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Existence criteria are derived for the eventually periodic solutions of a class of differential equations with piecewise constant
argument whose solutions at consecutive integers satisfy nonlinear recurrence relations. The proof characterizes the initial values
of periodic solutions in terms of the coefficients of the resulting difference equations. Sufficient conditions for the unboundedness,
boundedness, and symmetry of general solutions also follow from the corresponding properties of the difference equations.

1. Introduction

Since the seminal works of Shah and Wiener [1] and Cooke
and Wiener [2], differential equations with piecewise con-
stant arguments of the form

𝑥
󸀠

(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥 ([𝑡])) , (1)

where 𝑓 is continuous and [⋅] is the greatest integer function,
have been treated widely in the literature and applied to
certain biomedical models (see [3–7] and references therein).
Continuity of the solutions of these equations implies recur-
rence relations for the values of solutions at consecutive
integers. Therefore, there is a natural interplay between
properties of these differential equations and properties of
difference equations.

In this paper, we consider a class of equations of the above
formbutwhere𝑓 is discontinuous: the chaotic and eventually
periodic behavior and symmetry of solutions of initial-value
problems of the form

𝑥
󸀠

(𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 ([𝑡]) +𝐶𝐹 (𝑥 ([𝑡])) , 𝑥 (0) = 𝑥0 (2)

on [0,∞) are determined, where 𝐴, 𝐵, and 𝐶 are constants;
𝐹 : R → R is defined by

𝐹 (𝑥) ≡

{

{

{

0, if 𝑥 ≤ 𝜆

1, if 𝑥 > 𝜆

(3)

for some positive number 𝜆, and the sequence 𝑥(𝑛) (𝑛 =

0, 1, . . .) satisfies a nonlinear difference equation. As in the
case when 𝑓 is continuous, by a solution of (2), we mean a
function 𝑥(𝑡) that is defined on [0,∞) with these properties:

(1) 𝑥(𝑡) is continuous on [0,∞).
(2) The derivative 𝑥

󸀠
(𝑡) exists at each point 𝑡 in [0,∞),

with the possible exception of the points [𝑡] in [0,∞),
where one-sided derivatives exist.

(3) 𝑥(𝑡) satisfies (2) on [𝑛, 𝑛 + 1) for each nonnegative
integer 𝑛.

Specifically, since

𝑑

𝑑𝑡

(𝑥 (𝑡) 𝑒
−𝐴𝑡

) = 𝐵𝑥 ([𝑡]) 𝑒
−𝐴𝑡

+𝐶𝐹 (𝑥 ([𝑡])) 𝑒
−𝐴𝑡

, (4)

it follows that if 𝑛 is a positive integer and 𝑛− 1 ≤ 𝑡
󸀠
< 𝑛, then

𝑥 (𝑡
󸀠
) 𝑒
−𝐴𝑡
󸀠

−𝑥 (𝑛 − 1) 𝑒−𝐴(𝑛−1)

= (𝐵𝑥 (𝑛 − 1) +𝐶𝐹 (𝑥 (𝑛 − 1))) ∫
𝑡
󸀠

𝑛−1
𝑒
−𝐴𝑡

𝑑𝑡.

(5)

Letting 𝑡
󸀠 increase to 𝑛, we have the difference equation

𝑥 (𝑛) = 𝑎
∗
𝑥 (𝑛 − 1) − 𝑏

∗
𝐹 (𝑥 (𝑛 − 1)) , (6)
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where 𝑥(0) = 𝑥0,

𝑎
∗
≡

{
{

{
{

{

𝑒
𝐴

+ 𝐵

𝑒
𝐴

− 1
𝐴

, if 𝐴 ̸= 0

1 + 𝐵, if 𝐴 = 0,

𝑏
∗
≡

{
{

{
{

{

−𝐶

𝑒
𝐴

− 1
𝐴

, if 𝐴 ̸= 0

−𝐶, if 𝐴 = 0.

(7)

Therefore, the unique solution to (2) is

𝑥 (𝑡) = (𝑒
𝐴(𝑡−[𝑡])

+𝐵∫

𝑡

[𝑡]

𝑒
𝐴(𝑡−𝑠)

𝑑𝑠) 𝑥 ([𝑡])

+𝐶(∫

𝑡

[𝑡]

𝑒
𝐴(𝑡−𝑠)

𝑑𝑠)𝐹 (𝑥 ([𝑡])) ,

(8)

where

∫

𝑡

[𝑡]

𝑒
𝐴(𝑡−𝑠)

𝑑𝑠 =

{
{

{
{

{

𝑒
𝐴(𝑡−[𝑡])

− 1
𝐴

, if 𝐴 ̸= 0

𝑡 − [𝑡] , if 𝐴 = 0.
(9)

Moreover, 𝑥(𝑡) satisfies (1)–(3) above since 𝑥(𝑡) is contin-
uous on [0,∞) with left derivatives

𝑥
󸀠
(𝑛
−
) = 𝐴𝑥 (𝑛) + 𝐵𝑥 (𝑛 − 1) +𝐶𝐹 (𝑥 (𝑛 − 1)) (10)

at integers 𝑛 > 0, with right derivatives

𝑥
󸀠
(𝑛
+
) = (𝐴+𝐵) 𝑥 (𝑛) +𝐶𝐹 (𝑥 (𝑛)) (11)

at integers 𝑛 ≥ 0, and more generally with derivatives at
nonintegral 𝑡 given by

𝑥
󸀠

(𝑡) = ((𝐴+𝐵) 𝑥 ([𝑡]) +𝐶𝐹 (𝑥 ([𝑡]))) 𝑒
𝐴(𝑡−[𝑡])

. (12)

We recall that the solution 𝑥 = 𝑥(𝑡) to (2) is oscillatory if it
has arbitrarily large zeros [3]. Accordingly, a sequence𝑥

𝑛
(𝑛 =

0, 1, . . .) is oscillatory if there exists a subsequence 𝑥
𝑛
𝑘

such
that 𝑥

𝑛
𝑘

𝑥
𝑛
𝑘+1

≤ 0 for all 𝑘. Moreover, a stationary state of 𝑥
𝑛

is a term 𝑥
𝑖
such that 𝑥

𝑖
= 𝑥
𝑖+1 [8]. The following holds for

solutions of (2).

Proposition 1. Let 𝑥 = 𝑥(𝑡) be given by (8), where 𝑥(𝑛) (𝑛 =

0, 1, . . .) satisfies (6).

(1) If 𝑎∗ ̸= 1 and 𝑥(𝑖) is a stationary state of 𝑥(𝑛), then
either 𝑥 = 𝑥(𝑡) = 0 for all 𝑡 ≥ 𝑖 or 𝑥 = 𝑥(𝑡) = 𝑏

∗
/(𝑎
∗
−

1) for all 𝑡 ≥ 𝑖.
(2) Let 𝑎∗ > 1.

(a) If 𝑥 = 𝑥(𝑡) is oscillatory, then 𝑥(𝑛) is oscillatory
with stationary state 0.

(b) If 𝑥(𝑛) diverges to ∞, then lim
𝑡→∞

𝑥(𝑡) = ∞.
(c) If 𝑥(𝑛) diverges to −∞, then lim

𝑡→∞
𝑥(𝑡) = −∞.

Proof. (1) Let 𝑎∗ ̸= 1 and let 𝑥(𝑖) = 𝑥(𝑖 + 1). Suppose first that
𝑥(𝑖) ≤ 𝜆. Then 𝑥(𝑖 + 1) = 𝑎

∗
𝑥(𝑖) = 𝑥(𝑖) so 𝑥(𝑖) = 𝑥(𝑖 + 1) = 0

since 𝑎∗ ̸= 1. By induction,𝑥(𝑖+𝑗) = 0 < 𝜆 and𝐹(𝑥(𝑖+𝑗)) = 0
for all integers 𝑗 ≥ 0; and, by (8), 𝑥(𝑡) = 0 for all 𝑡 ≥ 𝑖.

On the other hand, assume 𝑥(𝑖) > 𝜆. Then 𝑥(𝑖 + 1) =

𝑎
∗
𝑥(𝑖) − 𝑏

∗
= 𝑥(𝑖) so 𝑥(𝑖) = 𝑥(𝑖 + 1) = 𝑏

∗
/(𝑎
∗
− 1) > 𝜆 since

𝑎
∗

̸= 1. Thus 𝑥(𝑖 + 2) = 𝑎
∗
𝑥(𝑖 + 1) − 𝑏

∗
= 𝑏
∗
/(𝑎
∗
− 1) > 𝜆

and, by induction, 𝑥(𝑖 + 𝑗) = 𝑏
∗
/(𝑎
∗
− 1) for all integers 𝑗 ≥ 0.

Since 𝑏
∗
/(𝑎
∗
− 1) = −𝐶/(𝐴 + 𝐵) and 𝐹(𝑏

∗
/(𝑎
∗
− 1)) = 1, it

follows from (8) that 𝑥(𝑡) = 𝑏
∗
/(𝑎
∗
− 1) for all 𝑡 ≥ 𝑖.

(2) Let 𝑎∗ > 1. Then 𝐵 > −𝐴 and in (8) we have

𝑒
𝐴(𝑡−[𝑡])

+𝐵∫

𝑡

[𝑡]

𝑒
𝐴(𝑡−𝑠)

𝑑𝑠 > 1. (13)

(a) Suppose by way of contradiction that 𝑥 = 𝑥(𝑡) is
oscillatory but 0 is not a stationary state of 𝑥(𝑛). It follows
that 𝑥(𝑛 − 1) ̸= 0 for all positive integers 𝑛.

Assume first that 𝑥(𝑛 − 1) < 0 for some integer 𝑛 ≥ 1.
Then 𝐹(𝑥(𝑛 − 1)) = 0 and 𝑥(𝑛) = 𝑎

∗
𝑥(𝑛 − 1) < 0 < 𝜆. By

induction, 𝑥([𝑡]) < 0 and 𝐹(𝑥([𝑡])) = 0 for all 𝑡 ≥ 𝑛 − 1.
Let 𝑛 − 1 ≤ [𝑡] < 𝑡 < [𝑡] + 1. By (8) and (13), 𝑥(𝑡) < 0 for

all 𝑡 ≥ 𝑛 − 1; and thus 𝑥 = 𝑥(𝑡) is not oscillatory in this case,
a contradiction.

Therefore, assume that𝑥(𝑛−1) > 0 for all positive integers
𝑛. Let 𝑛 be a positive integer. We show that 𝑥(𝑡) > 0 for all 𝑡
in the interval (𝑛 − 1, 𝑛): note that 𝑥󸀠(𝑡) = 𝑥

󸀠
(𝑛 − 1+)𝑒𝐴(𝑡−[𝑡]).

Suppose that 𝑥󸀠(𝑛 − 1+) = 0. Then 𝑥
󸀠
(𝑡) = 0 and

(i) if 𝐴 ̸= 0, then, by (2),

𝑥 (𝑡) = −

𝐵𝑥 (𝑛 − 1) + 𝐶𝐹 (𝑥 (𝑛 − 1))
𝐴

= 𝑥 (𝑛 − 1) > 0 (14)

for all 𝑡 in (𝑛 − 1, 𝑛);

(ii) if 𝐴 = 0, then, by (2), 𝐵𝑥(𝑛 − 1) + 𝐶𝐹(𝑥(𝑛 − 1)) = 0
and, by (8),

𝑥 (𝑡) = (1+𝐵 (𝑡 − [𝑡])) 𝑥 (𝑛 − 1)

+𝐶 (𝑡 − [𝑡]) 𝐹 (𝑥 (𝑛 − 1)) = 𝑥 (𝑛 − 1) > 0
(15)

for all 𝑡 in (𝑛 − 1, 𝑛).

If𝑥󸀠(𝑛−1+) > 0, then𝑥(𝑡) is strictly increasing on (𝑛−1, 𝑛)
and 𝑥(𝑛−1) > 0, so 𝑥(𝑡) > 0 for all 𝑡 in (𝑛−1, 𝑛) by continuity.

If 𝑥󸀠(𝑛 − 1+) < 0, then 𝑥(𝑡) is strictly decreasing on (𝑛 −

1, 𝑛), but 𝑥(𝑡) is still positive on (𝑛 − 1, 𝑛) by continuity since
𝑥(𝑛 − 1) and 𝑥(𝑛) are both positive.

Therefore, 𝑥(𝑡) > 0 for all 𝑡 in [𝑛 − 1, 𝑛] (and hence for
all 𝑡). Thus 𝑥 = 𝑥(𝑡) is not oscillatory in this case, contrary to
our assumption.

(b) Suppose that lim
𝑛→∞

𝑥(𝑛) = ∞. There exists 𝑁 such
that 𝑥(𝑛) > 𝜆 for all integers 𝑛 ≥ 𝑁. Let [𝑡] ≥ 𝑁. Then
𝐹(𝑥([𝑡])) = 1 and, by (8) and (13),

𝑥 (𝑡) ≥ 𝑥 ([𝑡]) +𝐶∫

𝑡

[𝑡]

𝑒
𝐴(𝑡−𝑠)

𝑑𝑠. (16)
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Thus, if 𝐶 ≥ 0, then 𝑥(𝑡) ≥ 𝑥([𝑡]). And if 𝐶 < 0, then
𝑥(𝑡) ≥ 𝑥([𝑡]) − 𝑏

∗ since

0 ≤

𝑒
𝐴(𝑡−[𝑡])

− 1
𝐴

≤

𝑒
𝐴

− 1
𝐴

(17)

when 𝐴 ̸= 0 and 𝑡 − [𝑡] < 1 otherwise. Therefore,
lim
𝑡→∞

𝑥(𝑡) = ∞.
(c) Suppose that lim

𝑛→∞
𝑥(𝑛) = −∞.There exists𝑁 such

that 𝑥(𝑛) ≤ 0 for all integers 𝑛 ≥ 𝑁. Let [𝑡] ≥ 𝑁. Then
𝐹(𝑥([𝑡])) = 0 and, by (8) and (13), 𝑥(𝑡) ≤ 𝑥([𝑡]). Hence,
lim
𝑡→∞

𝑥(𝑡) = −∞.

Our main results characterize eventually periodic solu-
tions 𝑥 = 𝑥(𝑡) of (2). Since 𝑥(𝑡) is generally not differentiable
at integers 𝑡 = 𝑛 but is always differentiable between integers,
we restrict our attention to integral periods (see [3, 6]). In this
case, by (8), we have the following:

𝑥 = 𝑥(𝑡) is eventually periodic with positive integral
period 𝑝 if and only if 𝑥(𝑛) (𝑛 = 0, 1, . . .) is eventually
periodic with period 𝑝.

Equation (2) is similar to recent models related to neural
networks ([8–12]). We treat a generalized version of (6) as
follows.

For real numbers 𝑎, 𝑏, 𝑥0, and 𝜆 > 0, define, for 𝑛 ≥ 1,

𝑥
𝑛
= 𝑎𝑥
𝑛−1 − 𝑏𝐹 (𝑥

𝑛−1) , (18)

where 𝜆 and 𝐹 are given by (3).

Remark 2. Equation (18) is the difference equation (6) of a
differential equation (2) with 𝑥(0) ≡ 𝑥0, 𝜆 ≡ 𝜆, and 𝐴 being
arbitrary: if 𝐴 = 0, choose 𝐵 ≡ 𝑎 − 1 and 𝐶 ≡ −𝑏. And if
𝐴 ̸= 0, then let 𝐵 ≡ (𝑎 − 𝑒

𝐴
)𝐴/(𝑒
𝐴
− 1) and 𝐶 ≡ −𝑏𝐴/(𝑒

𝐴
− 1).

The resulting solution 𝑥 = 𝑥(𝑡) given by (8) satisfies (2) with
𝑎
∗
≡ 𝑎 and 𝑏

∗
≡ 𝑏.

The next result shows that wemay henceforth assume that
𝑎 > 1 and 𝑏 > 0 in (18).

Proposition 3. Let 𝑥
𝑛
be defined by (18) for real 𝑎, 𝑏, 𝑥0, and

𝜆 > 0, and let 𝑥 = 𝑥(𝑡) satisfy (8), where 𝑎
∗ and 𝑏

∗ are given
in (6). In the following, 𝑗 is an arbitrary positive integer.

(1) (a) Suppose that 0 ≤ 𝑎 ≤ 1. If 𝑥
𝑘
≤ 𝜆, for some 𝑘, then

𝑥
𝑘+𝑗

= 𝑎
𝑗
𝑥
𝑘
. On the other hand, if 𝑥

𝑘
> 𝜆, for all 𝑘, then

𝑥
𝑗
=

{

{

{

𝑎
𝑗
(𝑥0 −

𝑏

𝑎 − 1
) +

𝑏

𝑎 − 1
, 𝑖𝑓 𝑎 ̸= 1

𝑥0 − 𝑗𝑏, 𝑖𝑓 𝑎 = 1 (𝑏 ≤ 0) .
(19)

(b) In particular, assume that 0 ≤ 𝑎
∗

≤ 1. If 𝑥(𝑘) ≤ 𝜆, for
some nonnegative integer 𝑘, then, for all 𝑡󸀠 in [𝑘, 𝑘+1), one has
that 𝑥(𝑡󸀠 + 𝑗) = 𝑎

∗𝑗
𝑥(𝑡
󸀠
). On the other hand, if 𝑥(𝑘) > 𝜆, for

all nonnegative integers 𝑘, then, for all 𝑡󸀠 in [0, 1),

𝑥 (𝑡
󸀠
+ 𝑗)

=

{
{

{
{

{

𝑎
∗𝑗

(𝑥 (𝑡
󸀠
) −

𝑏
∗

𝑎
∗
− 1

) +

𝑏
∗

𝑎
∗
− 1

, 𝑖𝑓 𝑎
∗

̸= 1

𝑥 (𝑡
󸀠
) − 𝑗𝑏

∗
, 𝑖𝑓 𝑎

∗
= 1 (𝑏

∗
≤ 0) .

(20)

(2) (a) Suppose that 𝑎 > 1 and 𝑏 ≤ 0. If 𝑥0 ≤ 0, then
𝑥
𝑗
= 𝑎
𝑗
𝑥0. If 𝑥0 > 0, then there exists 𝑘 ≥ 1 such that 𝑥

𝑘+𝑗
=

𝑎
𝑗
(𝑥
𝑘
− 𝑏/(𝑎 − 1)) + 𝑏/(𝑎 − 1).

(b) In particular, assume that 𝑎∗ > 1 and 𝑏
∗
≤ 0. If 𝑥(0) ≤

0, then 𝑥(𝑡
󸀠
+ 𝑗) = 𝑎

∗𝑗
𝑥(𝑡
󸀠
) for all 𝑡󸀠 in [0, 1). If 𝑥(0) > 0, then

there exists a positive integer 𝑘 such that 𝑥(𝑡󸀠 +𝑗) = 𝑎
∗𝑗

(𝑥(𝑡
󸀠
)−

𝑏
∗
/(𝑎
∗
− 1)) + 𝑏

∗
/(𝑎
∗
− 1) for all 𝑡󸀠 in [𝑘, 𝑘 + 1).

(3) (a) Suppose that 𝑎 < 0. Either 𝑥
𝑛
is oscillatory or there

exists 𝑘 ≥ 0 such that 𝑥
𝑘+𝑗

= 𝑎
𝑗
(𝑥
𝑘
− 𝑏/(𝑎 − 1)) + 𝑏/(𝑎 − 1).

