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An optimal control on the treatment of the transmission of tuberculosis-HIV coinfection model is proposed in this paper. We use
two treatments, that is, anti-TB and antiretroviral, to control the spread of TB and HIV infections, respectively. We first present an
uncontrolled TB-HIV coinfection model. The model exhibits four equilibria, namely, the disease-free, the HIV-free, the TB-free,
and the coinfection equilibria. We further obtain two basic reproduction ratios corresponding to TB and HIV infections. These
ratios determine the existence and stability of the equilibria of the model. The optimal control theory is then derived analytically
by applying the Pontryagin Maximum Principle. The optimality system is performed numerically to illustrate the effectiveness of
the treatments.

1. Introduction

Tuberculosis (TB) is an infectious disease caused by bacteria
Mycobacterium tuberculosis that most often attack the lungs.
The bacteria are spread through air from one person to
another when the people with active TB cough, sneeze, speak,
or sing. People nearby may breathe in these bacteria and
become infected. According to the World Health Organiza-
tion (WHO), one-third of the world’s population is infected
with TB [1]. In 2013, 9 million people around the world
became sick with TB disease and around 1.5 million TB-
related deaths worldwide were reported. TB is the most
common opportunistic disease that affects people infected
with HIV [2].

HIV stands for human immunodeficiency virus that can
lead to acquired immunodeficiency syndrome (AIDS). HIV
can be transmitted via the exchange of a variety of body fluids
from infected individuals, such as blood, breast milk, semen,
and vaginal secretions. There is no cure for HIV infection.
However, effective treatment with antiretroviral (ARV) drugs
can control the virus so that people with HIV can enjoy
healthy and productive lives [3]. As reported in WHO fact
sheet (2013), at least one-third of the 34 million people living
with HIV worldwide are infected with TB. HIV and TB form

a lethal combination, each speeding the other’s progress. TB
is one of the leading causes of death among people living with
HIV. Almost 25% of deaths among people with HIV are due
to TB [1]. Therefore, an effective strategy is needed to control
the transmission of TB-HIV coinfection in the population.

Mathematical models provide an important tool in
understanding the spread and control of TB-HIV coinfection
diseases. The dynamics of the transmission of TB-HIV
coinfection model have been studied by many researchers
[4–7]. Gakkhar and Chavda [4] formulated the dynamics of
TB-HIV coinfection model with the population divided into
four subclasses: the susceptible class, the TB infective class,
the HIV infective class, and the TB-HIV coinfection class.
They found the basic reproduction number for each of the
diseases and checked the stability results for the equilibrium
points. Naresh et al. [5] proposed a model to study the effect
of tuberculosis on the transmission dynamics of HIV in a
logistically growing human population. Roeger et al. [6] focus
on the joint dynamics of HIV and TB in a pseudocompet-
itive environment, at the population level. Sharomi et al.
[7] discussed the synergistic interaction between HIV and
Mycobacterium tuberculosisusing a deterministicmodel, with
many of the essential biological and epidemiological features
of the two infections.
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Figure 1: TB-HIV coinfection transmission diagram.

In this paper, mathematical model with an optimal
control on the treatment of TB-HIV coinfection is proposed.
The optimal control strategies have been applied to the
studies on epidemiological models such as HIV, TB, Hepatitis
C, Malaria, coinfection Malaria-Cholera, and HIV-Malaria
diseases dynamics [8–16]. Very few studies have been applied
in the area of optimal control theory to TB-HIV coinfection
models. Recently, Agusto and Adekunle [17] have used opti-
mal control strategies associated with treating symptomatic
individuals with TB using the two-strain TB-HIV/AIDS
transmission model. The aim of this study is to analyze the
effect of two treatment scenarios, that is, anti-TB and ARV, to
control the spread of TB-HIV coinfection diseases.

The organization of this paper is as follows. In Section 2,
we derive a model of tuberculosis-HIV coinfection transmis-
sion with controls on anti-TB and ARV treatment.Themodel
is analyzed in Section 3. In Section 4, we show the numerical
simulations to illustrate the effectiveness of the treatments.
The conclusion of this paper could be seen in Section 5.

