor-
phism. (See Remark 7(ii).)

Third, we set ℎ
𝑛

:= 𝑔
𝑛

∘ 𝜓
𝑛

, where 𝑔
𝑛

is defined in (20).
Thus we have completed the construction of the diagram in
Figure 4.

Note that 𝜓
𝑛

(0, . . . , 0) = 𝑃
𝑛

, where 𝑃
𝑛

is defined in
Theorem 3.

Lemma 5. Let 𝐻(ℎ
𝑛

)(0, . . . , 0) be the Hessian matrix of ℎ
𝑛

at
(𝜃1, . . . , 𝜃𝑛−3) = (0, . . . , 0). Note that this is an (𝑛 − 3) × (𝑛 −

3) matrix. Let 𝛾(𝑛, 𝑖, 𝑗) be the (𝑖, 𝑗)th entry of𝐻(ℎ
𝑛

)(0, . . . , 0).
Then, for all 𝑛 ≥ 5, the following result holds:

𝛾 (𝑛, 𝑖, 𝑗) =

{
{
{

{
{
{

{

−2 ⌊𝑛 − 1 − 𝑖

2
⌋ ⌊

𝑗 + 1
2

⌋ 𝑖𝑓 𝑖 ≥ 𝑗,

−2 ⌊
𝑛 − 1 − 𝑗

2
⌋ ⌊

𝑖 + 1
2

⌋ 𝑖𝑓 𝑖 < 𝑗.

(25)

Proof. The lemma is proved by direct computations.

Proof of Theorem 4 for Even 𝑛. We set

Γ (𝑛, 𝑖) := 𝛾 (𝑛, 𝑖, 𝑖 + 1)

−

𝛾 (𝑛, 𝑖, 1)
𝛾 (𝑛, 𝑛 − 3, 1)

𝛾 (𝑛, 𝑛 − 3, 𝑖 + 1) .
(26)

It is easy to see that when 𝑛 is even,

det (𝐻 (ℎ
𝑛

) (0, . . . , 0)) = − 2
𝑛−4
∏

𝑖=1
Γ (𝑛, 𝑖) . (27)

Thus we have det(𝐻(ℎ
𝑛

)(0, . . . , 0)) ̸= 0; hence (0, . . . , 0) is a
nondegenerate critical point of ℎ

𝑛

. Using the Morse lemma,
we complete the proof of Theorem 4 for even 𝑛.

Proof of Theorem 4 for Odd 𝑛. Lemma 5 tells us that when
𝑛 is odd, det(𝐻(ℎ

𝑛

)(0, . . . , 0)) = 0. Hence we need to use
Corollary B. For that purpose, it will suffice to prove that
(0, . . . , 0) is an isolated critical point of ℎ

𝑛

.
We define a map 𝐹

𝑛

: 𝑆
𝑛−4

× [0,∞) → R𝑛−3 by

𝐹
𝑛

(𝑢1, . . . , 𝑢𝑛−3, 𝑡) = (grad ℎ
𝑛

) (𝑡𝑢1, . . . , 𝑡𝑢𝑛−3) , (28)

where the right-hand side denotes the Jacobian matrix of ℎ
𝑛

at

(𝜃1, . . . , 𝜃𝑛−3) = (𝑡𝑢1, . . . , 𝑡𝑢𝑛−3) . (29)
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First we prove the following.

Lemma 6. For each (𝑢1, . . . , 𝑢𝑛−3) ∈ 𝑆
𝑛−4, there exists 𝜀 > 0

such that 𝐹
𝑛

(𝑢1, . . . , 𝑢𝑛−3, 𝑡) ̸= 0 for all 𝑡 ∈ (0, 𝜀).