(b) In particular, assume that 𝑎∗ < 0. Either 𝑥 = 𝑥(𝑡) is
oscillatory or there exists an integer 𝑘 ≥ 0 such that 𝑥(𝑡󸀠 + 𝑗) =

𝑎
∗𝑗

(𝑥(𝑡
󸀠
) − 𝑏
∗
/(𝑎
∗
− 1)) + 𝑏

∗
/(𝑎
∗
− 1) for all 𝑡󸀠 in [𝑘, 𝑘 + 1).

Proof. (1a) Suppose that 0 ≤ 𝑎 ≤ 1. If 𝑥
𝑘

≤ 𝜆, for some 𝑘,
then either 0 ≤ 𝑥

𝑘+1 = 𝑎𝑥
𝑘
≤ 𝑥
𝑘
≤ 𝜆 or 𝑥

𝑘+1 = 𝑎𝑥
𝑘
≤ 0 < 𝜆.

Hence, the desired form of 𝑥
𝑘+𝑗

follows by induction in this
case.

Assume that 𝑥
𝑘
> 𝜆 for all 𝑘. Thus, if 𝑎 ̸= 1, then

𝑥
𝑗
= 𝑎𝑥
𝑗−1 − 𝑏 = 𝑎

2
𝑥
𝑗−2 −

𝑎
2
− 1

𝑎 − 1
𝑏 = ⋅ ⋅ ⋅

= 𝑎
𝑗
(𝑥0 −

𝑏

𝑎 − 1
)+

𝑏

𝑎 − 1
.

(21)

And if 𝑎 = 1, then 𝑥
𝑗
= 𝑥
𝑗−1 − 𝑏 = 𝑥

𝑗−2 − 2𝑏 = ⋅ ⋅ ⋅ = 𝑥0 − 𝑗𝑏.
(Since 𝑥

𝑗
> 𝜆 > 0, for all 𝑗, it follows that 𝑏 ≤ 0 in this case.)

(1b) Suppose that 0 ≤ 𝑎
∗

≤ 1. Let 𝑥(𝑘) ≤ 𝜆 for some
integer 𝑘 ≥ 0. By (a), 𝑥(𝑘+𝑗) = 𝑎

∗𝑗
𝑥(𝑘) ≤ 𝜆 and 𝐹(𝑥(𝑘+𝑗)) =

0. Let 𝑡󸀠 be in [𝑘, 𝑘 + 1). Then 𝑘 + 𝑗 ≤ 𝑡
󸀠
+ 𝑗 < 𝑘 + 𝑗 + 1 and,

by (8),

𝑥 (𝑡
󸀠
+ 𝑗)

= (𝑒
𝐴(𝑡
󸀠
+𝑗−[𝑡

󸀠
+𝑗])

+𝐵∫

𝑡
󸀠
+𝑗

[𝑡
󸀠
+𝑗]

𝑒
𝐴(𝑡
󸀠
+𝑗−𝑠)

𝑑𝑠)𝑥 (𝑘 + 𝑗)

= 𝑎
∗𝑗

(𝑒
𝐴(𝑡
󸀠
−[𝑡
󸀠
])
+𝐵∫

𝑡
󸀠

[𝑡
󸀠
]

𝑒
𝐴(𝑡
󸀠
−𝑠)

𝑑𝑠)𝑥 (𝑘)

= 𝑎
∗𝑗

𝑥 (𝑡
󸀠
) .

(22)

Next, assume that 𝑥(𝑘) > 𝜆 and thus 𝐹(𝑥(𝑘)) = 1 for all
integers 𝑘 ≥ 0. Suppose first that 𝑎

∗
̸= 1 and 0 ≤ 𝑡

󸀠
< 1.

By (a), 𝑥(𝑗) = 𝑎
∗𝑗

(𝑥(0) − 𝑏
∗
/(𝑎
∗
− 1)) + 𝑏

∗
/(𝑎
∗
− 1). Since

𝑗 ≤ 𝑡
󸀠
+ 𝑗 < 𝑗 + 1 and 𝑏

∗
/(𝑎
∗
− 1) = −𝐶/(𝐴 + 𝐵),

𝑥 (𝑡
󸀠
+ 𝑗) = 𝑎

∗𝑗
(𝑒
𝐴(𝑡
󸀠
−[𝑡
󸀠
])
+𝐵∫

𝑡
󸀠

[𝑡
󸀠
]

𝑒
𝐴(𝑡
󸀠
−𝑠)

𝑑𝑠)

⋅ (𝑥 (0) − 𝑏
∗

𝑎
∗
− 1

)+

𝑏
∗

𝑎
∗
− 1

(23)

as in the proof of Proposition 1(1). Therefore, 𝑥(𝑡
󸀠
+ 𝑗) =

𝑎
∗𝑗

(𝑥(𝑡
󸀠
) − 𝑏
∗
/(𝑎
∗
− 1)) + 𝑏

∗
/(𝑎
∗
− 1).
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Finally suppose that 𝑎
∗

= 1. Thus 𝐵 = −𝐴 and, by (a),
𝑥(𝑗) = 𝑥(0) − 𝑗𝑏

∗
> 𝜆 and 𝑏

∗
≤ 0. As above, for 0 ≤ 𝑡

󸀠
< 1,

we have that 𝑗 ≤ 𝑡
󸀠
+ 𝑗 < 𝑗 + 1 and

𝑥 (𝑡
󸀠
+ 𝑗) = 𝑥 (𝑗) +𝐶∫

𝑡
󸀠

[𝑡
󸀠
]

𝑒
𝐴(𝑡
󸀠
−𝑠)

𝑑𝑠 = 𝑥 (𝑡
󸀠
) − 𝑗𝑏

∗
. (24)

(2a) Suppose that 𝑎 > 1 and 𝑏 ≤ 0. If 𝑥0 ≤ 0 (< 𝜆), then
clearly 𝑥

𝑗
= 𝑎
𝑗
𝑥0. Assume that 𝑥0 > 0. There exists a positive

integer 𝑘 such that 𝑥
𝑘−1 = 𝑎

𝑘−1
𝑥0 ≤ 𝜆 < 𝑥

𝑘
= 𝑎
𝑘
𝑥0. Thus,

𝑥
𝑘+1 = 𝑎

𝑘+1
𝑥0 −𝑏 = 𝑎𝑥

𝑘
−𝑏 > 𝑥

𝑘
> 𝜆 since 𝑎 > 1, 𝑥

𝑘
> 0, and

𝑏 ≤ 0. As in the proof of (1a), 𝑥
𝑘+𝑗

= 𝑎
𝑗
𝑥
𝑘
− ((𝑎
𝑗
− 1)/(𝑎− 1))𝑏

(> 𝜆).
(2b) Suppose that 𝑎∗ > 1 and 𝑏

∗
≤ 0. If 𝑥(0) ≤ 0, then

𝑥(𝑗) = 𝑎
∗𝑗

𝑥(0) < 𝜆 by (2a); and hence the result follows as in
the proof of (1b).

Assume that 𝑥(0) > 0. By (2a), there exists a positive
integer 𝑘 such that 𝑥(𝑘) > 𝜆 and 𝑥(𝑘 + 𝑗) = 𝑎

∗𝑗
(𝑥(𝑘) −

𝑏
∗
/(𝑎
∗
− 1)) + 𝑏

∗
/(𝑎
∗
− 1) > 𝜆. Let 𝑘 ≤ 𝑡

󸀠
< 𝑘 + 1 so that

𝑘 + 𝑗 ≤ 𝑡
󸀠
+ 𝑗 < 𝑘 + 𝑗 + 1. Then, by (8),

𝑥 (𝑡
󸀠
+ 𝑗) = 𝑎

∗𝑗
(𝑒
𝐴(𝑡
󸀠
−[𝑡
󸀠
])
+𝐵∫

𝑡
󸀠

[𝑡
󸀠
]

𝑒
𝐴(𝑡
󸀠
−𝑠)

𝑑𝑠)

⋅ (𝑥 (𝑘) −

𝑏
∗

𝑎
∗
− 1

)+

𝑏
∗

𝑎
∗
− 1

= 𝑎
∗𝑗

(𝑥 (𝑡
󸀠
) −

𝑏
∗

𝑎
∗
− 1

)+

𝑏
∗

𝑎
∗
− 1

(25)

as in the proof of (1b).
(3a) Suppose that 𝑎 < 0. One of the following must be

true:
(i) For every integer 𝑘 ≥ 0, there exists an integer 𝑛

𝑘
≥ 𝑘

such that 𝑥
𝑛
𝑘

≤ 𝜆.
(ii) There exists an integer 𝑘 ≥ 0 such that 𝑥

𝑛
> 𝜆 for all

𝑛 ≥ 𝑘.
Assume that (i) holds. If 𝑥

𝑗
= 0, for some 𝑗, then 𝑥

𝑛
is

oscillatorywith stationary state 0; thuswe further assume that
𝑥
𝑛
has no zero terms.Therefore, there exists a subsequence of

𝑥
𝑛
with alternating signs.
We may choose 𝑥

𝑛0
> 0 as follows. If 𝑥0 > 0, then let

𝑥
𝑛0

≡ 𝑥0. If 𝑥0 < 0 (< 𝜆), then let 𝑥
𝑛0

≡ 𝑥1 = 𝑎𝑥0 > 0.
Next choose 𝑥

𝑛1
< 0, where 𝑛1 > 𝑛0: by (i), there exists

𝑛
󸀠

1 ≥ 𝑛0 such that 𝑥
𝑛
󸀠

1
≤ 𝜆. If 𝑥

𝑛
󸀠

1
< 0, then 𝑛

󸀠

1 > 𝑛0 so let
𝑛1 ≡ 𝑛

󸀠

1. If 𝑥𝑛󸀠1 > 0, then 𝑥
𝑛
󸀠

1+1 = 𝑎𝑥
𝑛
󸀠

1
< 0 and 𝑛

󸀠

1 + 1 > 𝑛0;
thus, in this case, let 𝑛1 ≡ 𝑛

󸀠

1 + 1.
Since 𝑥

𝑛1
< 0 < 𝜆, we have 𝑥

𝑛2
≡ 𝑥
𝑛1+1 = 𝑎𝑥

𝑛1
> 0 and

𝑛2 > 𝑛1. By induction, a sequence 𝑥
𝑛
𝑘

is constructed such that
𝑛
𝑘+1 > 𝑛

𝑘
and 𝑥

𝑛
𝑘

𝑥
𝑛
𝑘+1

< 0 for all 𝑘. Thus 𝑥
𝑛
is oscillatory.

On the other hand, if (ii) holds, then, as in the proof of
(1a), there exists 𝑘 ≥ 0 such that 𝑥

𝑘+𝑗
= 𝑎
𝑗
(𝑥
𝑘
− 𝑏/(𝑎 − 1)) +

𝑏/(𝑎 − 1).
(3b) Suppose that 𝑎∗ < 0. By (3a), either𝑥(𝑛) is oscillatory

(and hence 𝑥 = 𝑥(𝑡) is oscillatory) or 𝑥(𝑘 + 𝑗) = 𝑎
∗𝑗

(𝑥(𝑘) −

𝑏
∗
/(𝑎
∗

− 1)) + 𝑏
∗
/(𝑎
∗

− 1) > 𝜆 (with 𝑥(𝑘) > 𝜆) for some
integer 𝑘 ≥ 0. The desired result follows in the latter case as
in the proof of (2b).

Thus we assume that 𝑎∗ > 1 and 𝑏
∗

> 0; and therefore
Proposition 1 applies to the resulting solution 𝑥 = 𝑥(𝑡) of
(2). It will follow from the third section that if 𝜆 is outside
the interval (𝑏∗/𝑎∗2, 𝑏∗/(𝑎∗ − 1) − 𝑏

∗
/𝑎
∗2

), then 𝑥(𝑡) is either
eventually constant or unbounded. Moreover, if 𝑎∗ ≥ 2 and
𝜆 is in [𝑏

∗
/(𝑎
∗
(𝑎
∗
− 1)), 𝑏∗/𝑎∗], then, by the fourth section,

all initial values 𝑥(0) are derived such that 𝑥(𝑡) is eventually
periodic; and more generally, for any 𝜆 > 0, the eventually
periodic solutions of (2) are the bounded solutions with these
initializations 𝑥(0).

Remark 4. For integers 𝑎, 𝑏, 𝑥0, and 𝜆 > 0, periodic solutions
of difference equation (18) were used in [13] to determine the
real eigenvalues of certain arbitrarily large, sparse matrices.

2. Unbounded Solutions

Let 𝑥
𝑛
satisfy (18), where 𝑎 > 1 and 𝑏 > 0. If 𝑥

𝑛
is unbounded,

then 𝑥
𝑛
is eventually geometric: we define

𝑓
−
(𝑖, 𝑗) ≡ 𝑎

𝑗
𝑥
𝑖

whenever 𝑥
𝑖
≤ 0,

𝑓
+
(𝑖, 𝑗) ≡ 𝑎

𝑗
(𝑥
𝑖
−

𝑏

𝑎 − 1
)+

𝑏

𝑎 − 1

when 𝑥
𝑖
≥

𝑏

𝑎 − 1
.

(26)

The following result shows that we may assume

0 < 𝑥0 <

𝑏

𝑎 − 1
,

𝜆 <

𝑏

𝑎 − 1

(27)

since otherwise there exists 𝑖 ≥ 0 such that 𝑥
𝑖+𝑗

= 𝑓
±
(𝑖, 𝑗) for

all 𝑗.

Lemma 5. Assume that 𝑥
𝑛
is defined by (18), where 𝑎 > 1 and

𝑏 > 0.

(1) If 𝑥
𝑛
≤ 𝜆, for all 𝑛 ≥ 𝑖 ≥ 0, then 𝑥

𝑖+𝑗
= 𝑓
−
(𝑖, 𝑗) for all

𝑗 ≥ 0. In particular, if 𝑥
𝑖
≤ 0, for some 𝑖, then 𝑥

𝑖+𝑗
=

𝑓
−
(𝑖, 𝑗) for all 𝑗.

(2) If 𝑥
𝑛
> 𝜆, for all 𝑛 ≥ 𝑖 ≥ 0, then 𝑥

𝑖+𝑗
= 𝑓
+
(𝑖, 𝑗) for all

𝑗 ≥ 0. In particular, if 𝑥
𝑖
≥ 𝑏/(𝑎 − 1) > 𝜆, for some 𝑖,

then 𝑥
𝑖+𝑗

= 𝑓
+
(𝑖, 𝑗) for all 𝑗.

(3) If 𝑥
𝑖
> 𝜆 ≥ 𝑏/(𝑎−1), for some 𝑖, then 𝑥

𝑖+𝑗
= 𝑓
+
(𝑖, 𝑗) for

all 𝑗 ≥ 0. In particular, if either 0 < 𝑥
𝑖
≤ 𝑏/(𝑎 − 1) ≤ 𝜆

or 𝑏/(𝑎− 1) ≤ 𝑥
𝑖
≤ 𝜆, for some 𝑖, then there exists 𝑘 > 𝑖

such that 𝑥
𝑘+𝑗

= 𝑓
+
(𝑘, 𝑗) for all 𝑗.

Proof. (1) Assume that 𝑥
𝑛
≤ 𝜆 for all 𝑛 ≥ 𝑖. Then 𝑥

𝑖+𝑗
= 𝑎
𝑗
𝑥
𝑖

for all 𝑗 ≥ 0. If 𝑥
𝑖
> 0, then, since 𝑎 > 1, it follows that 𝑥

𝑛
is

not bounded above which contradicts our hypothesis. Thus
𝑥
𝑖
≤ 0 and 𝑥

𝑖+𝑗
= 𝑓
−
(𝑖, 𝑗).
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If 𝑥
𝑖
≤ 0 (< 𝜆), for some 𝑖, then clearly 𝑥

𝑛
≤ 𝜆 for all 𝑛 ≥ 𝑖.

(2) Suppose that 𝑥
𝑛
> 𝜆 for all 𝑛 ≥ 𝑖. Then

𝑥
𝑖+1 = 𝑎𝑥

𝑖
− 𝑏 = 𝑎(𝑥

𝑖
−

𝑏

𝑎 − 1
)+

𝑏

𝑎 − 1
,

𝑥
𝑖+2 = 𝑎𝑥

𝑖+1 − 𝑏 = 𝑎
2
(𝑥
𝑖
−

𝑏

𝑎 − 1
)+

𝑏

𝑎 − 1

(28)

and, by induction, for all 𝑗,

𝑥
𝑖+𝑗

= 𝑎
𝑗
(𝑥
𝑖
−

𝑏

𝑎 − 1
)+

𝑏

𝑎 − 1
. (29)

If 𝑥
𝑖
< 𝑏/(𝑎 − 1), then, since 𝑎 > 1, 𝑥

𝑛
is not bounded below

which is contrary to our hypothesis. Thus 𝑥
𝑖
≥ 𝑏/(𝑎 − 1) and

𝑥
𝑖+𝑗

= 𝑓
+
(𝑖, 𝑗) for all 𝑗.

Assume that 𝑥
𝑖
≥ 𝑏/(𝑎 − 1) > 𝜆 for some 𝑖. Then 𝑥

𝑖
=

𝑓
+
(𝑖, 0) > 𝜆 since 𝑥

𝑖
≥ 𝑏/(𝑎 − 1), and

𝑥
𝑖+1 = 𝑎𝑥

𝑖
− 𝑏 ≥ 𝑎(

𝑏

𝑎 − 1
)− 𝑏 =

𝑏

𝑎 − 1
> 𝜆, (30)

where 𝑥
𝑖+1 = 𝑓

+
(𝑖, 1) as above.

Similarly, by induction,

𝑥
𝑖+𝑗

= 𝑎𝑥
𝑖+𝑗−1 − 𝑏 ≥

𝑏

𝑎 − 1
> 𝜆 (31)

and 𝑥
𝑖+𝑗

= 𝑓
+
(𝑖, 𝑗) for all 𝑗.

(3) Assume that 𝑥
𝑖

> 𝜆 ≥ 𝑏/(𝑎 − 1) for some 𝑖. Then
𝑥
𝑖
= 𝑓
+
(𝑖, 0) > 𝜆 and

𝑥
𝑖+1 = 𝑎𝑥

𝑖
− 𝑏 > 𝑎𝜆− (𝑎 − 1) 𝜆 = 𝜆, (32)

where 𝑥
𝑖+1 = 𝑓

+
(𝑖, 1). By induction, 𝑥

𝑖+𝑗
= 𝑎𝑥
𝑖+𝑗−1 − 𝑏 > 𝜆

and 𝑥
𝑖+𝑗

= 𝑓
+
(𝑖, 𝑗) for all 𝑗.

Suppose that 0 < 𝑥
𝑖
≤ 𝑏/(𝑎 − 1) ≤ 𝜆 for some 𝑖. There

exists 𝑘 > 𝑖 such that

𝑥
𝑘−1 = 𝑎

𝑘−1−𝑖
𝑥
𝑖
≤ 𝜆 < 𝑥

𝑘
= 𝑎
𝑘−𝑖

𝑥
𝑖
. (33)

Thus, by the general case, 𝑥
𝑘+𝑗

= 𝑓
+
(𝑘, 𝑗) for all 𝑗.

Similarly, if 𝑏/(𝑎 − 1) ≤ 𝑥
𝑖
≤ 𝜆, then there is 𝑘 > 𝑖 such

that 𝑥
𝑘+𝑗

= 𝑓
+
(𝑘, 𝑗) for all 𝑗.

The next result is central to our analysis.

Lemma 6. Let 𝑥
𝑛
be given by (18), where 𝑎 > 1, 𝑏 > 0, and

0 < 𝜆, 𝑥0 < 𝑏/(𝑎 − 1).