2. Model Formulation

We assume that human population is homogeneous and
closed. The total population, denoted by 𝑁, is classified into
six classes, namely, the susceptible class (𝑆), the infected with
TB only and susceptible to HIV class (𝐼

𝑡
), the infected with

HIV only and susceptible to TB class (𝐼
ℎ
), the infected with

TB and HIV both class (𝐼
ℎ𝑡
), the infected with AIDS only and

susceptible to TB class (𝐴
ℎ
), and the infected with TB and

AIDS both class (𝐴
ℎ𝑡
). We also assume that the susceptible

cannot get TB and HIV infection simultaneously at the same
time.

We consider the anti-TB treatment control 𝑢
1
and the

ARV control 𝑢
2
. The control functions 𝑢

1
and 𝑢

2
are defined

on interval [0, 𝑡
𝑓
], where 0 ≤ 𝑢

𝑖
(𝑡) ≤ 1, 𝑡 ∈ [0, 𝑡

𝑓
], 𝑖 = 1, 2,

and 𝑡
𝑓
denotes the end time of the controls.

We use the transmission diagram as in Figure 1 for deriv-
ing our model.

The model is as follows:

𝑑𝑆

𝑑𝑡
= Λ + 𝑢

1
𝛼
1
𝐼
𝑡
− 𝛽
𝑡
𝑆𝐼
𝑡
− 𝛽
ℎ
𝑆𝐼
ℎ
− 𝛿𝑆,

𝑑𝐼
𝑡

𝑑𝑡
= 𝛽
𝑡
𝑆𝐼
𝑡
− 𝑢
1
𝛼
1
𝐼
𝑡
− 𝛿𝐼
𝑡
− 𝜙𝛽
ℎ
𝐼
𝑡
𝐼
ℎ
,

𝑑𝐼
ℎ

𝑑𝑡
= 𝛽
ℎ
𝑆𝐼
ℎ
+ 𝑢
1
𝛼
2
𝐼
ℎ𝑡
− 𝜎
1
𝛽
𝑡
𝐼
ℎ
𝐼
𝑡
− (1 − 𝑢

2
) 𝛾
1
𝐼
ℎ

− 𝛿𝐼
ℎ
,

𝑑𝐼
ℎ𝑡

𝑑𝑡
= 𝜎
1
𝛽
𝑡
𝐼
ℎ
𝐼
𝑡
− 𝑢
1
𝛼
2
𝐼
ℎ𝑡
− (1 − 𝑢

2
) 𝛾
2
𝐼
ℎ𝑡
− 𝛿𝐼
ℎ𝑡

+ 𝜙𝛽
ℎ
𝐼
𝑡
𝐼
ℎ
,

𝑑𝐴
ℎ

𝑑𝑡
= (1 − 𝑢

2
) 𝛾
1
𝐼
ℎ
+ 𝑢
1
𝛼
3
𝐴
ℎ𝑡
− 𝜎
2
𝛽
𝑡
𝐴
ℎ
𝐼
𝑡

− (𝛿 + 𝜇
1
) 𝐴
ℎ
,

𝑑𝐴
ℎ𝑡

𝑑𝑡
= (1 − 𝑢

2
) 𝛾
2
𝐼
ℎ𝑡
+ 𝜎
2
𝛽
𝑡
𝐴
ℎ
𝐼
𝑡
− 𝑢
1
𝛼
3
𝐴
ℎ𝑡

− (𝛿 + 𝜇
2
) 𝐴
ℎ𝑡
.

(1)

The region of biological interest of model (1) is

Ω = {(𝑆, 𝐼
𝑡
, 𝐼
ℎ
, 𝐼
ℎ𝑡
, 𝐴
ℎ
, 𝐴
ℎ𝑡
) ∈ R
6

+
: 0 ≤ 𝑁 ≤

Λ

𝛿
} , (2)

and all of the parameters used in model (1) are nonnegative.
The description of the parameters is given below.

Parameters of Model (1). Consider the following:

Λ: recruitment rate into the population.
𝛿: natural death rate.
𝛽
𝑡
: infection rate for TB.

𝛽
ℎ
: infection rate for HIV.

𝜎
1
: progression rate from HIV only to TB infection.

𝜎
2
: progression rate from AIDS only to TB infection.

𝜙: progression rate from TB only to HIV infection.
𝛼
1
: recovery rate from TB.

𝛼
2
: recovery rate from TB of TB-HIV coinfection.

𝛼
3
: recovery rate from TB of TB-AIDS coinfection.

𝜇
1
: AIDS disease induced death rate.

𝜇
2
: TB-AIDS disease induced death rate.