Proof. We fix (𝑢1, . . . , 𝑢𝑛−3) ∈ 𝑆
𝑛−4. In order to prove the

lemmaby contradiction, assume that 𝑡 = 0were an accumula-
tion point of 𝐹

𝑛

(𝑢1, . . . , 𝑢𝑛−3, 𝑡). For 1 ≤ 𝑘 ≤ 𝑛 −

3, let 𝐹
𝑛,𝑘

(𝑢1, . . . , 𝑢𝑛−3, 𝑡) be the 𝑘th element of 𝐹
𝑛

(𝑢1, . . . ,
𝑢
𝑛−3,𝑡). Since 𝐹𝑛,𝑘(𝑢1, . . . , 𝑢𝑛−3, 𝑡) is a polynomial in {sin(𝑡𝑢

𝑖

),

cos(𝑡𝑢
𝑖

) | 1 ≤ 𝑖 ≤ 𝑛 − 3}, we can define 𝐹
𝑛,𝑘

(𝑢1, . . . , 𝑢𝑛−3, 𝑡)
for 𝑡 ∈ C and this is a holomorphic function. If 𝑡 = 0 were
an accumulation point of 𝐹

𝑛

(𝑢1, . . . , 𝑢𝑛−3, 𝑡), then the identity
theorem would tell us that 𝐹

𝑛,𝑘

(𝑢1, . . . , 𝑢𝑛−3, 𝑡) is identically 0
for all 𝑡 ∈ C and for all 1 ≤ 𝑘 ≤ 𝑛 − 3.

We write the Maclaurin expansion of 𝐹
𝑛,𝑘

(𝑢1, . . . , 𝑢𝑛−3, 𝑡)
as

𝐹
𝑛,𝑘

(𝑢1, . . . , 𝑢𝑛−3, 𝑡) = 𝜎
𝑘

(𝑢1, . . . , 𝑢𝑛−3) 𝑡

+ 𝜏
𝑘

(𝑢1, . . . , 𝑢𝑛−3) 𝑡
3

+Higher Order Terms in 𝑡,

(30)

where 𝜎
𝑘

(𝑢1, . . . , 𝑢𝑛−3) and 𝜏
𝑘

(𝑢1, . . . , 𝑢𝑛−3) are polynomi-
als in 𝑢1, . . . , 𝑢𝑛−3 of degrees 1 and 3, respectively. Since
𝐹
𝑛,𝑘

(𝑢1, . . . , 𝑢𝑛−3, 𝑡) ≡ 0, we have

𝜎
𝑘

(𝑢1, . . . , 𝑢𝑛−3) = 𝜏
𝑘

(𝑢1, . . . , 𝑢𝑛−3) = 0

∀1 ≤ 𝑘 ≤ 𝑛 − 3.

(31)

Then standard computations show that 𝑢1 = ⋅ ⋅ ⋅ = 𝑢
𝑛−3 = 0.

This contradicts the assumption that (𝑢1, . . . , 𝑢𝑛−3) ∈ 𝑆
𝑛−4.

This completes the proof of Lemma 6.

Now using Lemma 6 and the continuity of the function
𝐹
𝑛

, there exists an open neighborhood 𝑈 of O in R𝑛−3 such
that if (𝑎1, . . . , 𝑎𝑛−3) ∈ 𝑈 \O, then

(grad ℎ
𝑛

) (𝑎1, . . . , 𝑎𝑛−3) ̸= (0, . . . , 0) . (32)

Thus (0, . . . , 0) is an isolated critical point of ℎ
𝑛

.
This completes the proof of Theorem 4 for odd 𝑛.

Remark 7. (i) Recall that Corollary B for dim𝑀 = 5 just
gives a topological assertion. In order to proveTheorem 4, we
have studied the map 𝑔

𝑛

: 𝐵
𝑛

→ R. Since dim𝐵
𝑛

= 𝑛 − 3,
dim𝐵
𝑛

= 5 implies that 𝑛 = 8. But we have seen in Lemma 5
that when 𝑛 is even, 𝑃

𝑛

is a nondegenerate critical point and
deduced Theorem 4 directly from the Morse lemma, which
gives a differential assertion.

(ii) Although we have not used the diffeomorphism 𝜑
𝑛

in
the above arguments, it is to be noted that the map 𝑔

𝑛

∘ 𝜑
𝑛

:

𝑇
𝑛−3

→ R is much more difficult than the known map 𝑓
𝑛

:

𝑇
𝑛−2

→ R in (10).
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