(1) If 𝜆 ≤ 𝑏/𝑎(𝑎 − 1), then 𝑥
𝑛

≤ 𝑏/(𝑎 − 1) for all 𝑛. In
particular, if 𝜆 < 𝑏/𝑎(𝑎 − 1), then 𝑥

𝑛
< 𝑏/(𝑎 − 1) for all

𝑛.
(2) If 𝑏/𝑎(𝑎−1) ≤ 𝑥0 ≤ 𝜆, then𝑥1+𝑗 = 𝑓

+
(1, 𝑗) for all 𝑗 ≥ 0.

In this case, 𝑥0 = 𝑏/𝑎(𝑎−1) if and only if 𝑥1 = 𝑏/(𝑎−1).
(3) If 𝜆 ≥ 𝑏/𝑎, then 𝑥

𝑛
> 0 for all 𝑛.

(4) If 𝑏/𝑎 ≥ 𝑥0 > 𝜆, then 𝑥1+𝑗 = 𝑓
−
(1, 𝑗) for all 𝑗 ≥ 0. In

this case, 𝑥0 = 𝑏/𝑎 if and only if 𝑥1 = 0.

Proof. (1) Assume 𝜆 ≤ 𝑏/𝑎(𝑎 − 1) and 𝑥0 < 𝑏/(𝑎 − 1).
If 𝑥0 ≤ 𝜆, then 𝑥1 = 𝑎𝑥0 ≤ 𝑎𝜆 ≤ 𝑏/(𝑎 − 1). And if 𝑥0 > 𝜆,

then 𝑥1 = 𝑎𝑥0 − 𝑏 < 𝑎(𝑏/(𝑎 − 1)) − 𝑏 = 𝑏/(𝑎 − 1). Thus
𝑥1 ≤ 𝑏/(𝑎 − 1) in both cases, and, similarly, by induction,
𝑥
𝑛
≤ 𝑏/(𝑎 − 1) for all 𝑛.
If 𝜆 < 𝑏/𝑎(𝑎−1), then 𝑥

𝑛
< 𝑏/(𝑎−1) for all 𝑛 by the above

argument.
(2) Suppose that 𝑏/𝑎(𝑎 − 1) ≤ 𝑥0 ≤ 𝜆. Then 𝑥1 = 𝑎𝑥0 ≥

𝑏/(𝑎 − 1) > 𝜆 and 𝑥1+𝑗 = 𝑓
+
(1, 𝑗) for all 𝑗 by Lemma 5(2).

If 𝑏/𝑎(𝑎 − 1) = 𝑥0 ≤ 𝜆, then 𝑥1 = 𝑎𝑥0 = 𝑏/(𝑎 − 1).
Conversely, if 𝑏/𝑎(𝑎 − 1) ≤ 𝑥0 ≤ 𝜆 and 𝑥1 = 𝑏/(𝑎 − 1), then
𝑥1 = 𝑎𝑥0 so 𝑥0 = 𝑏/𝑎(𝑎 − 1).

(3) Assume 𝜆 ≥ 𝑏/𝑎. If 𝑥0 ≤ 𝜆, then 𝑥1 = 𝑎𝑥0 > 0. And if
𝑥0 > 𝜆, then 𝑥1 = 𝑎𝑥0 − 𝑏 > 𝑎𝜆 − 𝑏 ≥ 0. Thus 𝑥1 > 0 and, by
induction, 𝑥

𝑛
> 0 for all 𝑛.

(4) Suppose that 𝑏/𝑎 ≥ 𝑥0 > 𝜆. Then 𝑥1 = 𝑎𝑥0 − 𝑏 ≤

𝑎(𝑏/𝑎) − 𝑏 = 0 and 𝑥1+𝑗 = 𝑓
−
(1, 𝑗) for all 𝑗 by Lemma 5(1).

Clearly, 𝑥0 = 𝑏/𝑎 if and only if 𝑥1 = 0 in this case.

Remark 7. Let 𝑥
𝑛
be defined as in Lemma 6. As in the proof of

Lemma 5(3), if 𝑥0 ≤ 𝜆, then there is a unique positive integer
𝑖 such that 𝑎

𝑖−1
𝑥0 ≤ 𝜆 < 𝑎

𝑖
𝑥0. In this case, 𝑥

𝑘
= 𝑎
𝑘
𝑥0 for

𝑘 = 1, . . . , 𝑖; and if 𝑥
𝑖
≤ 𝑏/𝑎, then 𝑥

𝑖+1+𝑗 = 𝑎
𝑗
𝑥
𝑖+1 for all 𝑗 by

Lemma 6(4) since 𝑥
𝑖
> 𝜆.

Similarly, if 𝑥0 > 𝜆, then there is a unique positive integer
𝑖 such that

0 < 𝑎
𝑖−1

(

𝑏

𝑎 − 1
−𝑥0) <

𝑏

𝑎 − 1
−𝜆

≤ 𝑎
𝑖
(

𝑏

𝑎 − 1
−𝑥0) .

(34)

In this case, writing 𝑥0 = 𝑏/(𝑎 − 1) − (𝑏/(𝑎 − 1) − 𝑥0) > 𝜆, we
have that

𝑥
𝑘
= 𝑎𝑥
𝑘−1 − 𝑏 =

𝑏

𝑎 − 1
− 𝑎
𝑘
(

𝑏

𝑎 − 1
−𝑥0) > 𝜆 (35)

for 𝑘 = 1, . . . , 𝑖; and if 𝑥
𝑖
≥ 𝑏/𝑎(𝑎 − 1), then

𝑥
𝑖+1+𝑗 =

𝑏

𝑎 − 1
− 𝑎
𝑗
(

𝑏

𝑎 − 1
−𝑥
𝑖+1) (36)

for all 𝑗 by Lemma 6(2) since 𝑥
𝑖
≤ 𝜆.

Example 8. Let 𝑎 ≥ 2 and let 𝑏 > 0 and assume that 𝑏/𝑎(𝑎 −

1) ≤ 𝜆 ≤ 𝑏/𝑎. Let 𝑥0 be the weighted average

𝑥0 ≡

(2𝑎 − 1) (𝑏/𝑎2) + 𝑏/𝑎 (𝑎 − 1)
2𝑎

.
(37)

Then 𝑥0 < 𝜆 and

𝑥1 = 𝑎𝑥0 =

((2𝑎 − 1) (𝑎 − 1) + 𝑎) 𝑏

2𝑎2 (𝑎 − 1)
>

𝑏

𝑎

≥ 𝜆. (38)

Thus

𝑥2 = 𝑎𝑥1 − 𝑏 =

𝑏

2𝑎 (𝑎 − 1)
<

𝑏

𝑎 (𝑎 − 1)
≤ 𝜆 (39)

and 𝑥3 = 𝑎𝑥2 = 𝑏/2(𝑎−1) is themidpoint of [𝑏/𝑎(𝑎−1), 𝑏/𝑎].
If 𝑥3 ≤ 𝜆, then 𝑥4+𝑗 = 𝑓

+
(4, 𝑗) for all 𝑗 by Lemma 6(2).

And if 𝑥3 > 𝜆, then 𝑥4+𝑗 = 𝑓
−
(4, 𝑗) for all 𝑗 by Lemma 6(4).
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3. Bounded Solutions

By Lemma 5, solutions 𝑥
𝑛
of (18) such that 𝑎 > 1, 𝑏 > 0, and

0 < 𝜆, 𝑥0 < 𝑏/(𝑎 − 1) are bounded only when 0 ≤ 𝑥
𝑛

≤

𝑏/(𝑎 − 1) for all 𝑛. In particular, by Lemma 6, if 𝑎 ≤ 2 and
𝑏/𝑎 ≤ 𝜆 ≤ 𝑏/𝑎(𝑎 − 1), then 𝑥

𝑛
is bounded. It is possible that

𝑥
𝑛
is bounded but not eventually periodic.

Example 9. Assume that 1 < 𝑎 = 𝑝/𝑞 < 2, where 𝑝 and 𝑞

are odd and even integers, respectively; 𝑏 > 0 and 𝑏/𝑎 ≤ 𝜆 ≤

𝑏/𝑎(𝑎 − 1). If 𝑥0 ≡ (𝑏/(𝑎 − 1))(𝑟/𝑠), where 𝑟 and 𝑠 are odd and
even integers, respectively, such that 𝑟 < 𝑠, then the solution
𝑥
𝑛
is bounded but not eventually periodic: by Lemma 6, 0 <

𝑥
𝑛
≤ 𝑏/(𝑎 − 1) for all 𝑛. Note that

𝑎𝑥0 =

𝑏

𝑎 − 1
(

𝑝𝑟

𝑞𝑠

) ,

𝑎𝑥0 − 𝑏 =

𝑏

𝑎 − 1
(

𝑝𝑟 − (𝑝 − 𝑞) 𝑠

𝑞𝑠

)

(40)

so that 𝑥1 = (𝑏/(𝑎−1))(𝑝1/𝑞𝑠), where𝑝1 is odd and 𝑞𝑠 is even.
Similarly, by induction, for all 𝑛 ≥ 1, 𝑥

𝑛
= (𝑏/(𝑎 −

1))(𝑝
𝑛
/𝑞
𝑛
𝑠), where 𝑝

𝑛
is odd and 𝑞

𝑛
𝑠 is even. It follows that 𝑥

𝑛

is not eventually periodic since if 𝑥
𝑚

= 𝑥
𝑚+𝑛

for some 𝑚 ≥ 0
and 𝑛 ≥ 1, then 𝑝

𝑚+𝑛
= 𝑞
𝑛
𝑝
𝑚
is even.

We now classify the types of solutions that may be
bounded. Our results will be stated in terms of the decom-
position of (0, 𝑏/(𝑎 − 1)) into the disjoint union of the
intervals 𝐼1 = (0, 𝑏/𝑎2], 𝐼2 = (𝑏/𝑎

2
,min{𝑏/𝑎, 𝑏/𝑎(𝑎 −

1)}), 𝐼3 = [min{𝑏/𝑎, 𝑏/𝑎(𝑎 − 1)},max{𝑏/𝑎, 𝑏/𝑎(𝑎 − 1)}], 𝐼4 =

(max{𝑏/𝑎, 𝑏/𝑎(𝑎 − 1)}, 𝑏/(𝑎 − 1) − 𝑏/𝑎
2
), and 𝐼5 = [𝑏/(𝑎 − 1) −

𝑏/𝑎
2
, 𝑏/(𝑎 − 1)).

Definition 10. Let 𝑎 > 1, 𝑏 > 0, and 0 < 𝜆, 𝑥0 < 𝑏/(𝑎 − 1). A
solution 𝑥

𝑛
defined by (18) is of

(i) typeA if𝜆 and𝑥
𝑘
are in 𝐼2 for some 𝑘 such that𝑥

𝑘
≤ 𝜆,

(ii) type B if 𝜆 and𝑥
𝑘
are in 𝐼4 for some 𝑘 such that𝑥

𝑘
> 𝜆,

(iii) type C if 𝜆 is in 𝐼3 and either 𝑎 ≥ 2 such that 𝑥
𝑘
is in

𝐼2 ∪ 𝐼4 for some 𝑘 or 𝑎 < 2.

The unbounded solution in Example 8 is of type C.
Let 𝑥
𝑛
satisfy (18) as in Definition 10. Since 𝜆 < 𝑏/(𝑎 − 1),

we have that 𝑐 is a stationary state of𝑥
𝑛
if and only if𝑥

𝑖
= 𝑐 = 0

or 𝑥
𝑖
= 𝑐 = 𝑏/(𝑎 − 1) for some 𝑖, in which case 𝑥

𝑖+𝑗
= 𝑐 for

all 𝑗 ≥ 0: if 𝑥
𝑖
= 0 (< 𝜆) or 𝑥

𝑖
= 𝑏/(𝑎 − 1) (> 𝜆), then clearly

𝑥
𝑖+1 = 𝑥

𝑖
= 𝑐. Conversely, suppose that 𝑥

𝑖+1 = 𝑥
𝑖
= 𝑐 for some

𝑖. If 𝑐 ≤ 𝜆, then 𝑐 = 𝑥
𝑖+1 = 𝑎𝑥

𝑖
= 𝑎𝑐 so 𝑐 = 0 since 𝑎 > 1. And

if 𝑐 > 𝜆, then 𝑐 = 𝑥
𝑖+1 = 𝑎𝑥

𝑖
− 𝑏 = 𝑎𝑐 − 𝑏 so 𝑐 = 𝑏/(𝑎 − 1).

The solution 𝑥
𝑛
is eventually periodic if there are integers

𝑚 ≥ 0 and 𝑝 ≥ 1 such that 𝑥
𝑚

= 𝑥
𝑚+𝑝

(and thus, by
(18), 𝑥

𝑚+𝑗
= 𝑥
𝑚+𝑝+𝑗

for all 𝑗 ≥ 0). The following eventually
periodic solution is either of type A or type C.

Example 11. Let 𝑎 > 1 and let 𝑏 > 0 and let 𝑝 ≥ 2 be an integer
such that 𝑎𝑝 ≥ 𝑎/(𝑎 − 1). (If 𝑎 ≥ 2, then 𝑝 ≥ 2 is arbitrary.)
Choose 𝜆 such that

𝑏

𝑎
2 ≤

𝑏/𝑎
2

1 − 1/𝑎𝑝
=

𝑏𝑎
𝑝−2

𝑎
𝑝
− 1

≤ 𝜆 ≤

𝑏

𝑎

(41)

and, for any integer 𝑚 ≥ 0, let

𝑥0 ≡

𝑏

𝑎
𝑚

(𝑎
𝑝
− 1)

. (42)

Then 𝑥
𝑚

= 𝑥
𝑚+𝑝

: 𝑥0 ≤ 𝑏𝑎
𝑝−2

/(𝑎
𝑝

− 1) ≤ 𝜆 so 𝑥1 =

𝑏/(𝑎
𝑚−1

(𝑎
𝑝

− 1)). Similarly, 𝑥
𝑚

= 𝑎
𝑚
𝑥0 = 𝑏/(𝑎

𝑝
− 1) ≤

𝑏𝑎
𝑝−2

/(𝑎
𝑝
−1) ≤ 𝜆 and, for 𝑘 = 1, . . . , 𝑝−2, 𝑥

𝑚+𝑘
= 𝑏𝑎
𝑘
/(𝑎
𝑝
−

1) ≤ 𝑏𝑎
𝑝−2

/(𝑎
𝑝
− 1) ≤ 𝜆. Thus 𝑥

𝑚+(𝑝−1) = 𝑏𝑎
𝑝−1

/(𝑎
𝑝
− 1) >

𝑏/𝑎 ≥ 𝜆 and

𝑥
𝑚+𝑝

= 𝑎𝑥
𝑚+(𝑝−1) − 𝑏 =

𝑏

𝑎
𝑝
− 1

= 𝑥
𝑚
. (43)

Note that if 𝑎 ≥ 2, then, since 𝑏/𝑎
2
≤ 𝑥
𝑚+𝑝−2 ≤ 𝑏/𝑎(𝑎 −

1) ≤ 𝑏/𝑎, it follows that𝑥
𝑛
is of typeAwhenever𝜆 is in 𝐼2 (and

𝑥
𝑚+𝑝−2 ≤ 𝜆) and is of type C when 𝜆 is in 𝐼3. If 𝑎 < 2, then 𝑥

𝑛

is of type A since 𝑥
𝑚+𝑝−2 and 𝜆 are in 𝐼2 and 𝑥

𝑚+𝑝−2 ≤ 𝜆. The
following slight modification is eventually periodic of type C
when 𝑎 < 2.

Example 12. Let 1 < 𝑎 < 2 and let 𝑏 > 0 and let 𝑝 ≥ 2 be an
integer such that

𝑎
𝑝
> max {

𝑎

𝑎 − 1
,

1
2 − 𝑎

} , (44)

and let 𝜆 in 𝐼3 satisfy

𝑏

𝑎
2 <

𝑏𝑎
𝑝−2

𝑎
𝑝
− 1

<

𝑏

𝑎

< 𝜆 <

𝑏𝑎
𝑝−1

𝑎
𝑝
− 1

<

𝑏

𝑎 (𝑎 − 1)
. (45)

Define

𝑥0 ≡

𝑏𝑎
𝑞

𝑎
𝑚

(𝑎
𝑝
− 1)

(46)

for integers 𝑚 ≥ 0 and 𝑞 such that 0 ≤ 𝑞 ≤ 𝑝 − 2. Then
𝑥0 ≤ 𝑏𝑎

𝑝−2
/(𝑎
𝑝
− 1) < 𝜆 and, as in Example 11,

𝑥
𝑚

=

𝑏𝑎
𝑞

𝑎
𝑝
− 1

≤

𝑏𝑎
𝑝−2

𝑎
𝑝
− 1

< 𝜆,

𝑥
𝑚+𝑝−𝑞−2 = 𝑎

𝑝−𝑞−2
𝑥
𝑚

=

𝑏𝑎
𝑝−2

𝑎
𝑝
− 1

< 𝜆.

(47)

Therefore, 𝑥
𝑚+𝑝−𝑞−1 = 𝑏𝑎

𝑝−1
/(𝑎
𝑝
− 1) > 𝜆,

𝑥
𝑚+𝑝−𝑞

= 𝑎𝑥
𝑚+𝑝−𝑞−1 − 𝑏 =

𝑏

𝑎
𝑝
− 1

< 𝜆,

𝑥
𝑚+𝑝

= 𝑎
𝑞
𝑥
𝑚+𝑝−𝑞

=

𝑏𝑎
𝑞

𝑎
𝑝
− 1

= 𝑥
𝑚
.

(48)
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Note that, for an element 𝑥0 in 𝐼1, there exists an integer
𝑘 ≥ 2 such that

𝑏

𝑎
𝑘+1 < 𝑥0 ≤

𝑏

𝑎
𝑘
. (49)

Similarly, for 𝑥0 in 𝐼5, there exists an integer 𝑘 ≥ 2 such that

𝑏

𝑎 − 1
−

𝑏

𝑎
𝑘

≤ 𝑥0 <

𝑏

𝑎 − 1
−

𝑏

𝑎
𝑘+1 . (50)

Inequalities (49) and (50) will be used repeatedly in the next
result.

In seeking bounded solutions without stationary states as
in Examples 11 and 12, we may further assume that 𝜆 is in 𝐼2 ∪
𝐼3 ∪ 𝐼4 by the next result.

Theorem 13. Let 𝑥
𝑛
be a solution of (18) such that 𝑎 > 1, 𝑏 > 0,

and 0 < 𝜆, 𝑥0 < 𝑏/(𝑎 − 1). Then 𝑥0 fits one and only one of the
following cases.

(1) Let 𝜆 be in 𝐼1.

(a) If 𝑥0 ≤ 𝜆 and 𝑘 ≥ 2 is given by (49), then 𝑥
𝑖+𝑗

=

𝑓
−
(𝑖, 𝑗) for all 𝑗 ≥ 0, where 𝑖 is the first integer

in [2, 𝑘] such that 𝑎𝑖−1𝑥0 > 𝜆; that is, 𝑥
𝑖−1 > 𝜆.

In this case, if 𝜆 = 𝑏/𝑎
𝑘, then 𝑖 = 2; and 𝑥2 < 0

when 𝑘 > 2.
(b) If 𝜆 < 𝑥0 ≤ 𝑏/𝑎, then 𝑥1+𝑗 = 𝑓

−
(1, 𝑗) for all 𝑗 ≥ 0.

(2) Let 𝜆 be in 𝐼2.