𝛾
1
: progression rate fromHIV only to AIDS infection.

𝛾
2
: progression rate from TB-HIV coinfection to TB-

AIDS coinfection.
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Model (1) is well posed in the nonnegative region R6
+

because the vector field on the boundary does not point to
the exterior. So, if it is given an initial condition in the region,
then the solution is defined for all time 𝑡 ≥ 0 and remains in
the region.

We seek to minimize the number of TB-HIV/AIDS
coinfections while keeping the costs of applying anti-TB and
ARV treatment controls as low as possible. We consider an
optimal control problem with the objective function given by

𝐽 (𝑢
1
, 𝑢
2
)

= ∫

𝑡𝑓

0

(𝐼
𝑡
+ 𝐼
ℎ𝑡
+ 𝐴
ℎ
+ 𝐴
ℎ𝑡
+
𝑐
1

2
𝑢
2

1
+
𝑐
2

2
𝑢
2

2
)𝑑𝑡,

(3)

where 𝑐
1
and 𝑐
2
are the weighting constants for anti-TB and

ARV treatment efforts, respectively.We take a quadratic form
for measuring the control cost [12, 13, 17]. The terms 𝑐

1
𝑢
2

1
and

𝑐
2
𝑢
2

2
describe the cost associated with the anti-TB and ARV

treatment controls, respectively. Larger values of 𝑐
1
and 𝑐
2
will

imply more expensive implementation cost for anti-TB and
ARV treatment efforts.

Our goal is to find an optimal control pair 𝑢∗
1
and 𝑢∗
2
such

that

𝐽 (𝑢
∗

1
, 𝑢
∗

2
) = min
Γ

𝐽 (𝑢
1
, 𝑢
2
) , (4)

where Γ = {(𝑢
1
, 𝑢
2
) | 0 ≤ 𝑢

𝑖
≤ 1, 𝑖 = 1, 2}.

3. Model and Sensitivity Analysis

Consider model (1) without the control functions 𝑢
1
and 𝑢

2
.

Let

𝑅
𝑡
=
Λ𝛽
𝑡

𝛿2

𝑅
ℎ
=

Λ𝛽
ℎ

𝛿 (𝛾
1
+ 𝛿)

.

(5)

The parameters 𝑅
𝑡
and 𝑅

ℎ
are basic reproduction ratios for

TB infection and HIV infection, respectively. These ratios
describe the number of secondary cases of primary case
during the infectious period due to the type of infection
[18, 19].

By setting 𝑢
1
= 𝑢
2
= 0, model (1) has four equilibria (with

respect to the coordinates (𝑆, 𝐼
𝑡
, 𝐼
ℎ
, 𝐼
ℎ𝑡
, 𝐴
ℎ
, 𝐴
ℎ𝑡
)); these are as

follows:

(i) The disease-free equilibrium 𝐸
0
= (Λ/𝛿, 0, 0, 0, 0, 0).

This equilibrium always exists.

(ii) The TB-endemic equilibrium 𝐸
𝑡
= (𝛿/𝛽

𝑡
, (𝛿/𝛽
𝑡
)(𝑅
𝑡
−

1), 0, 0, 0, 0). The equilibrium 𝐸
𝑡
exists if 𝑅

𝑡
> 1.

(iii) The HIV-endemic equilibrium 𝐸
ℎ
= ((𝛾

1
+ 𝛿)/𝛽

ℎ
,

0, (𝛿/𝛽
ℎ
)(𝑅
ℎ
− 1), 0, (𝛾

1
𝛿/𝛽
ℎ
(𝛿 + 𝜇

1
))(𝑅
ℎ
− 1), 0). The

equilibrium 𝐸
ℎ
exists if 𝑅

ℎ
> 1.
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Figure 2: The diagram of equilibria with respect to 𝑅
ℎ
and 𝑅

𝑡
.