(a) If 𝑥0 is in 𝐼1 and 𝑘 ≥ 2 is given by (49), then
𝑥
𝑘−1 = 𝑎

𝑘−1
𝑥0 and one has the following.

(i) If 𝑏/𝑎2 < 𝑥
𝑘−1 ≤ 𝜆, then 𝑥

𝑛
is of type A.

(ii) If 𝜆 < 𝑥
𝑘−1 ≤ 𝑏/𝑎, then 𝑥

𝑘+𝑗
= 𝑓
−
(𝑘, 𝑗) for

all 𝑗.
(b)

(i) If 𝑏/𝑎2 < 𝑥0 ≤ 𝜆, then 𝑥
𝑛
is of type A.

(ii) If 𝜆 < 𝑥0 ≤ 𝑏/𝑎, then 𝑥1+𝑗 = 𝑓
−
(1, 𝑗) for all

𝑗.

(3) Let 𝜆 be in 𝐼1 ∪ 𝐼2.

(a) Let 𝑥0 ̸= 𝑏/𝑎 be in 𝐼3 and let𝜙 = (1+√5)/2 be the
golden ratio with the property that 𝜙(𝜙 − 1) = 1.
(i) If 𝜙 ≤ 𝑎 < 2, then either (1) or (2) holds

for the sequence 𝑥
𝑛
(𝑛 ≥ 1) with initial term

𝑥1 = 𝑎𝑥0 − 𝑏.
(ii) If 𝑎 < 𝜙 and 𝑟 is the least positive integer

such that 𝑎𝑟(𝑎 − 1) ≥ 1, then there exists an
integer 𝑠 in [1, 𝑟] such that 𝑥

𝑠
= 𝑏/(𝑎 − 1) −

𝑎
𝑠
(𝑏/(𝑎 − 1) − 𝑥0) is in 𝐼1 ∪ 𝐼2 ∪ {𝑏/𝑎}; and

therefore (1) or (2) applies to 𝑥
𝑛
(𝑛 ≥ 𝑠).

(b) Let 𝑥0 be in 𝐼4.
(i) If 𝑎 ≥ 2, then 𝑥1 = 𝑎𝑥0 − 𝑏 is in 𝐼1 ∪ 𝐼2 and

𝑥
𝑛
(𝑛 ≥ 1) satisfies either (1) or (2).

(ii) If 𝑎 < 2, then 𝑥1 = 𝑎𝑥0 −𝑏 ̸= 𝑏/𝑎(𝑎−1) is in
𝐼1 ∪ 𝐼2 ∪ 𝐼3 and 𝑥

𝑛
(𝑛 ≥ 1) satisfies (1), (2),

or (3a).

(c) Let 𝑥0 be in 𝐼5 and let 𝑘 ≥ 2 be given by (50).Then
𝑥
𝑘
= 𝑏/(𝑎 − 1) − 𝑎

𝑘
(𝑏/(𝑎 − 1) − 𝑥0) and one has

the following.

(i) If 𝑎 ≥ 2, then either 𝑥
𝑘

≤ 0 (and 𝑥
𝑘+𝑗

=

𝑓
−
(𝑘, 𝑗), for all 𝑗), or 𝑥

𝑘
is in 𝐼1 ∪ 𝐼2 and

𝑥
𝑛
(𝑛 ≥ 𝑘) satisfies (1) or (2).

(ii) If 𝑎 < 2, then 𝑥
𝑘

̸= 𝑏/𝑎(𝑎−1) is in 𝐼1∪𝐼2∪𝐼3
and 𝑥

𝑛
(𝑛 ≥ 𝑘) satisfies (1), (2), or (3a).

(4) Let 𝜆 be in 𝐼3. By Definition 10, if either 𝑎 < 2 or 𝑎 ≥ 2
and 𝐼2 ∪ 𝐼4 contains a term of the sequence 𝑥

𝑛
, then 𝑥

𝑛

is of type C. Therefore, suppose that 𝑎 ≥ 2 and 𝑥0 is in
𝐼1 ∪ 𝐼3 ∪ 𝐼5.

(a) Let 𝑥0 be in 𝐼1 and let 𝑘 ≥ 2 be given by (49).Then
𝑥
𝑘−1 = 𝑎

𝑘−1
𝑥0 is in 𝐼2 ∪𝐼3. If 𝑥𝑘−1 is in 𝐼2, then 𝑥

𝑛

is of type C. Let 𝑥
𝑘−1 be in 𝐼3. Then

(i) 𝑥
𝑘+𝑗

= 𝑓
+
(𝑘, 𝑗) for all 𝑗 ≥ 0 whenever

𝑏/𝑎(𝑎 − 1) ≤ 𝑥
𝑘−1 ≤ 𝜆;

(ii) 𝑥
𝑘+𝑗

= 𝑓
−
(𝑘, 𝑗) for all 𝑗 ≥ 0 when 𝜆 <

𝑥
𝑘−1 ≤ 𝑏/𝑎.

(b) Let 𝑥0 be in 𝐼3.

(i) If 𝑥0 ≤ 𝜆, then 𝑥1+𝑗 = 𝑓
+
(1, 𝑗) for all 𝑗.

(ii) If 𝑥0 > 𝜆, then 𝑥1+𝑗 = 𝑓
−
(1, 𝑗) for all 𝑗.

(c) Let 𝑥0 be in 𝐼5 and let 𝑘 ≥ 2 be given by (50).
Then 𝑥

𝑘−1 = 𝑏/(𝑎 − 1) − 𝑎
𝑘−1

(𝑏/(𝑎 − 1) − 𝑥0) is in
𝐼3 ∪ 𝐼4. Thus, if 𝑥

𝑘−1 is in 𝐼4, then 𝑥
𝑛
is of type C.

Let 𝑥
𝑘−1 be in 𝐼3. Then

(i) 𝑥
𝑘+𝑗

= 𝑓
+
(𝑘, 𝑗) for all 𝑗 ≥ 0 whenever

𝑏/𝑎(𝑎 − 1) ≤ 𝑥
𝑘−1 ≤ 𝜆;

(ii) 𝑥
𝑘+𝑗

= 𝑓
−
(𝑘, 𝑗) for all 𝑗 ≥ 0 when 𝜆 <

𝑥
𝑘−1 ≤ 𝑏/𝑎.

(5) Let 𝜆 be in 𝐼4.

(a) If 𝑥0 is in 𝐼5 and 𝑘 ≥ 2 is given by (50), then
𝑥
𝑘−1 = 𝑏/(𝑎 − 1) − 𝑎

𝑘−1
(𝑏/(𝑎 − 1) − 𝑥0) and one

has the following.

(i) If 𝑏/𝑎(𝑎 − 1) ≤ 𝑥
𝑘−1 ≤ 𝜆, then 𝑥

𝑘+𝑗
=

𝑓
+
(𝑘, 𝑗) for all 𝑗.

(ii) If 𝜆 < 𝑥
𝑘−1 < 𝑏/(𝑎 − 1) − 𝑏/𝑎

2, then 𝑥
𝑛
is of

type B.

(b)

(i) If 𝑏/𝑎(𝑎 − 1) ≤ 𝑥0 ≤ 𝜆, then 𝑥1+𝑗 = 𝑓
+
(1, 𝑗)

for all 𝑗.
(ii) If 𝜆 < 𝑥0 < 𝑏/(𝑎 − 1) − 𝑏/𝑎

2, then 𝑥
𝑛
is of

type B.
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(6) Let 𝜆 be in 𝐼5.

(a) If 𝑥0 > 𝜆 and 𝑘 ≥ 2 is given by (50), then 𝑥
𝑖+𝑗

=

𝑓
+
(𝑖, 𝑗) for all 𝑗 ≥ 0, where 𝑖 is the first integer in

[2, 𝑘] such that 𝑎𝑖−1(𝑏/(𝑎−1)−𝑥0) ≥ 𝑏/(𝑎−1)−𝜆;
that is, 𝑥

𝑖−1 ≤ 𝜆. In this case, if 𝜆 = 𝑏/(𝑎 − 1) −

𝑏/𝑎
𝑘, then 𝑖 = 2 and 𝑥2 > 𝑏/(𝑎 − 1).

(b) If 𝑏/𝑎(𝑎 − 1) ≤ 𝑥0 ≤ 𝜆, then 𝑥1+𝑗 = 𝑓
+
(1, 𝑗) for

all 𝑗 ≥ 0.

(7) Let 𝜆 be in 𝐼
4
∪ 𝐼
5
.

(a) Let 𝑥0 ̸= 𝑏/𝑎(𝑎 − 1) be in 𝐼3.
(i) If 𝜙 ≤ 𝑎 < 2, then either (5) or (6) holds

for the sequence 𝑥
𝑛
(𝑛 ≥ 1) with initial term

𝑥1 = 𝑎𝑥0.
(ii) If 𝑎 < 𝜙 and 𝑟 is the least positive integer

such that 𝑎
𝑟
(𝑎 − 1) ≥ 1, then there exists

an integer 𝑠 in [1, 𝑟] such that 𝑥
𝑠
= 𝑎
𝑠
𝑥0 is

in {𝑏/𝑎(𝑎 − 1)} ∪ 𝐼4 ∪ 𝐼5 and thus (5) or (6)
applies to 𝑥

𝑛
(𝑛 ≥ 𝑠).

(b) Let 𝑥0 be in 𝐼2.
(i) If 𝑎 ≥ 2, then 𝑥1 = 𝑎𝑥0 is in 𝐼4 ∪ 𝐼5 and

𝑥
𝑛
(𝑛 ≥ 1) satisfies either (5) or (6).

(ii) If 𝑎 < 2, then 𝑥1 = 𝑎𝑥0 ̸= 𝑏/𝑎 is in 𝐼3∪𝐼4∪𝐼5
and 𝑥

𝑛
(𝑛 ≥ 1) satisfies (5), (6), or (7a).

(c) Let 𝑥0 be in 𝐼1 and let 𝑘 ≥ 2 be given by (49).Then
𝑥
𝑘
= 𝑎
𝑘
𝑥0 and one has the following.

(i) If 𝑎 ≥ 2, then either 𝑥
𝑘

≥ 𝑏/(𝑎 − 1) (hence
𝑥
𝑘+𝑗

= 𝑓
+
(𝑘, 𝑗) for all 𝑗) or 𝑥

𝑘
is in 𝐼4 ∪ 𝐼5

and 𝑥
𝑛
(𝑛 ≥ 𝑘) satisfies (5) or (6).

(ii) If 𝑎 < 2, then 𝑥
𝑘

̸= 𝑏/𝑎 is in 𝐼3 ∪ 𝐼4 ∪ 𝐼5 and
𝑥
𝑛
(𝑛 ≥ 𝑘) satisfies (5), (6), or (7a).

Proof. (1a) Assume 0 < 𝑥0 ≤ 𝜆 ≤ 𝑏/𝑎
2. By (49), there exists

an integer 𝑘 ≥ 2 such that

𝑏

𝑎
𝑘+1 < 𝑥0 ≤

𝑏

𝑎
𝑘

≤

𝑏

𝑎
2 ,

𝜆 ≤

𝑏

𝑎
2 < 𝑎
𝑘−1

𝑥0.

(51)

Therefore, as in Remark 7, there is a smallest integer 𝑖 in [2, 𝑘]
such that

𝑥
𝑖−2 = 𝑎

𝑖−2
𝑥0 ≤ 𝜆 < 𝑥

𝑖−1 = 𝑎
𝑖−1

𝑥0. (52)

It follows that

𝑥
𝑖
= 𝑎𝑥
𝑖−1 − 𝑏 = 𝑎

𝑖
𝑥0 − 𝑏 ≤ 𝑎

𝑘
𝑥0 − 𝑏 ≤ 𝑏 − 𝑏 = 0 (53)

and 𝑥
𝑖+𝑗

= 𝑓
−
(𝑖, 𝑗) for all 𝑗 by Lemma 5(1).

Suppose that 𝜆 = 𝑏/𝑎
𝑘. Then 𝜆/𝑎 < 𝑥0 ≤ 𝜆 and 𝜆 < 𝑥1 =

𝑎𝑥0 so 𝑖 = 2. And if 𝑘 > 2, then

𝑥2 = 𝑎𝑥1 − 𝑏 = 𝑎
2
𝑥0 − 𝑏 < 0 since 𝑥0 ≤

𝑏

𝑎
𝑘

<

𝑏

𝑎
2 . (54)

(1b) Lemma 6(4).

(2) Let 𝜆 be in 𝐼2. By (49), if 𝑥0 is in 𝐼1, then
𝑏

𝑎
𝑘+1 < 𝑥0 ≤

𝑏

𝑎
𝑘

≤

𝑏

𝑎
2 < 𝜆. (55)

Therefore, 𝑏/𝑎
2

< 𝑥
𝑘−1 = 𝑎

𝑘−1
𝑥0 and (2) follows from

Definition 10 and Lemma 6(4).
Note that, for any 𝜆 in 𝐼1 ∪ 𝐼2, (1) and (2) cover the

following cases:
(i) 𝑥0 is in 𝐼1 ∪ 𝐼2 ∪ 𝐼3 whenever 𝑎 ≥ 2.
(ii) 𝑥0 is in 𝐼1 ∪ 𝐼2 ∪ {𝑏/𝑎} when 𝑎 < 2.
(3) Let 𝜆 be in 𝐼1 ∪ 𝐼2.
(a) Suppose that 𝑥0 ̸= 𝑏/𝑎 is in 𝐼3 and 𝑎 < 2. Then 𝜆 <

𝑏/𝑎 < 𝑥0 ≤ 𝑏/𝑎(𝑎 − 1) and

0 = 𝑎(

𝑏

𝑎

)− 𝑏 < 𝑥1 = 𝑎𝑥0 − 𝑏 ≤

𝑏

𝑎 − 1
− 𝑏

<

𝑏

𝑎 (𝑎 − 1)
.

(56)

(i) Suppose that 𝜙 ≤ 𝑎 < 2. Then 𝑎(𝑎 − 1) ≥ 1 so 𝑏/(𝑎 −

1) − 𝑏 ≤ 𝑏/𝑎 since 𝑏/𝑎(𝑎 − 1) ≤ 𝑏. Thus, by (56), 𝑥1 is
in 𝐼1 ∪ 𝐼2 ∪ {𝑏/𝑎} and (1) or (2) applies to 𝑥

𝑛
(𝑛 ≥ 1).

(ii) On the other hand, assume that 𝑎 < 𝜙 so that 𝑎(𝑎 −

1) < 1. By (56), 𝑥1 is in 𝐼1 ∪ 𝐼2 ∪ 𝐼3. If 𝑥1 is in 𝐼1 ∪

𝐼2 ∪ {𝑏/𝑎}, then (1) or (2) applies to 𝑥
𝑛
(𝑛 ≥ 1). And

if 𝑥1 ̸= 𝑏/𝑎 is in 𝐼3, then, since 𝑥1 ≤ 𝑏/(𝑎 − 1) − 𝑏 by
(56), the above argument shows

0 < 𝑥2 = 𝑎𝑥1 − 𝑏 ≤

𝑏

𝑎 − 1
− 𝑎𝑏 <

𝑏

𝑎 (𝑎 − 1)
(57)

and 𝑥2 is in 𝐼1 ∪ 𝐼2 ∪ 𝐼3.
Note that, in the latter case, if 𝑥2 ̸= 𝑏/𝑎 is in 𝐼3, then 𝜆 <

𝑏/𝑎 < 𝑥2 ≤ 𝑏/(𝑎 − 1) − 𝑎𝑏 so 𝑎
2
(𝑎 − 1) < 1.

It follows by induction that, for every 𝑗 ≥ 1, either 𝑥
𝑗
is in

𝐼1 ∪ 𝐼2 ∪ {𝑏/𝑎} or 𝑥
𝑗

̸= 𝑏/𝑎 is in 𝐼3 and 𝑎
𝑗
(𝑎 − 1) < 1. Since

𝑎 > 1, there are least positive integers 𝑟 and 𝑠 ≤ 𝑟 such that
𝑎
𝑟
(𝑎 − 1) ≥ 1 and 𝑥

𝑠
is in 𝐼1 ∪ 𝐼2 ∪ {𝑏/𝑎}. Since 𝑥

𝑖
> 𝜆, for

𝑖 = 0, . . . , 𝑠 − 1, the form of 𝑥
𝑠
follows from Remark 7.

(b) Let 𝑥0 be in 𝐼4.
(i) Let 𝑎 ≥ 2. Then 𝜆 < 𝑏/𝑎 < 𝑥0 < 𝑏/(𝑎 − 1) − 𝑏/𝑎

2,

0 = 𝑎(

𝑏

𝑎

)− 𝑏 < 𝑥1 = 𝑎𝑥0 − 𝑏 < 𝑎(

𝑏

𝑎 − 1
−

𝑏

𝑎
2)− 𝑏

=

𝑏

𝑎 (𝑎 − 1)
,

(58)

and 𝑥1 is in 𝐼1 ∪ 𝐼2.
(ii) Let 𝑎 < 2.Then 𝜆 < 𝑏/𝑎(𝑎−1) < 𝑥0 < 𝑏/(𝑎−1)−𝑏/𝑎

2,

0 < 𝑎(

𝑏

𝑎 (𝑎 − 1)
) − 𝑏 < 𝑥1 = 𝑎𝑥0 − 𝑏

< 𝑎(

𝑏

𝑎 − 1
−

𝑏

𝑎
2)− 𝑏 =

𝑏

𝑎 (𝑎 − 1)
,

(59)

and 𝑥1 ̸= 𝑏/𝑎(𝑎 − 1) is in 𝐼1 ∪ 𝐼2 ∪ 𝐼3.
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(c) Let 𝑥0 be in 𝐼5 and let 𝑘 ≥ 2 be given by (50). Then

𝜆 <

𝑏

𝑎 − 1
−

𝑏

𝑎
2 ≤

𝑏

𝑎 − 1
−

𝑏

𝑎
𝑘

≤ 𝑥0 <

𝑏

𝑎 − 1
−

𝑏

𝑎
𝑘+1 (60)

so that, for 𝑗 = 1, . . . , 𝑘 − 2,

𝜆 <

𝑏

𝑎 − 1
−

𝑏

𝑎
2 ≤

𝑏

𝑎 − 1
−

𝑏

𝑎
𝑘−𝑗

≤ 𝑥
𝑗
= 𝑎𝑥
𝑗−1 − 𝑏

<

𝑏

𝑎 − 1
−

𝑏

𝑎
𝑘−𝑗+1 .

(61)

Hence,

𝜆 <

𝑏

𝑎 (𝑎 − 1)
=

𝑏

𝑎 − 1
−

𝑏

𝑎

≤ 𝑥
𝑘−1

= 𝑎𝑥
𝑘−2 − 𝑏 <

𝑏

𝑎 − 1
−

𝑏

𝑎
2 ,

𝑏

𝑎 − 1
− 𝑏 ≤ 𝑥

𝑘
= 𝑎𝑥
𝑘−1 − 𝑏 <

𝑏

𝑎 − 1
−

𝑏

𝑎

=

𝑏

𝑎 (𝑎 − 1)
,

(62)

where 𝑏/(𝑎 − 1) − 𝑏 > 0 when 𝑎 < 2. Therefore, (3c) follows
as above.

Moreover, by Remark 7, 𝑥
𝑘
= 𝑏/(𝑎−1)−𝑎

𝑘
(𝑏/(𝑎−1)−𝑥0).

(4) Assume that 𝜆 is in 𝐼3.
(a) Let 𝑥0 be in 𝐼1 and 𝑎 ≥ 2. Then 𝑏/𝑎(𝑎 − 1) ≤ 𝜆 ≤ 𝑏/𝑎

and, as in the proof of (2), if 𝑘 is given by (49), then 𝑏/𝑎
2

<

𝑥
𝑘−1 = 𝑎

𝑘−1
𝑥0 ≤ 𝑏/𝑎. Thus (4a) follows from Definition 10

and Lemma 6((2), (4)).
(b) Let 𝑥0 be in 𝐼3 and 𝑎 ≥ 2 so that 𝑏/𝑎(𝑎−1) ≤ 𝑥0 ≤ 𝑏/𝑎.

Hence, (i) and (ii) follow from Lemma 6((2), (4)).
(c) Let 𝑥0 be in 𝐼5 and 𝑎 ≥ 2. As in the proof of (3c),

𝑏

𝑎 (𝑎 − 1)
≤ 𝑥
𝑘−1 =

𝑏

𝑎 − 1
− 𝑎
𝑘−1

(

𝑏

𝑎 − 1
−𝑥0)

<

𝑏

𝑎 − 1
−

𝑏

𝑎
2 .

(63)

Therefore, (4c) follows from Definition 10 and Lemma 6((2),
(4)).

(5) Assume that 𝜆 is in 𝐼4.
(a) Let𝑥0 be in 𝐼5. As above, (63) holds for𝑥𝑘−1.Moreover,

max{

𝑏

𝑎

,

𝑏

𝑎 (𝑎 − 1)
} < 𝜆 <

𝑏

𝑎 − 1
−

𝑏

𝑎
2 . (64)

Thus (5a) follows from Lemma 6(2) and Definition 10.
(b) A direct consequence of Lemma 6(2) and

Definition 10.
(6) Let 𝜆 be in 𝐼5.
(a) Assume that 𝑏/(𝑎−1) − 𝑏/𝑎

2
≤ 𝜆 < 𝑥0 < 𝑏/(𝑎−1) and

let 𝑘 ≥ 2 be the integer satisfying (50):

𝑏

𝑎 − 1
−

𝑏

𝑎
𝑘

≤ 𝑥0 <

𝑏

𝑎 − 1
−

𝑏

𝑎
𝑘+1 . (65)

Thus

𝑏

𝑎 − 1
− 𝑎
𝑘−1

(

𝑏

𝑎 − 1
−𝑥0) <

𝑏

𝑎 − 1
−

𝑏

𝑎
2 ≤ 𝜆 (66)

and, by Remark 7, there is a smallest integer 𝑖 in [2, 𝑘] such
that 𝑥

𝑖−1 ≤ 𝜆 and

𝑥
𝑖−1 =

𝑏

𝑎 − 1
− 𝑎
𝑖−1

(

𝑏

𝑎 − 1
−𝑥0) ≤ 𝜆 < 𝑥

𝑖−2

=

𝑏

𝑎 − 1
− 𝑎
𝑖−2

(

𝑏

𝑎 − 1
−𝑥0) .

(67)

It follows that

𝑥
𝑖
= 𝑎𝑥
𝑖−1 =

𝑎𝑏

𝑎 − 1
− 𝑎
𝑖
(

𝑏

𝑎 − 1
−𝑥0) ≥

𝑏

𝑎 − 1
(68)

if and only if 𝑎𝑖(𝑏/(𝑎 − 1) − 𝑥0) ≤ 𝑏. But, by (50), 𝑎𝑖(𝑏/(𝑎 −

1) − 𝑥0) ≤ 𝑏/𝑎
𝑘−𝑖

≤ 𝑏. Therefore, 𝑥
𝑖
≥ 𝑏/(𝑎 − 1) > 𝜆 and

𝑥
𝑖+𝑗

= 𝑓
+
(𝑖, 𝑗) for all 𝑗 by Lemma 5(2).

Suppose that 𝜆 = 𝑏/(𝑎 − 1) − 𝑏/𝑎
𝑘. Then

𝑏

𝑎 − 1
−

𝑏

𝑎
2 ≤

𝑏

𝑎 − 1
−

𝑏

𝑎
𝑘

= 𝜆 < 𝑥0 <

𝑏

𝑎 − 1
−

𝑏

𝑎
𝑘+1 ,

𝑏

𝑎 (𝑎 − 1)
≤

𝑏

𝑎 − 1
−

𝑏

𝑎
𝑘−1 < 𝑥1 = 𝑎𝑥0 − 𝑏

<

𝑏

𝑎 − 1
−

𝑏

𝑎
𝑘

= 𝜆.

(69)

Thus 𝑖 = 2 and 𝑥2 = 𝑎𝑥1 > 𝑎(𝑏/𝑎(𝑎 − 1)) = 𝑏/(𝑎 − 1).
(b) Follows immediately from Lemma 6(2).
Note that, for any 𝜆 in 𝐼4 ∪ 𝐼5, (5) and (6) cover the

following cases:

(i) 𝑥0 is in 𝐼3 ∪ 𝐼4 ∪ 𝐼5 whenever 𝑎 ≥ 2.
(ii) 𝑥0 is in {𝑏/𝑎(𝑎 − 1)} ∪ 𝐼4 ∪ 𝐼5 when 𝑎 < 2.

(7) Let 𝜆 be in 𝐼4 ∪ 𝐼5.
(a) Let 𝑎 < 2 and let 𝑥0 ̸= 𝑏/𝑎(𝑎 − 1) be in 𝐼3. Then 𝑏/𝑎 ≤

𝑥0 < 𝑏/𝑎(𝑎 − 1) < 𝜆 and

𝑏

𝑎

< 𝑏 = 𝑎(

𝑏

𝑎

) ≤ 𝑥1 = 𝑎𝑥0 < 𝑎(

𝑏

𝑎 (𝑎 − 1)
)

=

𝑏

𝑎 − 1
.

(70)

(i) Assume that 𝜙 ≤ 𝑎 < 2. Then 𝑎(𝑎 − 1) ≥ 1 so 𝑏/𝑎(𝑎 −

1) ≤ 𝑏 and therefore, by (70), 𝑥1 is in {𝑏/𝑎(𝑎 − 1)} ∪

𝐼4 ∪ 𝐼5. Hence, (5) or (6) applies to 𝑥
𝑛
(𝑛 ≥ 1).

(ii) Suppose that 𝑎 < 𝜙 so that 𝑎(𝑎 − 1) < 1. By (70), 𝑥1 is
in 𝐼3 ∪ 𝐼4 ∪ 𝐼5. If 𝑥1 is in {𝑏/𝑎(𝑎 − 1)} ∪ 𝐼4 ∪ 𝐼5, then (5)
or (6) applies to 𝑥

𝑛
(𝑛 ≥ 1).

Assume 𝑥1 ̸= 𝑏/𝑎(𝑎 − 1) is in 𝐼3. Then, by (70), 𝑏 ≤ 𝑥1 <

𝑏/𝑎(𝑎 − 1) < 𝜆 and

𝑏

𝑎

< 𝑏 < 𝑎𝑏 ≤ 𝑥2 = 𝑎𝑥1 <

𝑏

𝑎 − 1
. (71)

Hence, 𝑥2 is in 𝐼3 ∪ 𝐼4 ∪ 𝐼5. Note that if 𝑥2 ̸= 𝑏/𝑎(𝑎 − 1) is in
𝐼3, then 𝑎𝑏 ≤ 𝑥2 < 𝑏/𝑎(𝑎 − 1) < 𝜆 and 𝑎

2
(𝑎 − 1) < 1.
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Continuing by induction, for every 𝑗 ≥ 1, either 𝑥
𝑗
is in

{𝑏/𝑎(𝑎−1)}∪𝐼4∪𝐼5 or 𝑥𝑗 ̸= 𝑏/𝑎(𝑎−1) is in 𝐼3 and 𝑎
𝑗
(𝑎−1) < 1.

Therefore, since 𝑎 > 1, if 𝑟 is the least positive integer such
that 𝑎𝑟(𝑎 − 1) ≥ 1, then there exists an integer 𝑠 in [1, 𝑟] such
that 𝑥

𝑠
= 𝑎
𝑠
𝑥0 is in {𝑏/𝑎(𝑎 − 1)} ∪ 𝐼4 ∪ 𝐼5.

(b) Let 𝑎 > 1 and let 𝑥0 be in 𝐼2.Then 𝑏/𝑎
2
< 𝑥0 < 𝑏/𝑎(𝑎−

1) < 𝜆 and 𝑏/𝑎 < 𝑥1 = 𝑎𝑥0 < 𝑏/(𝑎 − 1). Therefore, 𝑥1 is in
𝐼4 ∪ 𝐼5 when 𝑎 ≥ 2; and 𝑥1 ̸= 𝑏/𝑎 is in 𝐼3 ∪ 𝐼4 ∪ 𝐼5 otherwise.

(c) Let 𝑥0 be in 𝐼1 and let 𝑘 ≥ 2 be given by (49).Then, for
𝑗 = 0, 1, . . . , 𝑘 − 2,

𝑏

𝑎
𝑘+1−𝑗 < 𝑥

𝑗
= 𝑎
𝑗
𝑥0 ≤

𝑏

𝑎
𝑘−𝑗

≤

𝑏

𝑎
2 < 𝜆. (72)

Moreover, 𝑏/𝑎2 < 𝑥
𝑘−1 = 𝑎

𝑘−1
𝑥0 ≤ 𝑏/𝑎 < 𝜆 and

𝑏

𝑎

< 𝑥
𝑘
= 𝑎
𝑘
𝑥0 ≤ 𝑏. (73)

(i) If 𝑎 ≥ 2, then, by (73), either 𝑥
𝑘
≥ 𝑏/(𝑎 − 1) or 𝑥

𝑘
is in

𝐼4 ∪ 𝐼5.

(ii) If 𝑎 < 2, then 𝑏 < 𝑏/(𝑎 − 1) and therefore, by (73),
𝑥
𝑘

̸= 𝑏/𝑎 is in 𝐼3 ∪ 𝐼4 ∪ 𝐼5.

4. Periodic Solutions

The following sets are basic components of any eventually
periodic solution of the difference equation (18).

Definition 14. Let P
−1(𝑎) ≡ {0} and, for 𝑘 ≥ 0, let P

𝑘
(𝑎) be

the set of all polynomials in 𝑎 with degree at most 𝑘 and with
all coefficients either 0 or 1.

A consequence of the next result is that if𝑥
𝑚

= 𝑥
𝑚+𝑝

, then
there are 2𝑚+𝑝 possibilities for 𝑥0.

Lemma 15. Let 𝑥
𝑛
be defined by (18) with 𝑎 > 1, 𝑏 > 0, and

0 < 𝜆, 𝑥0 < 𝑏/(𝑎 − 1). If 𝑥
𝑚

= 𝑥
𝑚+𝑝

, for some integers 𝑚 ≥ 0
and𝑝 ≥ 1, then there exist polynomials p

𝑝−1(𝑎) inP𝑝−1(𝑎) and
q
𝑚−1(𝑎) in P

𝑚−1(𝑎) such that

𝑥0 =

𝑏 (p
𝑝−1 (𝑎) + (𝑎

𝑝
− 1) q

𝑚−1 (𝑎))

𝑎
𝑚

(𝑎
𝑝
− 1)

. (74)

Proof. Note that P0(𝑎) = {0, 1} and, for 𝑘 ≥ 1,

P
𝑘
(𝑎) =

{

{

{

𝑘

∑

𝑗=0
p(𝑘−𝑗)0 (𝑎) 𝑎

𝑗
: p(𝑘−𝑗)0 (𝑎) ∈P0 (𝑎) ∀𝑗

}

}

}

. (75)

We solve the equation 𝑥
𝑚

= 𝑥
𝑚+𝑝

for general initial value 𝑥0.
The possible expressions for 𝑥

𝑚+1 may be written as
follows:

𝑥
𝑚+1 = 𝑎𝑥

𝑚
− p(0)0 (𝑎) 𝑏, p(0)0 (𝑎) ∈ P0 (𝑎) . (76)

Similarly,

𝑥
𝑚+2 = 𝑎𝑥

𝑚+1 − p(1)0 (𝑎) 𝑏

= 𝑎
2
𝑥
𝑚

− (p(1)0 (𝑎) + 𝑎p(0)0 (𝑎)) 𝑏,

(77)

where p(1)0 (𝑎) ∈ P0(𝑎).
Continuing in this manner, we have

𝑥
𝑚+𝑝

= 𝑎
𝑝
𝑥
𝑚

− p
𝑝−1 (𝑎) 𝑏, (78)

where p
𝑝−1(𝑎) = ∑

𝑝−1
𝑗=0 p
(𝑝−1−𝑗)
0 (𝑎)𝑎

𝑗 is an arbitrary element of
P
𝑝−1(𝑎).
In particular,

𝑥
𝑚

= 𝑎
𝑚
𝑥0 − q

𝑚−1 (𝑎) 𝑏, q
𝑚−1 (𝑎) ∈ P

𝑚−1 (𝑎) . (79)

Therefore, 𝑥
𝑚

= 𝑥
𝑚+𝑝

is equivalent to

𝑥
𝑚

=

p
𝑝−1 (𝑎) 𝑏

𝑎
𝑝
− 1

= 𝑎
𝑚
𝑥0 − q

𝑚−1 (𝑎) 𝑏 (80)

and thus the desired form (74) for 𝑥0 follows.

Note that the initial value of the unbounded solution of
Example 8 is not of form (74).

Our main results are converses of Lemma 15. If 𝑥0 is
defined by (74), then

0 ≤ 𝑥0

≤

𝑏 ((𝑎
𝑝
− 1) / (𝑎 − 1) + (𝑎

𝑝
− 1) ((𝑎𝑚 − 1) / (𝑎 − 1)))

𝑎
𝑚

(𝑎
𝑝
− 1)

=

𝑏

𝑎 − 1
.

(81)

Furthermore, we have the following refinement.

Lemma 16. Let 𝑎 > 1 and let 𝑏 > 0 and suppose that 𝑥0
satisfies (74) for integers 𝑚 ≥ 0 and 𝑝 ≥ 1 and polynomials
p
𝑝−1(𝑎) in P

𝑝−1(𝑎) and q𝑚−1(𝑎) in P
𝑚−1(𝑎).

(1) If

deg q
𝑚−1 (𝑎) < 𝑚− 1 𝑤ℎ𝑒𝑛 𝑚 > 1,

q
𝑚−1 (𝑎) = 0 𝑤ℎ𝑒𝑛 𝑚 = 1,

deg p
𝑝−1 (𝑎) < 𝑝− 1 𝑤ℎ𝑒𝑛 𝑚 = 0, 𝑝 > 1,

p
𝑝−1 (𝑎) = 0 𝑤ℎ𝑒𝑛 𝑚 = 0, 𝑝 = 1,

(82)

then 0 ≤ 𝑥0 ≤ 𝑏/𝑎(𝑎 − 1).
(2) If

deg q
𝑚−1 (𝑎) = 𝑚− 1 𝑤ℎ𝑒𝑛 𝑚 > 1,

q
𝑚−1 (𝑎) = 1 𝑤ℎ𝑒𝑛 𝑚 = 1,

deg p
𝑝−1 (𝑎) = 𝑝− 1 𝑤ℎ𝑒𝑛 𝑚 = 0, 𝑝 > 1,

p
𝑝−1 (𝑎) = 1 𝑤ℎ𝑒𝑛 𝑚 = 0, 𝑝 = 1,

(83)

then 𝑏/𝑎 ≤ 𝑥0 ≤ 𝑏/(𝑎 − 1).
Moreover, the converses of (1) and (2) hold whenever 𝑥0 is

not in 𝐼3.
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Proof. Suppose that𝑚 > 1 and deg q
𝑚−1(𝑎) < 𝑚−1.Then 0 ≤

q
𝑚−1(𝑎) ≤ (𝑎

𝑚−1
−1)/(𝑎−1) and 0 ≤ p

𝑝−1(𝑎) ≤ (𝑎
𝑝
−1)/(𝑎−1)

and thus, by (74),

0 ≤ 𝑥0

≤

𝑏 ((𝑎
𝑝
− 1) / (𝑎 − 1) + (𝑎

𝑝
− 1) ((𝑎𝑚−1 − 1) / (𝑎 − 1)))

𝑎
𝑚

(𝑎
𝑝
− 1)

=

𝑏

𝑎 − 1
.

(84)

Similarly, if 𝑚 > 1 and deg q
𝑚−1(𝑎) = 𝑚 − 1, then

q
𝑚−1(𝑎) ≥ 𝑎

𝑚−1 and, by (74) and (81),

𝑏

𝑎 − 1
≥ 𝑥0 ≥

𝑏 (p
𝑝−1 (𝑎) + (𝑎

𝑝
− 1) 𝑎𝑚−1)

𝑎
𝑚

(𝑎
𝑝
− 1)

≥

𝑏

𝑎

. (85)

Suppose that 𝑚 = 1. Then P
𝑚−1(𝑎) = {0, 1}. If q

𝑚−1(𝑎) =

0, then, by (74),

0 ≤ 𝑥0 =

𝑏

𝑎 (𝑎 − 1)
p
𝑝−1 (𝑎)

((𝑎
𝑝
− 1) / (𝑎 − 1))

≤

𝑏

𝑎 (𝑎 − 1)
. (86)

And if q
𝑚−1(𝑎) = 1, then

𝑏

𝑎 − 1
≥ 𝑥0 =

𝑏 (p
𝑝−1 (𝑎) + (𝑎

𝑝
− 1))

𝑎 (𝑎
𝑝
− 1)

≥

𝑏

𝑎

. (87)

Assume next that 𝑚 = 0 and 𝑝 > 1. Then P
𝑚−1(𝑎) = {0}.

If deg p
𝑝−1(𝑎) < 𝑝 − 1, then p

𝑝−1(𝑎) ≤ (𝑎
𝑝−1

− 1)/(𝑎 − 1) and

0 ≤ 𝑥0 ≤ 𝑏

p
𝑝−1 (𝑎)

𝑎
𝑝
− 1

≤

𝑏

𝑎 − 1
(

𝑎
𝑝−1

− 1
𝑎
𝑝
− 1

) <

𝑏

𝑎 (𝑎 − 1)
(88)

since 𝑎 > 1. And if deg p
𝑝−1(𝑎) = 𝑝 − 1, then p

𝑝−1(𝑎) ≥ 𝑎
𝑝−1

and

𝑏

𝑎 − 1
≥ 𝑥0 = 𝑏

p
𝑝−1 (𝑎)

𝑎
𝑝
− 1

≥

𝑏𝑎
𝑝−1

𝑎
𝑝
− 1

>

𝑏

𝑎

. (89)

Finally assume that 𝑚 = 0 and 𝑝 = 1. Then P
𝑚−1(𝑎) =

{0}. If p
𝑝−1(𝑎) = 0, then 𝑥0 = 0. And if p

𝑝−1(𝑎) = 1, then
𝑥0 = 𝑏/(𝑎 − 1).

Conversely, suppose that 0 ≤ 𝑥0 ≤ 𝑏/𝑎(𝑎 − 1) and 𝑚 > 1
but𝑥0 is not in 𝐼3. Either deg q𝑚−1(𝑎) < 𝑚−1 or deg q

𝑚−1(𝑎) =

𝑚 − 1. If deg q
𝑚−1(𝑎) = 𝑚 − 1, then 𝑏/𝑎 ≤ 𝑥0 ≤ 𝑏/(𝑎 − 1) by

(2). Thus, in this case, if 𝑎 < 2, then 𝑥0 is in 𝐼3; and if 𝑎 ≥ 2,
then 𝑎 = 2 and 𝑥0 is again in 𝐼3. Hence, deg q𝑚−1(𝑎) < 𝑚 − 1.