(iv) The TB-HIV-endemic equilibrium 𝐸
ℎ𝑡
= (𝑆
∗
, 𝐼
∗

𝑡
, 𝐼
∗

ℎ
,

𝐼
∗

ℎ𝑡
, 𝐴
∗

ℎ
, 𝐴
∗

ℎ𝑡
), where

𝑆
∗
=
𝜎
1
𝛽
𝑡
𝐼
∗

𝑡
+ 𝛾
1
+ 𝛿

𝛽
ℎ

,

𝐼
∗

ℎ
=
𝛽
2

𝑡
𝜎
1
𝐼
∗

𝑡
+ 𝛿𝛽
ℎ
(𝑅
𝑡
/𝑅
ℎ
− 1)

𝛽
2

ℎ

,

𝐼
∗

ℎ𝑡
=
(𝜎
1
𝛽
𝑡
+ 𝜙𝛽
ℎ
)

(𝛾
2
+ 𝛿)

𝐼
∗

ℎ
𝐼
∗

𝑡
,

𝐴
∗

ℎ
=

𝛾
1
𝐼
∗

ℎ

𝜎
2
𝛽
𝑡
𝐼
∗

𝑡
+ 𝛿 + 𝜇

1

,

𝐴
∗

ℎ𝑡
=
𝛾
2
𝐼
∗

ℎ𝑡
+ 𝜎
2
𝛽
𝑡
𝐴
∗

ℎ
𝐼
∗

𝑡

𝛿 + 𝜇
2

,

(6)

and 𝐼∗
𝑡
satisfies the quadratic equation

𝐴
0
(𝐼
∗

𝑡
)
2

+ 𝐴
1
𝐼
∗

𝑡
+ 𝐴
2
= 0, (7)

where

𝐴
0
= 𝛽
2

𝑡
𝜎
1
(𝛽
𝑡
𝜎
1
+ 𝛽
ℎ
𝜙) ,

𝐴
1

=
𝛿
3
𝑅
𝑡
(𝛿 + 𝛾

1
) (𝛿𝜎
1
𝑅
ℎ
(𝜙 − 1) + 2𝛿𝜎

1
𝑅
𝑡
+ 𝜙𝑅
𝑡
(𝛿 + 𝛾

1
))

Λ2
,

𝐴
2
= −

𝛿
2
(𝛿 + 𝛾

1
)
2

(𝑅
ℎ
− 𝑅
𝑡
+ 𝜙𝑅
ℎ
(𝑅
ℎ
− 1))

Λ
.

(8)

The HIV-TB coinfection equilibrium 𝐸
ℎ𝑡
exists if 𝑅

ℎ
, 𝑅
𝑡
> 1

and 𝜙𝑅2
ℎ
+ 𝑅
ℎ
(1 − 𝜙) > 𝑅

𝑡
.

Summarizing the above results, we get diagram of exis-
tence of equilibriawith respect to𝑅

ℎ
and𝑅

𝑡
as in Figure 2.The
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numerical bifurcation diagrams for the basic reproduction
numbers𝑅

𝑡
versus the infective classes 𝐼

ℎ
, 𝐼
𝑡
, and 𝐼

ℎ𝑡
are given

in Figures 3–5, respectively. In Figures 3–5, 𝑅
ℎ
is fixed for a

value larger than one.
The following theorems give the stability criteria of the

equilibriums.

Theorem 1. The disease-free equilibrium 𝐸
0
is locally asymp-

totically stable if 𝑅
𝑡
, 𝑅
ℎ
< 1 and unstable if 𝑅

𝑡
, 𝑅
ℎ
> 1.

Proof. Linearizing model (1) near the equilibrium 𝐸
0
gives

eigenvalues −𝛿, −(𝛾
2
+ 𝛿), −(𝜇

1
+ 𝛿), −(𝜇

2
+ 𝛿), 𝛿(𝑅

𝑡
− 1),

and (𝛾
1
+ 𝛿)(𝑅

ℎ
− 1). It is clear that all of the eigenvalues are

negative if 𝑅
𝑡
, 𝑅
ℎ
< 1. So, if 𝑅

𝑡
, 𝑅
ℎ
< 1, the equilibrium 𝐸

0
is

locally asymptotically stable. Otherwise, it is unstable.

Theorem 2. Suppose that the TB-endemic equilibrium 𝐸
𝑡

exists. It is locally asymptotically stable if 𝑅
ℎ
/𝑅
𝑡
< 1; otherwise

it is unstable.

Proof. Linearizing model (1) near the equilibrium 𝐸
𝑡
gives

eigenvalues −𝛿, −(𝛾
2
+𝛿), −(𝛿+𝜇

2
), 𝛿(1−𝑅

𝑡
), −𝜇
1
−𝛿[𝜎
2
(𝑅
𝑡
−

1)+1], and (𝑅
ℎ
/𝑅
𝑡
−1)(𝛿+𝛾

1
)−𝛿𝜎
1
(𝑅
𝑡
−1). So, the equilibrium
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Figure 5: The bifurcation diagram for 𝑅
𝑡
versus 𝐼
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𝐸
𝑡
is locally asymptotically stable if 𝑅

𝑡
/𝑅
ℎ
< 1; otherwise it is

unstable.