The other converses follow similarly.

The converses in Lemma 16 may fail when 𝑥0 is in 𝐼3: in
Example 12, we have 𝑎 < 2, 𝑥

𝑚+𝑝−𝑞−1 = 𝑏𝑎
𝑝−1

/(𝑎
𝑝
− 1) is in

𝐼3, 0 ≤ 𝑥
𝑚+𝑝−𝑞−1 ≤ 𝑏/𝑎(𝑎−1), and 𝑥

𝑚+𝑝−𝑞−1 satisfies (74) with
𝑚 = 0 and 𝑝 > 1 but deg p

𝑝−1(𝑎) = 𝑝 − 1.
If 𝜆 is in 𝐼1 ∪ 𝐼5, then, by Theorem 13, 𝑥

𝑛
either has a

stationary state or is unbounded. Using Lemma 16, we may
extend this result to the other cases of 𝜆.

Theorem 17. Let 𝑥
𝑛
be a solution of (18) such that 𝑎 ≥ 2, 𝑏 > 0,

and 𝑥0 satisfies (74) for some integers 𝑚 ≥ 0 and 𝑝 ≥ 1 and
some polynomials p

𝑝−1(𝑎) inP𝑝−1(𝑎) and q𝑚−1(𝑎) inP𝑚−1(𝑎).

(1) If 𝜆 is in 𝐼2, then either 𝑥
𝑚

= 𝑥
𝑚+𝑝

or there exists a
positive integer 𝑖 ≤ 𝑚 + 𝑝 such that 𝑥

𝑖+𝑗
= 𝑓
−
(𝑖, 𝑗) for

all 𝑗 ≥ 0.
(2) Let 𝜆 be in 𝐼3. If 𝜆 ̸= 𝑏/𝑎 or p

𝑝−1(𝑎) ̸= 0, then 𝑥
𝑚

=

𝑥
𝑚+𝑝

. On the other hand, if 𝜆 = 𝑏/𝑎 and p
𝑝−1(𝑎) = 0,

then either𝑥0 = 0 or there exists a positive integer 𝑖 ≤ 𝑚

such that 𝑥
𝑖+𝑗

= 𝑓
+
(𝑖, 𝑗) for all 𝑗 ≥ 0, where 𝑥

𝑖
= 𝑏.

(3) If 𝜆 is in 𝐼4, then either 𝑥
𝑚

= 𝑥
𝑚+𝑝

or there exists a
positive integer 𝑖 ≤ 𝑚 + 𝑝 such that 𝑥

𝑖+𝑗
= 𝑓
+
(𝑖, 𝑗) for

all 𝑗 ≥ 0.

Proof. (2) Let 𝜆 be in 𝐼3 and suppose that either 𝜆 ̸= 𝑏/𝑎 or
p
𝑝−1(𝑎) ̸= 0. We first verify that, for 𝑚 ≥ 1,

𝑥
𝑚

=

𝑏p
𝑝−1 (𝑎)

𝑎
𝑝
− 1

. (90)

Suppose that q
𝑚−1(𝑎) = 0. Then

𝑥0 =

𝑏

𝑎 − 1
p
𝑝−1 (𝑎)

𝑎
𝑚

(1 + 𝑎 + ⋅ ⋅ ⋅ + 𝑎
𝑝−1

)

≤

𝑏

𝑎 − 1
1
𝑎
𝑚

≤

𝑏

𝑎 − 1
1
𝑎

≤ 𝜆

(91)

since 𝑎 ≥ 2 and 𝜆 is in 𝐼3. Thus 𝑥1 = 𝑎𝑥0 and similarly 𝑥
𝑗
=

𝑎𝑥
𝑗−1 ≤ 𝜆 for 𝑗 = 1, . . . , 𝑚 − 1. Hence, 𝑥

𝑚
= 𝑎
𝑚
𝑥0 satisfies

(90).
Next assume q

𝑚−1(𝑎) ̸= 0 and𝑚 = 1. Since 𝑎 ≥ 2 and 𝜆 is
in 𝐼3, it follows that

𝑥0 =

𝑏 (p
𝑝−1 (𝑎) + (𝑎

𝑝
− 1))

𝑎 (𝑎
𝑝
− 1)

≥

𝑏

𝑎

≥ 𝜆. (92)

Additionally, since 𝜆 < 𝑏/𝑎 or p
𝑝−1(𝑎) > 0, at least one of the

inequalities is strict and 𝑥0 > 𝜆. Thus 𝑥1 = 𝑎𝑥0 − 𝑏 satisfies
(90).

Hence, assume that q
𝑚−1(𝑎) ̸= 0 and 𝑚 > 1. There exists

a nonempty subset Λ
𝑚−1 of {0, 1, . . . , 𝑚 − 1} such that

𝑥0 = 𝑏(

p
𝑝−1 (𝑎)

𝑎
𝑚

(𝑎
𝑝
− 1)

+

q
𝑚−1 (𝑎)

𝑎
𝑚

) , (93)

where q
𝑚−1(𝑎) = ∑

𝑘∈Λ
𝑚−1

𝑎
𝑘. Let 𝑖 ≡ minΛ

𝑚−1 and 𝑗 ≡

maxΛ
𝑚−1 = deg q

𝑚−1(𝑎). We will show that

𝑥
𝑚−𝑖

=

𝑏p
𝑝−1 (𝑎)

𝑎
𝑖
(𝑎
𝑝
− 1)

(94)

and therefore (90) will hold as in the initial case q
𝑚−1(𝑎) = 0.

We begin by showing that, for 𝑚 > 1,

𝑥0 > 𝜆 iff 𝑗 = 𝑚− 1. (95)

Let 𝑥0 > 𝜆. If 𝑎 = 2, then 𝑏/𝑎(𝑎 − 1) = 𝜆 = 𝑏/𝑎 < 𝑥0
and therefore 𝑥0 is not in 𝐼3. On the other hand, if 𝑎 > 2, then
𝑏/𝑎(𝑎 − 1) < 𝑏/𝑎 and, by Lemma 16, 𝑥0 is again not in 𝐼3.
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Since 𝑏/𝑎(𝑎 − 1) ≤ 𝜆 ≤ 𝑏/𝑎, 𝑥0 > 𝜆, and 𝑥0 is not in 𝐼3, it
follows that 𝑏/𝑎 < 𝑥0 ≤ 𝑏/(𝑎−1) and, by Lemma 16, 𝑗 = 𝑚−1.

Conversely, let 𝑗 = 𝑚 − 1. Then q
𝑚−1(𝑎) ≥ 𝑎

𝑚−1 and

𝑥0 ≥ 𝑏(

p
𝑝−1 (𝑎)

𝑎
𝑚

(𝑎
𝑝
− 1)

+

𝑎
𝑚−1

𝑎
𝑚

) ≥

𝑏

𝑎

≥ 𝜆. (96)

Since 𝜆 < 𝑏/𝑎 or p
𝑝−1(𝑎) > 0, at least one of the latter

inequalities is strict and thus 𝑥0 > 𝜆. Hence, (95) holds.
Next consider 𝑥1, where q𝑚−1(𝑎) ̸= 0 and 𝑥0 is given by

(93). By (95),

𝑥1 = 𝑏(

p
𝑝−1 (𝑎)

𝑎
𝑚−1

(𝑎
𝑝
− 1)

+

q
𝑚−2 (𝑎)

𝑎
𝑚−1 ) , (97)

where q
𝑚−2(𝑎) = ∑

𝑘∈Λ
𝑚−2

𝑎
𝑘 such that

Λ
𝑚−2 ≡

{

{

{

Λ
𝑚−1, if 𝑗 < 𝑚 − 1

Λ
𝑚−1 \ {𝑗} , if 𝑗 = 𝑚 − 1,

(98)

which is a subset of Λ
𝑚−1 ∩ {0, . . . , 𝑚 − 2}. In addition, since

𝑖 ≤ 𝑗 ≤ 𝑚 − 1, it follows that

q
𝑚−2 (𝑎) = 0 iff 1 = 𝑚− 𝑖, (99)

in which case (94) holds for 𝑥1.
Suppose that 1 < 𝑚 − 𝑖. Then q

𝑚−2(𝑎) ̸= 0, 𝑖 is in Λ
𝑚−2,

and 𝑥1 is of form (93) with 𝑚 replaced by 𝑚 − 1. By (95),

𝑥1 > 𝜆 iff maxΛ
𝑚−2 = 𝑚− 2. (100)

Moreover, as above, (94) holds for 𝑥2 if 2 = 𝑚 − 𝑖.
By induction, for 𝑟 = 0, 1, . . . , 𝑚 − 𝑖 − 1, we may assume

𝑥
𝑟
= 𝑏(

p
𝑝−1 (𝑎)

𝑎
𝑚−𝑟

(𝑎
𝑝
− 1)

+

q
𝑚−𝑟−1 (𝑎)

𝑎
𝑚−𝑟

) , (101)

where q
𝑚−𝑟−1(𝑎) = ∑

𝑘∈Λ
𝑚−𝑟−1

𝑎
𝑘

̸= 0 such that

Λ
𝑚−𝑟−1

≡

{

{

{

Λ
𝑚−𝑟

, if maxΛ
𝑚−𝑟

< 𝑚 − 𝑟

Λ
𝑚−𝑟

\ {maxΛ
𝑚−𝑟

} , if maxΛ
𝑚−𝑟

= 𝑚 − 𝑟,

(102)

which is a subset of Λ
𝑚−𝑟

∩ {0, . . . , 𝑚 − 𝑟 − 1}, and, by (95),

𝑥
𝑟
> 𝜆 iff maxΛ

𝑚−𝑟−1 = 𝑚− 𝑟− 1. (103)

Moreover, after 𝑟 ≡ 𝑚 − 𝑖 steps, we conclude that
q
𝑚−𝑟−1(𝑎) = 0 and 𝑥

𝑚−𝑖
satisfies (94). Thus (90) follows as

in the case q
𝑚−1(𝑎) = 0.

Finally, we verify that 𝑥
𝑚

= 𝑥
𝑚+𝑝

, where 𝑥
𝑚
is given by

(90). If 𝑝 = 1, then 𝑥
𝑚
is 0 or 𝑏/(𝑎 − 1); so 𝑥

𝑚
= 𝑥
𝑚+𝑝

. Thus
assume 𝑝 > 1. In this case, we prove that

𝑥
𝑚

≤ 𝜆 iff deg p
𝑝−1 (𝑎) < 𝑝− 1. (104)

Let 𝑥
𝑚

≤ 𝜆. Suppose first that 𝑥
𝑚
is in 𝐼3. Since 𝑎 ≥ 2, we

have 𝑏/𝑎(𝑎 − 1) ≤ 𝑏/𝑎; and, by Lemma 16, 𝑏/𝑎(𝑎 − 1) = 𝑥
𝑚

=

𝜆 = 𝑏/𝑎 and 𝑎 = 2.Hence, by (90),p
𝑝−1(𝑎) = (𝑎

𝑝
−1)/𝑎, which

is impossible since 𝑎 = 2 and p
𝑝−1(𝑎) is a positive integer but

𝑎
𝑝
− 1 and 𝑎 are relatively prime.
Thus assume 𝑥

𝑚
is not in 𝐼3. Then 𝑥

𝑚
is in 𝐼1 ∪ 𝐼2 since 𝜆

is in 𝐼3 and 𝑥
𝑚

≤ 𝜆. Hence, by Lemma 16, deg p
𝑝−1(𝑎) < 𝑝−1

since 𝑝 > 1.
Conversely, let deg p

𝑝−1(𝑎) < 𝑝 − 1 (and 𝑝 > 1). Then
0 ≤ 𝑥
𝑚

≤ 𝑏/𝑎(𝑎 − 1) ≤ 𝜆 by Lemma 16 and therefore 𝑥
𝑚

≤ 𝜆.
Thus (104) follows.

As in (93), by (90),

𝑥
𝑚

=

𝑏∑
𝑘∈Λ
𝑝−1

𝑎
𝑘

𝑎
𝑝
− 1

(105)

for some nonempty subset Λ
𝑝−1 of {0, . . . , 𝑝 − 1}. By (104),

𝑥
𝑚+1 =

𝑏∑
𝑘∈Λ
𝑝−1

𝑇
𝑝−1 (𝑎

𝑘
)

𝑎
𝑝
− 1

,
(106)

where𝑇
𝑝−1 is themapping on the set {𝑎0, 𝑎1, . . . , 𝑎𝑝−1} defined

by

𝑇
𝑝−1 (𝑎

𝑘
) ≡

{

{

{

𝑎
𝑘+1

, if 𝑘 < 𝑝 − 1

𝑎
0
, if 𝑘 = 𝑝 − 1.

(107)

Similarly, for 𝑟 = 1, 2, . . .,

𝑥
𝑚+𝑟

=

𝑏∑
𝑘∈Λ
𝑝−1

𝑇
𝑟

𝑝−1 (𝑎
𝑘
)

𝑎
𝑝
− 1

(108)

and since 𝑇
𝑝

𝑝−1(𝑎
𝑘
) = 𝑎
𝑘, for all 𝑘, it follows that 𝑥

𝑚
= 𝑥
𝑚+𝑝

.
We now turn to the second part of (2). Assume that 𝑎 ≥ 2,

𝜆 = 𝑏/𝑎, and 𝑥0 = 𝑏q
𝑚−1(𝑎)/𝑎

𝑚
> 0 and thus 𝑚 ≥ 1. We

prove the following:

If 𝑥0 =

𝑏Q
𝑗
(𝑎)

𝑎
𝑘

̸= 0 where Q
𝑗
(𝑎) is in P

𝑗
(𝑎)

such that 0 ≤ 𝑗 = degQ
𝑗
(𝑎) < 𝑘 ≤ 𝑚,

then either 𝑥0 =

𝑏

𝑎

= 𝜆

or𝑥1 =

𝑏Q
𝑗
󸀠 (𝑎)

𝑎
𝑘−1 ̸= 0

where Q
𝑗
󸀠 (𝑎) is in P

𝑗
󸀠 (𝑎) and 0 ≤ 𝑗

󸀠
= degQ

𝑗
󸀠 (𝑎) < 𝑘 − 1 ≤ 𝑚.

(109)

Suppose that 𝑥0 = 𝑏Q
𝑗
(𝑎)/𝑎
𝑘

̸= 0, where Q
𝑗
(𝑎) satisfies

the above hypotheses. Consider two cases for 𝑗.
(i) Assume 𝑗 ≤ 𝑘 − 2. Then 𝑥0 = 𝑏Q

𝑗
(𝑎)/𝑎
𝑘

< 𝜆 = 𝑏/𝑎:
Q
𝑗
(𝑎) ≤ 1 + 𝑎 + ⋅ ⋅ ⋅ + 𝑎

𝑗
= (𝑎
𝑗+1

− 1)/(𝑎 − 1) < 𝑎
𝑘−1 since

𝑎
𝑘−1

+ 𝑎
𝑗+1

− 1 ≤ 𝑎
𝑘−1

+ 𝑎
𝑘−1

− 1 = 2𝑎𝑘−1 − 1

≤ 𝑎𝑎
𝑘−1

− 1 < 𝑎
𝑘
.

(110)

Hence, (109) holds since 𝑥1 = 𝑎𝑥0 = 𝑏Q
𝑗
(𝑎)/𝑎
𝑘−1

̸= 0, where
0 ≤ 𝑗 = degQ

𝑗
(𝑎) ≤ 𝑘 − 2 < 𝑘 − 1 ≤ 𝑚 so let 𝑗󸀠 = 𝑗.
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(ii) Suppose that 𝑗 = 𝑘 − 1. IfQ
𝑗
(𝑎) = 𝑎

𝑗, then 𝑥0 = 𝑏/𝑎 =

𝜆 so assume thatQ
𝑗
(𝑎) > 𝑎

𝑗 since 𝑗 = degQ
𝑗
(𝑎). In this case,

(109) also holds since 𝑥0 = 𝑏Q
𝑗
(𝑎)/𝑎
𝑘
> 𝜆 = 𝑏/𝑎 and hence

𝑥1 = 𝑎𝑥0 − 𝑏 = 𝑏Q
𝑗
󸀠(𝑎)/𝑎

𝑘−1
̸= 0, where Q

𝑗
󸀠(𝑎) ≡ Q

𝑗
(𝑎) − 𝑎

𝑗

and 0 ≤ 𝑗
󸀠
≡ degQ

𝑗
󸀠(𝑎) ≤ 𝑘 − 2 < 𝑘 − 1 ≤ 𝑚.

Thus, starting with 𝑥0 = 𝑏q
𝑚−1(𝑎)/𝑎

𝑚
= 𝑏Q
𝑗
(𝑎)/𝑎
𝑘

̸= 0,
Q
𝑗
(𝑎) ∈ P

𝑗
(𝑎), 0 ≤ 𝑗 = degQ

𝑗
(𝑎) < 𝑘 = 𝑚, and, applying

(109) to 𝑥1, 𝑥2, . . ., we conclude that 𝑥𝑖−1 = 𝑏/𝑎 = 𝜆 for some
𝑖 in [1, 𝑚]. Therefore,

𝑥
𝑖
= 𝑎𝑥
𝑖−1 = 𝑏 ≥

𝑏

𝑎 − 1
>

𝑏

𝑎

= 𝜆 (111)

and 𝑥
𝑖+𝑗

= 𝑓
+
(𝑖, 𝑗) for all 𝑗 ≥ 0 by Lemma 5(2).

(1) Let 𝜆 be in 𝐼2. The condition “𝑥
𝑖+𝑗

= 𝑓
−
(𝑖, 𝑗) for all𝑗 ≥

0” is equivalent to “𝑥
𝑖
≤ 0.”Thus we further assume that 𝑥

𝑖
>

0 for 𝑖 = 1, . . . , 𝑚 + 𝑝 and show that 𝑥
𝑚

= 𝑥
𝑚+𝑝

following the
outline of the proof of (2).

We first verify that 𝑥
𝑚
satisfies (90) for 𝑚 ≥ 1. Suppose

that q
𝑚−1(𝑎) = 0. Then, since 𝑎 ≥ 2 and 𝑚 ≥ 1,

𝑥0 =

𝑏

𝑎 − 1
p
𝑝−1 (𝑎)

𝑎
𝑚

((𝑎
𝑝
− 1) / (𝑎 − 1))

≤

𝑏

𝑎 − 1
1
𝑎
𝑚

≤

𝑏

𝑎 − 1
1
𝑎

≤

𝑏

𝑎

.

(112)

If 𝑥0 > 𝜆, then 𝑥1 ≤ 0 by Lemma 6(4). Therefore, 𝑥0 ≤ 𝜆 and

𝑥1 = 𝑎𝑥0 =

𝑏p
𝑝−1 (𝑎)

𝑎
𝑚−1

(𝑎
𝑝
− 1)

. (113)

Similarly, 𝑥
𝑗
≤ 𝜆 for 𝑗 = 1, . . . , 𝑚 − 1 and hence 𝑥

𝑚
= 𝑎
𝑚
𝑥0

satisfies (90).
Suppose next that q

𝑚−1(𝑎) ̸= 0 and𝑚 = 1. Since 𝜆 is in 𝐼2,

𝑥0 =

𝑏 (p
𝑝−1 (𝑎) + (𝑎

𝑝
− 1))

𝑎 (𝑎
𝑝
− 1)

≥

𝑏

𝑎

> 𝜆 (114)

and 𝑥1 = 𝑎𝑥0 − 𝑏 satisfies (90).
Thus assume that q

𝑚−1(𝑎) ̸= 0 and𝑚 > 1.Then𝑥0 is given
by (93), where q

𝑚−1(𝑎) = ∑
𝑘∈Λ
𝑚−1

𝑎
𝑘 for some nonempty

subsetΛ
𝑚−1 of {0, 1, . . . , 𝑚−1}. We will show that (94) holds,

where 𝑖 ≡ minΛ
𝑚−1, and therefore (90) will hold as in the

case q
𝑚−1(𝑎) = 0.

Let 𝑗 ≡ maxΛ
𝑚−1 = deg q

𝑚−1(𝑎). We begin by showing
(95) for 𝑚 > 1.

Let 𝑥0 > 𝜆. If 𝑥0 is in (𝜆, 𝑏/𝑎(𝑎 − 1)) ∪ 𝐼3, then 𝑥1 ≤ 0
by Lemma 6(4). Since 𝑥1 > 0 by assumption and 𝑥0 > 𝜆,
it follows that 𝑥0 is in 𝐼4 ∪ 𝐼5; and therefore 𝑗 = 𝑚 − 1 by
Lemma 16 since 𝑚 > 1.

Conversely, let 𝑗 = 𝑚 − 1. By Lemma 16,

𝜆 <

𝑏

𝑎 (𝑎 − 1)
≤

𝑏

𝑎

≤ 𝑥0 ≤

𝑏

𝑎 − 1
(115)

and 𝑥0 > 𝜆. Thus (95) holds.
Equation (94) and consequently (90) follow from (95) as

in the proof of (2).

Finally, we verify that 𝑥
𝑚

= 𝑥
𝑚+𝑝

, where 𝑥
𝑚
is given

by (90). We may assume 𝑝 > 1 since otherwise 𝑥
𝑚
is 0 or

𝑏/(𝑎−1), and therefore 𝑥
𝑚

= 𝑥
𝑚+𝑝

. We start by proving (104):
since 𝜆 is in 𝐼2 and 𝑥

𝑚+1 > 0 by assumption, it follows by
Lemma 6(4) that 𝑥

𝑚
is not in (𝜆, 𝑏/𝑎(𝑎 − 1)) ∪ 𝐼3.

Let 𝑥
𝑚

≤ 𝜆. Then 𝑥
𝑚
is in 𝐼1 ∪ 𝐼2 so deg p

𝑝−1(𝑎) < 𝑝 − 1
by Lemma 16 since 𝑥

𝑚
is not in 𝐼3 and 𝑝 > 1.

Conversely, assume that deg p
𝑝−1(𝑎) < 𝑝 − 1. By

Lemma 16, 0 ≤ 𝑥
𝑚

≤ 𝑏/𝑎(𝑎−1), but𝑥
𝑚
is not in (𝜆, 𝑏/𝑎(𝑎−1)].

Therefore 𝑥
𝑚

≤ 𝜆 and (104) holds.
By (90) and (104), the desired result 𝑥

𝑚
= 𝑥
𝑚+𝑝

follows as
in the proof of (2).

(3) Let 𝜆 be in 𝐼4. The condition “𝑥
𝑖+𝑗

= 𝑓
+
(𝑖, 𝑗) for all

𝑗 ≥ 0” is equivalent to “𝑥
𝑖
≥ 𝑏/(𝑎 − 1).” Thus we assume that

𝑥
𝑖
< 𝑏/(𝑎 − 1) for 𝑖 = 1, . . . , 𝑚 + 𝑝 and show that 𝑥

𝑚
= 𝑥
𝑚+𝑝

following the outline of the proof of (2).
We first verify that 𝑥

𝑚
satisfies (90) for 𝑚 ≥ 1. Suppose

that q
𝑚−1(𝑎) = 0. Then, since 𝑎 ≥ 2, 𝑚 ≥ 1, and 𝜆 is in 𝐼4,

𝑥0 =

𝑏

𝑎 − 1
p
𝑝−1 (𝑎)

𝑎
𝑚

((𝑎
𝑝
− 1) / (𝑎 − 1))

≤

𝑏

𝑎 − 1
1
𝑎
𝑚

≤

𝑏

𝑎 − 1
1
𝑎

≤

𝑏

𝑎

< 𝜆.

(116)

Thus 𝑥1 = 𝑎𝑥0 and similarly 𝑥
𝑗

≤ 𝜆 for 𝑗 = 1, . . . , 𝑚 − 1.
Hence, 𝑥

𝑚
= 𝑎
𝑚
𝑥0 satisfies (90).

Next, we assume q
𝑚−1(𝑎) ̸= 0 and 𝑚 = 1. Then

𝑥0 =

𝑏 (p
𝑝−1 (𝑎) + (𝑎

𝑝
− 1))

𝑎 (𝑎
𝑝
− 1)

≥

𝑏

𝑎

≥

𝑏

𝑎 (𝑎 − 1)
. (117)

If 𝑥0 ≤ 𝜆, then 𝑥1 ≥ 𝑏/(𝑎−1) by Lemma 6(2), contrary to our
hypothesis. Thus 𝑥0 > 𝜆 and 𝑥1 = 𝑎𝑥0 − 𝑏 satisfies (90).

Therefore assume that q
𝑚−1(𝑎) ̸= 0 and 𝑚 > 1. Then

𝑥0 is given by (93), where q
𝑚−1(𝑎) = ∑

𝑘∈Λ
𝑚−1

𝑎
𝑘 for some

nonempty subsetΛ
𝑚−1 of {0, 1, . . . , 𝑚 − 1}. We will show that

(94) holds, where 𝑖 ≡ minΛ
𝑚−1, and hence (90) will follow

as in the case q
𝑚−1(𝑎) = 0.

Let 𝑗 ≡ maxΛ
𝑚−1 = deg q

𝑚−1(𝑎). We begin by showing
(95) for 𝑚 > 1: if 𝑥0 is in 𝐼3 ∪ (𝑏/𝑎, 𝜆), then 𝑥1 ≥ 𝑏/(𝑎 − 1) by
Lemma 6(2).Thus 𝑥0 is not in 𝐼3 ∪(𝑏/𝑎, 𝜆) by our hypothesis.

Let𝑥0 > 𝜆.Then𝑥0 is in 𝐼4∪𝐼5, 𝑚 > 1, and hence 𝑗 = 𝑚−1
by Lemma 16 since 𝑥0 is not in 𝐼3.

Conversely, let 𝑗 = 𝑚 − 1 (and 𝑚 > 1). By Lemma 16,
𝑏/𝑎(𝑎 − 1) ≤ 𝑏/𝑎 ≤ 𝑥0 ≤ 𝑏/(𝑎 − 1). Since 𝑥0 is not in (𝑏/𝑎, 𝜆),
we have that 𝑥0 > 𝜆; and (95) holds.

Equation (94) and consequently (90) follow from (95) as
in the proof of (2).

Finally, we verify that 𝑥
𝑚

= 𝑥
𝑚+𝑝

, where 𝑥
𝑚
is given by

(90). We may assume 𝑝 > 1 since otherwise 𝑥
𝑚
is 0 or 𝑏/(𝑎 −

1), and therefore 𝑥
𝑚

= 𝑥
𝑚+𝑝

. We start by proving (104).
Let 𝑥
𝑚

≤ 𝜆.Then 𝑥
𝑚
is not in 𝐼3∪(𝑏/𝑎, 𝜆) by Lemma 6(2)

since 𝑥
𝑚+1 < 𝑏/(𝑎 − 1). Thus 𝑥

𝑚
is in 𝐼1 ∪ 𝐼2 and therefore

deg p
𝑝−1(𝑎) < 𝑝 − 1 by Lemma 16 since 𝑥

𝑚
is not in 𝐼3 and

𝑝 > 1.
Conversely, if deg p

𝑝−1(𝑎) < 𝑝 − 1 (and 𝑝 > 1), then 0 ≤

𝑥
𝑚

≤ 𝑏/𝑎(𝑎 − 1) < 𝜆 by Lemma 16, and (104) follows.
Finally, 𝑥

𝑚
= 𝑥
𝑚+𝑝

by (90) and (104) as in the proof of
(2).
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The following two examples illustrate symmetry between
type C solutions about the point 𝑏/2(𝑎 − 1) that will be
generalized in the next section. In particular, type B solutions
will be shown to be reflections of type A solutions.

Example 18. Let 𝑎 ≥ 2 and let 𝑏 > 0 and let 𝜆 be in 𝐼3. For
positive integer 𝑘, consider the weighted average

𝑥0 ≡

𝑏/𝑎
2
+ 𝑎
𝑘
(𝑏/𝑎 (𝑎 − 1))

1 + 𝑎
𝑘

(118)

in 𝐼2 (that converges to 𝑏/𝑎(𝑎−1) as 𝑘 tends to infinity).Then

𝑥0 =

𝑏 (𝑎
𝑘
((𝑎
𝑘
− 1) / (𝑎 − 1)) + (𝑎

2𝑘
− 1))

𝑎
2
(𝑎

2𝑘
− 1)

(119)

so 𝑥2 = 𝑥2+2𝑘 byTheorem 17(2).

Example 19. For integer 𝑘 ≥ 1, redefine 𝑥0 in Example 18 to
be the weighted average

𝑥0 ≡

(𝑏/ (𝑎 − 1) − 𝑏/𝑎
2
) + 𝑎
𝑘
(𝑏/𝑎)

1 + 𝑎
𝑘

(120)

in 𝐼4 (that converges to 𝑏/𝑎 as 𝑘 → ∞). Then 𝑥2 = 𝑥2+2𝑘 as
above since

𝑥0 =

𝑏 ((𝑎
𝑘
− 1) / (𝑎 − 1) + (𝑎

2𝑘
− 1) 𝑎)

𝑎
2
(𝑎

2𝑘
− 1)

(121)

in form (74). Note that, in this case, 𝑏/(𝑎−1)−𝑥0 is the initial
value in Example 18.

Theorem 17 may be applied to cryptography.

Example 20. Arbitrary vectors k = ⟨V0, . . . , V𝑝−1⟩ of zeros and
ones may be encoded by selecting any real numbers 𝑎 ≥ 2,
𝑏 > 0, and 𝜆 in 𝐼3 and defining

𝑥0 ≡

𝑏∑ V
𝑖
𝑎
𝑖

𝑎
𝑝
− 1

(122)

in form (74). By Theorem 17(2), the “cipher-set”
{𝑎, 𝑏, 𝜆, 𝑥0 (computed value)} may then be decoded for
k as follows: if 𝑥0 = 0, then k is a zero vector of indeterminate
length. If 𝑥0 = 𝑏/(𝑎 − 1), then k is a vector of all ones of
indeterminate length.

Assume 𝑥0 ̸= 0, 𝑏/(𝑎 − 1). Compute enough terms of the
periodic sequence 𝑥

𝑛
to determine its period 𝑝. Then 𝑝 is the

length of k and the proof of Theorem 17(2) shows that

V
𝑖
= 1 iff 𝑥

𝑝−1−𝑖 > 𝜆 (𝑖 = 0, . . . , 𝑝 − 1) . (123)

The following eventually periodic solution 𝑥
𝑛
with 𝑥0 of

form (74) is of type A.

Example 21. Let 𝑎 ≥ 2 and let 𝑏 > 0 and, for integers 𝑚 ≥ 1
and 𝑝 > 2, let 𝑥0 be the weighted average

𝑥0 ≡

𝑏𝑎
𝑝−2

/ (𝑎
𝑝
− 1) + (𝑎

𝑚−1
− 1) (𝑏/𝑎 (𝑎 − 1))

𝑎
𝑚−1

(124)

in 𝐼2. Then 𝑥0 is of form (74) with p
𝑝−1(𝑎) = 𝑎

𝑝−1 and
q
𝑚−1(𝑎) = (𝑎

𝑚−1
−1)/(𝑎−1). Choose 𝜆 in 𝐼2 such that 𝑥0 ≤ 𝜆.

Then 𝑥
𝑚

= 𝑏𝑎
𝑝−1

/(𝑎
𝑝
− 1):

𝑥1 = 𝑎𝑥0 =

𝑏𝑎
𝑝−1

𝑎
𝑚−1

(𝑎
𝑝
− 1)

+

𝑏

𝑎
𝑚−1 (

𝑎
𝑚−1

− 1
𝑎 − 1

) , (125)

so the claim is true for 𝑚 = 1.
Assume 𝑚 > 1. We prove by induction that

𝑥
𝑖
=

𝑏𝑎
𝑝−1

𝑎
𝑚−𝑖

(𝑎
𝑝
− 1)

+

𝑏

𝑎
𝑚−𝑖

(

𝑎
𝑚−𝑖

− 1
𝑎 − 1

) >

𝑏

𝑎

> 𝜆 (126)

for 𝑖 = 1, . . . , 𝑚 − 1. By the form of 𝑥1 above,

𝑥1 >

𝑏

𝑎
𝑚−1 (

𝑎
𝑚−1

− 1
𝑎 − 1

) ≥

𝑏

𝑎

> 𝜆 (127)

since 𝑎
𝑚−1

≥ 𝑎; so (126) holds for 𝑖 = 1.
Suppose that (126) is true for some 𝑖 < 𝑚 − 1. Then

𝑥
𝑖+1 = 𝑎𝑥

𝑖
− 𝑏

=

𝑏𝑎
𝑝−1

𝑎
𝑚−(𝑖+1)

(𝑎
𝑝
− 1)

+

𝑏

𝑎
𝑚−(𝑖+1) (

𝑎
𝑚−(𝑖+1)

− 1
𝑎 − 1

)

≥

𝑏

𝑎
𝑚−(𝑖+1) (

𝑎
𝑚−(𝑖+1)

− 1
𝑎 − 1

) ≥

𝑏

𝑎

> 𝜆

(128)

as in the case 𝑖 = 1 since 𝑚 > 𝑖 + 1. Thus (126) holds for
𝑖 = 1, . . . , 𝑚 − 1.

In particular, 𝑥
𝑚

= 𝑎𝑥
𝑚−1−𝑏 = 𝑏𝑎

𝑝−1
/(𝑎
𝑝
−1) > 𝑏/𝑎 > 𝜆.

Finally 𝑥
𝑚+𝑝

= 𝑥
𝑚
: 𝑥
𝑚+1 = 𝑎𝑥

𝑚
−𝑏 = 𝑏/(𝑎

𝑝
−1) ≤ 𝑏/𝑎

2
<

𝜆 since 𝑝 > 2, and, by inducton, 𝑥
𝑚+𝑖

= 𝑏𝑎
𝑖−1

/(𝑎
𝑝

− 1) ≤

𝑏/𝑎
2
< 𝜆 for 𝑖 = 1, . . . , 𝑝 − 2. Hence, 𝑥

𝑚+(𝑝−1) = 𝑎𝑥
𝑚+(𝑝−2) =

𝑏𝑎
𝑝−2

/(𝑎
𝑝
− 1) < 𝑥0 ≤ 𝜆 by the form of 𝑥0 and the choice of

𝜆. Therefore, 𝑥
𝑚+𝑝

= 𝑏𝑎
𝑝−1

/(𝑎
𝑝
− 1) = 𝑥

𝑚
.

Unfortunately, not all type A solutions 𝑥
𝑛
with 𝑥0 of form

(74) are bounded.

Example 22. Let 𝑎 ≥ 2 and let 𝑏 > 0 and

𝑏

𝑎
2 < 𝑥0 ≡

𝑏 (𝑎
2
+ 1)

𝑎 (𝑎
3
− 1)

< 𝜆 ≡

𝑏𝑎

(𝑎 − 1) (𝑎2 + 1)

<

𝑏

𝑎 (𝑎 − 1)
.

(129)

Then 𝑥0 is of form (74) with 𝑚 = 1, 𝑝 = 3, p
𝑝−1(𝑎) = 𝑎

2
+ 1,

and q
𝑚−1(𝑎) = 0. Moreover,

𝑥1 = 𝑎𝑥0 =

𝑏 (𝑎
2
+ 1)

𝑎
3
− 1

>

𝑏

𝑎

> 𝜆,

𝑥2 = 𝑎𝑥1 − 𝑏 =

𝑏 (𝑎 + 1)
𝑎
3
− 1

> 𝜆,

𝑥3 = 𝑎𝑥2 − 𝑏 =

𝑏 ((𝑎
3
− 1) / (𝑎 − 1) − 𝑎

3
)

𝑎
3
− 1

< 0

(130)

since 𝑎 ≥ 2. Therefore, 𝑥3+𝑗 = 𝑓
−
(3, 𝑗) for all 𝑗 ≥ 0.
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Suppose that 𝑥0 is defined by (74). By Theorems 13 and
17, if 𝑎 ≥ 2 and 𝑥

𝑛
is bounded, then 𝑥

𝑛
is eventually periodic.

In fact, if 𝑎 = 2 and 𝜆 is in 𝐼3, then 𝑥
𝑚

= 𝑥
𝑚+𝑝

by treating
the cases p

𝑝−1(𝑎) ̸= 0 and p
𝑝−1(𝑎) = 0 separately. However, if

𝑎 < 2 and 𝜆 is in 𝐼3, then 𝑥
𝑛
is bounded (Lemma 6) but may

not be eventually periodic.

Example 23. Assume that 1 < 𝑎 = 𝑟/𝑠 < 𝜙, where 𝑟 and
𝑠 are odd and even integers, respectively; 𝑏 > 0 and 𝑥0 ≡

𝑏𝑎/(𝑎
2
− 1). Then 𝑥0 is of form (74) with 𝑚 = 0, 𝑝 = 2, and

p
𝑝−1(𝑎) = 𝑎; and 𝑥0 is in 𝐼3 since 𝑎(𝑎 − 1) < 1. Choose 𝜆 in

𝐼3 such that 𝑥0 ≤ 𝜆. Then 𝜆 ̸= 𝑏/𝑎 and p
𝑝−1(𝑎) ̸= 0, but 𝑥

𝑛
is

not eventually periodic: with 𝑟0 ≡ 𝑟 and 𝑟1 ≡ 𝑟
2, we have as

in Example 9, for 𝑛 ≥ 0,

𝑥
𝑛
=

𝑏

𝑎 − 1
𝑟
𝑛

𝑠
𝑛
(𝑟 + 𝑠)

, (131)

where 𝑟
𝑛
is odd. If 𝑥

𝑛
is eventually periodic, then 𝑥

𝑢
= 𝑥
𝑢+V

for some 𝑢 ≥ 0 and V ≥ 1; and therefore 𝑟
𝑢+V = 𝑠

V
𝑟
𝑢
is both

even and odd.

5. Symmetric Solutions

Theorems 13 and 17 indicate symmetry about the midpoint of
(0, 𝑏/(𝑎 − 1)) between pairs of solutions of (18). Moreover, if
𝑥0 satisfies (74), then so does 𝑏/(𝑎 − 1) − 𝑥0: if

𝑥0 =

𝑏 (p
𝑝−1 (𝑎) + (𝑎

𝑝
− 1) q

𝑚−1 (𝑎))

𝑎
𝑚

(𝑎
𝑝
− 1)

, (132)

then

𝑏

𝑎 − 1
−𝑥0 =

𝑏 (((𝑎
𝑝
− 1) / (𝑎 − 1) − p

𝑝−1 (𝑎)) + (𝑎
𝑝
− 1) ((𝑎𝑚 − 1) / (𝑎 − 1) − q

𝑚−1 (𝑎)))

𝑎
𝑚

(𝑎
𝑝
− 1)

. (133)

Therefore, in view of Theorem 17, a natural question is, if 𝑥
𝑛

and 𝑦
𝑛
are given by (18), where 𝑦0 ≡ 𝑏/(𝑎 − 1) − 𝑥0, does it

follow that 𝑦
𝑛
= 𝑏/(𝑎 − 1) − 𝑥

𝑛
for all 𝑛? We show affirmative

answers in general for at least two choices of 𝜆, the first of
which requires that 𝜆 is not a term of 𝑥

𝑛
.