Theorem 3. Suppose that the HIV-endemic equilibrium 𝐸
ℎ

exists. It is locally asymptotically stable if 𝑅
𝑡
/𝑅
ℎ
< 1; otherwise

it is unstable.

Proof. Linearizing model (1) near the equilibrium 𝐸
ℎ
gives

eigenvalues −(𝜇
1
+ 𝛿), −(𝜇

2
+ 𝛿), −(𝛾

2
+ 𝛿), and 𝛿(𝑅

𝑡
/𝑅
ℎ
−

1−𝜙(𝑅
ℎ
−1)) and the roots of quadratic equation 𝑥2+𝛿𝑅

ℎ
𝑥+

𝛿(𝛿+𝛾
1
)(𝑅
ℎ
−1) = 0. So, if𝑅

𝑡
/𝑅
ℎ
< 1, then the equilibrium𝐸

ℎ

is locally asymptotically stable; otherwise it is unstable.

In the following we investigate the sensitivity of the
basic reproduction numbers 𝑅

𝑡
and 𝑅

ℎ
to the parameters

in the model. The sensitivity analysis determines the model
robustness to parameter values. Here, we could know the
parameters that have a high impact on the reproduction
numbers (𝑅

𝑡
and 𝑅

ℎ
). Using the approach in [20], we derived

the analytical expression for sensitivity index of 𝑅
𝑡
and 𝑅

ℎ
to

each parameter.
The normalized forward sensitivity index of a variable, ℎ,

that depends differentially on a parameter, 𝑙, is defined as

Υ
ℎ

𝑙
fl
𝜕ℎ

𝜕𝑙

𝑙

ℎ
. (9)

Now, using the parameter values in Table 1, we have the
following results in Table 2. The sensitivity index of 𝑅

𝑡
with

respect to 𝛽
𝑡
is

Υ
𝑅𝑡

𝛽𝑡
fl
𝜕𝑅
𝑡

𝜕𝛽
𝑡

𝛽
𝑡

𝑅
𝑡

= 1. (10)

The sensitivity indices of the basic reproduction numbers
(𝑅
𝑡
and 𝑅

ℎ
) to parameters (see Table 2), such as recruitment

rate of the population (Λ), natural death rate (𝛿), infection
rate for HIV (𝛽

ℎ
), and progression rate from HIV only to

AIDS infection (𝛾
1
), can be derived in the same way as (10).

In the sensitivity indices of 𝑅
𝑡
, since Υ𝑅𝑡

𝛽𝑡
= 1, increasing

(or decreasing) infection rate for TB, 𝛽
𝑡
, by 10%, increases

(or decreases) the reproduction number 𝑅
𝑡
by 10%. In the
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same way, increasing (or decreasing) recruitment rate of the
population Λ by 10% increases (or decreases) 𝑅

𝑡
by 10% and

in like manner, increasing (or decreasing) natural death rate
𝛿 by 10% decreases (increases) 𝑅

𝑡
by 20%.

Similarly, for the sensitivity indices of 𝑅
ℎ
, since Υ𝑅ℎ

𝛽ℎ
=

1, increasing (or decreasing) infection rate for HIV, 𝛽
ℎ
, by

10%, increases (or decreases) the reproduction number 𝑅
ℎ

by 10%. Thus, increasing (or decreasing) recruitment rate
of the population Λ, by 10%, increases (or decreases) 𝑅

ℎ
by

10%. Also increasing (or decreasing) natural death rate 𝛿 by
10% decreases (increases) 𝑅

ℎ
by 16,67%. In a similar manner,

increasing (or decreasing) progression rate fromHIV only to
AIDS infection 𝛾

1
by 10% decreases (increases) 𝑅

ℎ
by 3,33%.