Theorem 24. Let 𝑥
𝑛
satisfy difference equation (18) with

respect to 𝑎 > 1, 𝑏 > 0, 0 < 𝜆, 𝑥0 < 𝑏/(𝑎 − 1), and 𝐹
𝜆

≡ 𝐹;
and let 𝑦

𝑛
be defined by (18) in terms of 𝑎 ≡ 𝑎, 𝑏 ≡ 𝑏,

𝜆
𝑦
≡ 𝑏/(𝑎 − 1) − 𝜆, 𝑦0 ≡ 𝑏/(𝑎 − 1) − 𝑥0, and the corresponding

𝐹 denoted by 𝐹
𝜆
𝑦

. Then

𝑦1 =

{
{
{

{
{
{

{

𝑏

𝑎 − 1
− 𝑥1, 𝑖𝑓 𝑥0 ̸= 𝜆

𝑎 (

𝑏

𝑎 − 1
) − 𝑥1, 𝑖𝑓 𝑥0 = 𝜆.

(134)

Moreover, if 𝑥0 = 𝜆 and 𝜆 ≥ 𝑏/𝑎(𝑎 − 1), then 𝑥1+𝑗 = 𝑓
+
(1, 𝑗)

for all 𝑗 ≥ 0.

Proof. Suppose first that 𝑥0 > 𝜆. Then 𝑥1 = 𝑎𝑥0 − 𝑏 = 𝑏/(𝑎 −

1)−𝑎(𝑏/(𝑎−1)−𝑥0) and𝑦0 = 𝑏/(𝑎−1)−𝑥0 < 𝑏/(𝑎−1)−𝜆 = 𝜆
𝑦

so that 𝑦1 = 𝑎𝑦0 = 𝑏/(𝑎 − 1) − 𝑥1.
Next, assume that 𝑥0 ≤ 𝜆. Then 𝑥1 = 𝑎𝑥0. If 𝑥0 < 𝜆, then

𝑦0 = 𝑏/(𝑎 − 1) − 𝑥0 > 𝑏/(𝑎 − 1) − 𝜆 = 𝜆
𝑦
and therefore

𝑦1 = 𝑎𝑦0 −𝑏 = 𝑏/(𝑎− 1) −𝑎𝑥0 = 𝑏/(𝑎− 1) −𝑥1. And if 𝑥0 = 𝜆,
then 𝑦0 = 𝑏/(𝑎−1)−𝜆 = 𝜆

𝑦
and 𝑦1 = 𝑎𝑦0 = 𝑎(𝑏/(𝑎−1))−𝑥1.

Finally, if 𝑥0 = 𝜆 ≥ 𝑏/𝑎(𝑎 − 1), then 𝑥1+𝑗 = 𝑓
+
(1, 𝑗) by

Lemma 6(2).

For the solutions 𝑥
𝑛
in the following examples (with the

conditions imposed), 𝑦
𝑛

= 𝑏/(𝑎 − 1) − 𝑥
𝑛
for all 𝑛 by

Theorem 24 since 𝑥
𝑘

̸= 𝜆 for all 𝑘: Examples 8 (if 𝜆 ̸=

𝑏/2(𝑎 − 1)), 12, 21 (if 𝑥0 < 𝜆), and 22.

Let 𝑥
𝑛
and 𝑦

𝑛
be given as in Theorem 24 and suppose

further that 𝑥
𝑘

̸= 𝜆 for all 𝑘. By Remark 2, 𝑥
𝑛
= 𝑥(𝑛), where

𝑥 = 𝑥(𝑡) satisfies

𝑥
󸀠

(𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑥 ([𝑡]) +𝐶𝐹
𝜆
(𝑥 ([𝑡])) (135)

for constants 𝐴, 𝐵, and 𝐶 such that 𝑏/(𝑎 − 1) = −𝐶/(𝐴 +

𝐵). Therefore, 𝑦
𝑛

= 𝑦(𝑛), where 𝑦(𝑡) ≡ 𝑏/(𝑎 − 1) − 𝑥(𝑡) is
the symmetric solution about the line 𝑥 = 𝑏/2(𝑎 − 1) of the
differential equation

𝑦
󸀠

(𝑡) = 𝐴𝑦 (𝑡) + 𝐵𝑦 ([𝑡]) +𝐶𝐹
𝜆
𝑦

(𝑦 ([𝑡])) (136)

with 𝑦(0) = 𝑏/(𝑎 − 1) − 𝑥0; and 𝐹
𝜆
𝑦

(𝑦([𝑡])) = 1 − 𝐹
𝜆
(𝑥([𝑡]))

since 𝑥([𝑡]) ̸= 𝜆, and hence 𝑥([𝑡]) ≤ 𝜆 if and only if 𝑦([𝑡]) >

𝜆
𝑦
.
For typeC solutions, where𝜆 ̸= 𝑏/𝑎, theremay be another

symmetric solution obtained by reflecting 𝑥0 about 𝑏/2(𝑎−1).

Theorem 25. Let 𝑥
𝑛
satisfy (18) with respect to 𝑎 > 2, 𝑏 > 0,

and 0 < 𝑥0 < 𝑏/(𝑎 − 1) such that either

(1) 𝑏/𝑎(𝑎 − 1) ≤ 𝜆 < 𝑏/2(𝑎 − 1) and 𝑥
𝑛
is bounded below

or
(2) 𝑏/2(𝑎 − 1) ≤ 𝜆 < 𝑏/𝑎 and 𝑥

𝑛
is bounded above.

If 𝑧
𝑛
satisfies (18) in terms of 𝑎 ≡ 𝑎, 𝑏 ≡ 𝑏, 𝜆 ≡ 𝜆, and

𝑧0 ≡ 𝑏/(𝑎 − 1) − 𝑥0, then 𝑧
𝑛
= 𝑏/(𝑎 − 1) − 𝑥

𝑛
for all 𝑛.

Proof. Suppose that (1) holds. If 𝑥0 ≤ 𝜆, then 𝑥1 = 𝑎𝑥0 and
𝑧0 = 𝑏/(𝑎 − 1) − 𝑥0 ≥ 𝑏/(𝑎 − 1) − 𝜆 > 𝑏/(𝑎 − 1) − 𝑏/2(𝑎 − 1) =

𝑏/2(𝑎 − 1) > 𝜆. Thus, 𝑧1 = 𝑎𝑧0 − 𝑏 = 𝑏/(𝑎 − 1) − 𝑎𝑥0 =

𝑏/(𝑎 − 1) − 𝑥1 in this case.
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Next, assume that 𝑥0 > 𝜆.Then 𝑥1 = 𝑎𝑥0−𝑏 = 𝑏/(𝑎−1)−
𝑎(𝑏/(𝑎 − 1) − 𝑥0) = 𝑏/(𝑎 − 1) − 𝑎𝑧0. We claim that 𝑧0 ≤ 𝜆. By
way of contradiction, assume that 𝑧0 > 𝜆 ≥ 𝑏/𝑎(𝑎 − 1). Then
𝑥0 = 𝑏/(𝑎−1)−𝑧0 < 𝑏/(𝑎−1)−𝜆 ≤ 𝑏/(𝑎−1)−𝑏/𝑎(𝑎−1) = 𝑏/𝑎.
Hence, 𝑥1 = 𝑎𝑥0 − 𝑏 < 𝑎(𝑏/𝑎) − 𝑏 = 0 and 𝑥

𝑛
is not bounded

below by Lemma 5(1), contrary to (1). Therefore 𝑧0 ≤ 𝜆 and
𝑧1 = 𝑎𝑧0 = 𝑏/(𝑎 − 1) − 𝑥1.

It follows in either case that 𝑧1 = 𝑏/(𝑎 − 1) − 𝑥1; and, by
induction, 𝑧

𝑛
= 𝑏/(𝑎 − 1) − 𝑥

𝑛
for all 𝑛.

Suppose now that (2) holds. If 𝑥0 > 𝜆, then 𝑥1 = 𝑎𝑥0 − 𝑏

and 𝑧0 = 𝑏/(𝑎 − 1) − 𝑥0 < 𝑏/(𝑎 − 1) − 𝜆 ≤ 𝑏/(𝑎 − 1) − 𝑏/2(𝑎 −

1) = 𝑏/2(𝑎 − 1) ≤ 𝜆. Thus 𝑧1 = 𝑎𝑧0 = 𝑎𝑏/(𝑎 − 1) − 𝑎𝑥0 =

𝑎𝑏/(𝑎 − 1) − (𝑥1 + 𝑏) = 𝑏/(𝑎 − 1) − 𝑥1 in this case.
Finally assume that𝑥0 ≤ 𝜆.We claim that 𝑧0 > 𝜆. Suppose

otherwise that 𝑧0 ≤ 𝜆. Then 𝑥0 = 𝑏/(𝑎 − 1) − 𝑧0 ≥ 𝑏/(𝑎 −

1) − 𝜆 > 𝑏/(𝑎 − 1) − 𝑏/𝑎 = 𝑏/𝑎(𝑎 − 1) and 𝑥1 = 𝑎𝑥0 >

𝑎(𝑏/𝑎(𝑎 − 1)) = 𝑏/(𝑎 − 1); so 𝑥
𝑛
is not bounded above by

Lemma 5(2), contradicting (2). Therefore 𝑧0 > 𝜆 and 𝑧1 =

𝑎𝑧0 − 𝑏 = 𝑏/(𝑎 − 1) − 𝑎𝑥0 = 𝑏/(𝑎 − 1) − 𝑥1.
Hence, 𝑧1 = 𝑏/(𝑎−1)−𝑥1 in both cases; and, by induction,

𝑧
𝑛
= 𝑏/(𝑎 − 1) − 𝑥

𝑛
for all 𝑛.

Note that Theorem 25 may fail when 𝜆 = 𝑏/𝑎: let 𝑎 > 2
and let 𝑏 > 0 and let 𝑥0 ≡ 𝑏/𝑎 = 𝜆. Then 𝑥1 = 𝑎𝑥0 = 𝑏

and 𝑧0 = 𝑏/(𝑎 − 1) − 𝑥0 = 𝑏/𝑎(𝑎 − 1) < 𝜆. Thus 𝑧1 = 𝑎𝑧0 =

𝑏/(𝑎 − 1) ̸= 𝑏/(𝑎 − 1) − 𝑥1 = 𝑏/(𝑎 − 1) − 𝑏.
The solution 𝑥

𝑛
in Example 11 satisfies 𝑦

𝑛
= 𝑏/(𝑎 − 1) − 𝑥

𝑛

for all 𝑛 whenever 𝜆 ̸= 𝑏𝑎
𝑝−2

/(𝑎
𝑝
− 1) by Theorem 24 since

𝜆 is thus not a term of 𝑥
𝑛
. Furthermore, in this example, if

𝑎 > 2 and 𝜆 ̸= 𝑏/𝑎 is in 𝐼3, then 𝑧
𝑛
= 𝑏/(𝑎 − 1) − 𝑥

𝑛
for all 𝑛

by Theorem 25 since 𝑥
𝑛
is eventually periodic and therefore

bounded.
Let 𝑥
𝑛
and 𝑧

𝑛
be given as in Theorem 25. By Remark 2,

𝑥
𝑛
= 𝑥(𝑛), where 𝑥 = 𝑥(𝑡) satisfies (2) for constants𝐴, 𝐵, and

𝐶 such that 𝑏/(𝑎 − 1) = −𝐶/(𝐴 + 𝐵). Therefore, 𝑧
𝑛

= 𝑧(𝑛),
where 𝑧(𝑡) ≡ 𝑏/(𝑎 − 1) − 𝑥(𝑡) is the symmetric solution about
𝑥 = 𝑏/2(𝑎 − 1) of the same differential equation

𝑧
󸀠

(𝑡) = 𝐴𝑧 (𝑡) + 𝐵𝑧 ([𝑡]) +𝐶𝐹 (𝑧 ([𝑡])) (137)

but with 𝑧(0) = 𝑏/(𝑎 − 1) − 𝑥0, since, by the proof of
Theorem 25, 𝐹(𝑧([𝑡])) = 1 − 𝐹(𝑥([𝑡])) (i.e., 𝑥([𝑡]) ≤ 𝜆 if and
only if 𝑧([𝑡]) > 𝜆).

If 𝑥0 is given by (74), then 𝑏/(𝑎 − 1) − 𝑥0 is given by (133)
andTheorem 17 may be applied toTheorems 24 and 25.

Corollary 26. Let 𝑥
𝑛
satisfy (18), where 𝑎 ≥ 2, 𝑏 > 0, 𝜆 is in 𝐼3,

and 𝑥0 is given by (74) for some integers 𝑚 ≥ 0 and 𝑝 ≥ 1 and
some polynomials p

𝑝−1(𝑎) inP𝑝−1(𝑎) and q𝑚−1(𝑎) inP𝑚−1(𝑎).

(1) If 𝜆 ̸= 𝑏/𝑎(𝑎 − 1) or p
𝑝−1(𝑎) ̸= (𝑎

𝑝
− 1)/(𝑎 − 1) or

𝑎 = 2, then 𝑦
𝑚

= 𝑦
𝑚+𝑝

. Moreover, if 𝑥
𝑛
is bounded

with no stationary states, then 𝑦
𝑛
= 𝑏/(𝑎 − 1) − 𝑥

𝑛
for

all 𝑛. In particular, if p
𝑝−1(𝑎) ̸= 0, (𝑎𝑝−1)/(𝑎−1), then

𝑦
𝑛
= 𝑏/(𝑎 − 1) − 𝑥

𝑛
for all 𝑛.

(2) If 𝜆 ̸= 𝑏/𝑎 or p
𝑝−1(𝑎) ̸= (𝑎

𝑝
− 1)/(𝑎 − 1), then 𝑧

𝑚
=

𝑧
𝑚+𝑝

. Moreover, if 𝑎 > 2, 𝜆 ̸= 𝑏/𝑎, and 𝑥
𝑛
is bounded,

then 𝑧
𝑛
= 𝑏/(𝑎 − 1) − 𝑥

𝑛
for all 𝑛.

Proof. Suppose that 𝑎 ≥ 2, 𝑏 > 0, 𝜆 is in 𝐼3, and 𝑥0 is given
by (74). The first lines of (1) and (2) follow directly from (133)
andTheorem 17(2).

(1) Assume 𝑥
𝑛
is bounded with no stationary states. Then

𝑥0 ̸= 0, 𝑏/(𝑎−1) and 0 < 𝑥0 < 𝑏/(𝑎−1) by (81). ByTheorem 13,
𝑥
𝑘
is not in 𝐼3 so 𝑥

𝑘
̸= 𝜆 for all 𝑘. Thus 𝑦

𝑛
= 𝑏/(𝑎 − 1) − 𝑥

𝑛
by

Theorem 24.
In particular, suppose that p

𝑝−1(𝑎) ̸= 0, (𝑎𝑝 − 1)/(𝑎 −

1). Then 𝑥
𝑛
is eventually periodic, and hence bounded, by

Theorem 17(2); and, by the proof of this theorem, the only
possible stationary states are when

(i) q
𝑚−1(𝑎) = 0 and 𝑥0 = 𝑏p

𝑝−1(𝑎)/𝑎
𝑚
(𝑎
𝑝
− 1) = 0 (≤

𝑏/𝑎(𝑎 − 1)) or

(ii) 𝑥
𝑚

= 𝑏p
𝑝−1(𝑎)/(𝑎

𝑝
− 1) is 0 or 𝑏/(𝑎 − 1),

that is, when p
𝑝−1(𝑎) is 0 or (𝑎

𝑝
− 1)/(𝑎 − 1), which are

ruled out. Thus, by the previous case, 𝑦
𝑛
= 𝑏/(𝑎 − 1) − 𝑥

𝑛
for

all 𝑛.
(2) Next, assume that 𝑎 > 2, 𝜆 ̸= 𝑏/𝑎, and 𝑥

𝑛
is bounded.

By (81), 0 ≤ 𝑥0 ≤ 𝑏/(𝑎−1). If 𝑥0 = 0, then 𝑥
𝑛
= 0 for all 𝑛; and

hence 𝑧0 = 𝑏/(𝑎 − 1) and thus 𝑧
𝑛
= 𝑏/(𝑎 − 1) = 𝑏/(𝑎 − 1) − 𝑥

𝑛

for all 𝑛. Similarly, if 𝑥0 = 𝑏/(𝑎 − 1), then 𝑧
𝑛
= 𝑏/(𝑎 − 1) − 𝑥

𝑛

for all 𝑛.
Therefore, we may assume 0 < 𝑥0 < 𝑏/(𝑎 − 1) and the

desired result is now immediate fromTheorem 25.

Example 18 (revisited). In this example, 𝑎 ≥ 2, 𝑏 > 0, 𝜆 is in
𝐼3, and 𝑥0 is of form (74) with 𝑚 = 2, 𝑝 = 2𝑘 ≥ 2, p

𝑝−1(𝑎) =

𝑎
𝑘
((𝑎
𝑘
− 1)/(𝑎 − 1)), and q

𝑚−1(𝑎) = 1. Moreover, 𝑥2 = 𝑥2+2𝑘.
By Corollary 26, 𝑦

𝑛
= 𝑏/(𝑎 − 1) − 𝑥

𝑛
for all 𝑛 and 𝑧2 = 𝑧2+2𝑘.

Furthermore, if 𝑎 > 2 and 𝜆 ̸= 𝑏/𝑎, then 𝑧
𝑛
= 𝑏/(𝑎 − 1) − 𝑥

𝑛

for all 𝑛.

Example 27. Let 𝑎 ≥ 2 and let 𝑏 > 0 and let 𝜆 be in 𝐼3. For
positive integer 𝑘, consider the weighted average

𝑥0 ≡

𝑏/𝑎 + 𝑎
𝑘
(𝑏/ (𝑎 − 1) − 𝑏/𝑎

2
)

1 + 𝑎
𝑘

(138)

in 𝐼4 (that converges to 𝑏/(𝑎− 1) − 𝑏/𝑎
2 as 𝑘 tends to infinity).

Then 𝑥0 is of form (74) with 𝑚 = 1, 𝑝 = 2𝑘 ≥ 2, p
𝑝−1(𝑎) =

𝑎
𝑘−1

((𝑎
𝑘
− 1)/(𝑎 − 1)), and q

𝑚−1(𝑎) = 1 so 𝑥1 = 𝑥1+2𝑘 by
Theorem 17(2). Therefore, as above,

(i) 𝑦
𝑛
= 𝑏/(𝑎 − 1) − 𝑥

𝑛
for all 𝑛;

(ii) 𝑧1 = 𝑧1+2𝑘;

(iii) if 𝑎 > 2 and 𝜆 ̸= 𝑏/𝑎, then 𝑧
𝑛
= 𝑏/(𝑎− 1) −𝑥

𝑛
for all 𝑛.

Moreover,

𝑏

𝑎 − 1
−𝑥0 =

𝑏/𝑎 (𝑎 − 1) + 𝑎
𝑘
(𝑏/𝑎

2
)

1 + 𝑎
𝑘

=

𝑏 (((𝑎
𝑘
− 1) / (𝑎 − 1)) (𝑎

𝑘
− 𝑎
𝑘−1

+ 1) + (𝑎
2𝑘

− 1) 0)
𝑎 (𝑎

2𝑘
− 1)

.

(139)
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