4. Analysis of Optimal Control

Next, we analyze model (1) with its control functions 𝑢
1
and

𝑢
2
. Consider the objective function (3) for model (1). The

necessary conditions to determine the optimal controls 𝑢∗
1

and 𝑢∗
2
such as condition (4) with constraint model (1) could

be obtained using the Pontryagin Maximum Principle [21].
The principle converts (1)–(4) into minimizing Hamiltonian
function𝐻 problem with respect to (𝑢

1
, 𝑢
2
); that is,

𝐻(𝑆, 𝐼
𝑡
, 𝐼
ℎ
, 𝐼
ℎ𝑡
, 𝐴
ℎ
, 𝐴
ℎ𝑡
, 𝑢
1
, 𝑢
2
, 𝜆
1
, 𝜆
2
, . . . , 𝜆

6
)

= 𝐼
𝑡
+ 𝐼
ℎ𝑡
+ 𝐴
ℎ
+ 𝐴
ℎ𝑡
+
𝑐
1

2
𝑢
2

1
+
𝑐
2

2
𝑢
2

2
+

6

∑

𝑖=1

𝜆
𝑖
𝑔
𝑖
,

(11)

where 𝑔
𝑖
denotes the right hand side of model (1) which is the

𝑖th state variable equation. The variables 𝜆
𝑖
, 𝑖 = 1, 2, . . . , 6,

are called adjoint variables satisfying the following costate
equations:

𝑑𝜆
1

𝑑𝑡
= (𝜆
1
− 𝜆
2
) 𝛽
𝑡
𝐼
𝑡
+ (𝜆
1
− 𝜆
3
) 𝛽
ℎ
𝐼
ℎ
+ 𝜆
1
𝛿,

𝑑𝜆
2

𝑑𝑡
= −1 + (𝜆

2
− 𝜆
1
) 𝑢
1
𝛼
1
+ (𝜆
1
− 𝜆
2
) 𝛽
𝑡
𝑆 + 𝜆
2
𝛿

+ (𝜆
3
− 𝜆
4
) 𝜎
1
𝛽
𝑡
𝐼
ℎ
+ (𝜆
2
− 𝜆
4
) 𝜙𝛽
ℎ
𝐼
ℎ

+ (𝜆
5
− 𝜆
6
) 𝜎
2
𝛽
𝑡
𝐴
ℎ
,

𝑑𝜆
3

𝑑𝑡
= (𝜆
1
− 𝜆
3
) 𝛽
ℎ
𝑆 + (𝜆

2
− 𝜆
4
) 𝜙𝛽
ℎ
𝐼
𝑡

+ (𝜆
3
− 𝜆
4
) 𝜎
1
𝛽
𝑡
𝐼
𝑡
+ (𝜆
3
− 𝜆
5
) (1 − 𝑢

2
) 𝛾
1

+ 𝜆
3
𝛿,

𝑑𝜆
4

𝑑𝑡
= −1 + (𝜆

4
− 𝜆
3
) 𝛼
2
𝑢
1
+ (𝜆
4
− 𝜆
6
) (1 − 𝑢

2
) 𝛾
2

+ 𝜆
4
𝛿,

𝑑𝜆
5

𝑑𝑡
= −1 + (𝜆

5
− 𝜆
6
) 𝜎
2
𝛽
𝑡
𝐼
𝑡
+ 𝜆
5
(𝛿 + 𝜇

1
) ,

𝑑𝜆
6

𝑑𝑡
= −1 + (𝜆

6
− 𝜆
5
) 𝑢
1
𝛼
3
+ 𝜆
6
(𝛿 + 𝜇

2
) ,

(12)

where the transversality conditions 𝜆
𝑖
(𝑡
𝑓
) = 0, 𝑖 = 1, . . . , 6.

By applying Pontryagin’s Maximum Principle and the
existence result for the optimal control pairs, the steps to
obtain the optimal controls 𝑢 = (𝑢

∗

1
, 𝑢
∗

2
) are as follows

[22, 23]:

(1) Minimize the Hamilton function𝐻with respect to 𝑢;
that is, 𝜕𝐻/𝜕𝑢 = 0, which is the stationary condition.
We obtain

𝑢
∗

1
=

{{{{{

{{{{{

{

0 for 𝑢
1
≤ 0

(𝜆
4
− 𝜆
3
) 𝛼
2
𝐼
ℎ𝑡
+ (𝜆
2
− 𝜆
1
) 𝛼
1
𝐼
𝑡
+ (𝜆
6
− 𝜆
5
) 𝛼
3
𝐴
ℎ𝑡

𝑐
1

for 0 < 𝑢
1
< 1

1 for 𝑢
1
≥ 1,

𝑢
∗

2
=

{{{{{

{{{{{

{

0 for 𝑢
2
≤ 0

(𝜆
6
− 𝜆
4
) 𝛾
2
𝐼
ℎ𝑡
+ (𝜆
5
− 𝜆
3
) 𝛾
1
𝐼
ℎ

𝑐
2

for 0 < 𝑢
2
< 1

1 for 𝑢
2
≥ 1.

(13)

(2) Solve the state system �̇�(𝑡) = 𝜕𝐻/𝜕𝜆 which is model
(1), where 𝑥 = (𝑆, 𝐼

𝑡
, 𝐼
ℎ
, 𝐼
ℎ𝑡
, 𝐴
ℎ
, 𝐴
ℎ𝑡
), 𝜆 = (𝜆

1
, 𝜆
2
,

. . . , 𝜆
6
) with initial condition 𝑥(0).

(3) Solve the costate system �̇�(𝑡) = −𝜕𝐻/𝜕𝑥 which is
system (12) with the end condition 𝜆

𝑖
(𝑡
𝑓
) = 0, 𝑖 =

1, . . . , 6.

Hence, we obtain the following theorem.

Theorem 4. The optimal controls (𝑢∗
1
, 𝑢
∗

2
) that minimize the

objective function 𝐽(𝑢
1
, 𝑢
2
) on Γ are given by

𝑢
∗

1
= max{0,

min(1,
(𝜆
4
− 𝜆
3
) 𝛼
2
𝐼
ℎ𝑡
+ (𝜆
2
− 𝜆
1
) 𝛼
1
𝐼
𝑡
+ (𝜆
6
− 𝜆
5
) 𝛼
3
𝐴
ℎ𝑡

𝑐
1

)} ,

𝑢
∗

2
= max{0,min(1,

(𝜆
6
− 𝜆
4
) 𝛾
2
𝐼
ℎ𝑡
+ (𝜆
5
− 𝜆
3
) 𝛾
1
𝐼
ℎ

𝑐
2

)} ,

(14)
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Table 1: Parameter values.

Parameter Value Reference Parameter Value Reference
Λ 50000/year [7] 𝛼

1
2/year Assumed

𝛿 0.02/year [7] 𝛼
2

1.2/year Assumed
𝛽
𝑡

0.00031/year Assumed 𝛼
3

1/year Assumed
𝛽
ℎ

0.00045/year Assumed 𝜇
1

0.03/year Assumed
𝜎
1

1.02/year Assumed 𝜇
2

0.06/year Assumed
𝜎
2

1.04/year Assumed 𝛾
1

0.01/year Assumed
𝜙 1.0002/year Assumed 𝛾

2
0.05/year Assumed

Table 2: Sensitivity indices to parameter for the TB-HIV model.

Parameter Sensitivity
index (𝑅

𝑡
) Parameter Sensitivity

index (𝑅
ℎ
)

Λ 1 Λ 1
𝛽
𝑡 1 𝛽

ℎ 1
𝛿 −2 𝛿 −1.667

𝛾
1 −0.333

where 𝜆
𝑖
, 𝑖 = 1, . . . , 6, is the solution of the costate equations

(12) with the transversality conditions 𝜆
𝑖
(𝑡
𝑓
) = 0, 𝑖 = 1, . . . , 6.

Substituting the optimal controls (𝑢
∗

1
, 𝑢
∗

2
) which are

obtained from the state system (1) and the costate system
(12), we obtain the optimal system. The solutions of the opti-
mality system will be solved numerically for some parameter
choices. Most of the parameter values are assumed within
realistic ranges for a typical scenario due to lack of data.

5. Numerical Simulation

In this section, we investigate the numerical simulations of
model (1) with and without optimal control. The optimal
control strategy is obtained by the iterative method of Runge-
Kuttamethod of order 4 [24].We start to solve the state equa-
tions by the forward Runge-Kutta method of order 4. Then
we use the backward Runge-Kutta method of order 4 to solve
the costate equations with the terminal conditions. Then, the
controls are updated by using a convex combination of the
previous controls and the value from the characterizations of
𝑢
∗

1
and 𝑢∗

2
. This process is repeated and iteration is stopped

if the values of unknowns at the previous iteration are very
close to the ones at the present iteration.

We consider three scenarios. In the first scenario, we
consider only the anti-TB treatment control. In the second
scenario, we consider only the ARV treatment control. In
the last one, we use the optimal anti-TB and ARV treatment
controls. Parameters used in these simulations are given
in Table 1. In these simulations, we use initial condition
(𝑆(0), 𝐼

𝑡
(0), 𝐼
ℎ
(0), 𝐼
ℎ𝑡
(0), 𝐴

ℎ
(0), 𝐴

ℎ𝑡
(0)) = (500, 50, 10, 5, 5, 5)

and weighting constants 𝑐
1
= 80, 𝑐

2
= 100.

5.1. First Scenario. In this scenario, we set the ARV control
𝑢
2
to zero and activate only the anti-TB treatment control

𝑢
1
. The profile of the optimal treatment control 𝑢∗

1
for
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Figure 6: The profile of the optimal anti-TB control 𝑢∗
1
.

this scenario could be seen in Figure 6. To eliminate TB-
HIV/AIDS coinfection in 10 years, the anti-TB treatment
should be given intensively almost 7.5 years before decreasing
to the lower bound in the end of 10th year.

The dynamics of the infected populations of this scenario
are given in Figures 7 and 8. We observe in Figure 7 that this
control strategy results in a significant decrease in the number
of TB infected (𝐼

𝑡
) and TB-HIV coinfection (𝐼

ℎ𝑡
) populations

compared with the case without control. Specifically, using
the control strategy, the TB-HIV coinfection population start
to decrease from the third year. Also in the right of Figure 8,
this control strategy results in a significant decrease in the
number of TB-AIDS coinfections (𝐴

ℎ𝑡
) as against an increase

in the uncontrolled case. On the contrary, the result in the
left of Figure 8 shows that the number of AIDS infected
(𝐴
ℎ
) populations with and without the control does not

differ significantly because there is no intervention against
AIDS infection. Hence, the anti-TB treatment control gives
a significant effect in controlling infected TB and also TB-
HIV/AIDS coinfection.

5.2. Second Scenario. In the second scenario, we set the anti-
TB treatment control 𝑢

1
to zero and activate only the ARV

treatment control 𝑢
2
. The control profile of ARV treatment is

shown in Figure 9. We see that, to eliminate TB-HIV/AIDS
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coinfection in 10 years, the ARV treatment should be given
intensively during 10 years.

The dynamics of the TB-HIV/AIDS coinfection of this
scenario are given in Figures 10 and 11. We observe in
Figure 10 that there is no significant difference in the number
of TB infected populations with and without the ARV control
treatment only. This may be due to the absence of the
treatment against TB infection. It was also observed that
the number of TB-HIV coinfection populations increases
with this control strategy compared to the number without

control. The positive impact of this strategy is shown in
Figure 11, where the number of the AIDS infected and the
TB-AIDS coinfection populations decreases significantly at
the end of the intervention period.

5.3. Third Scenario. In this scenario, we consider the anti-TB
and ARV treatment controls simultaneously. The profile of
the optimal anti-TB treatment control 𝑢∗

1
and ARV control

𝑢
∗

2
of this scenario is in Figure 12. To eliminate TB-HIV/AIDS

coinfection in 10 years, the anti-TB treatment should be given
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intensively almost 8 years before dropping gradually until
reaching the lower bound in the end of 10th year, and theARV
treatment is also given similar to anti-TB treatment, except at
the beginning of the treatment.

Using the optimal controls in Figure 12, the dynamics
of the TB-HIV/AIDS coinfection populations are given in
Figures 13 and 14, respectively. For this strategy, we observed
in Figure 13 that the control strategies resulted in a decrease
in the number of TB infected and TB-HIV coinfection
populations compared to the number without control. A
similar decrease is observed in Figure 14 for AIDS infected
and TB-AIDS coinfection populations in the control strategy,
while an increased number for the uncontrolled case resulted.

Our numerical results show that the combination of anti-
TB treatment and ARV treatment has the highest impact to
diminish the size of TB-HIV/AIDS coinfection. When using
only one control, the anti-TB treatment is more effective
than ARV treatment to reduce the number of TB-HIV/AIDS
coinfection populations.

6. Conclusion

In this paper, we have studied a deterministic model for the
transmission of TB-HIV coinfection that includes use of anti-
TB and ARV treatment as optimal control strategies. The
model without controls exhibits four equilibria, namely, the
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disease-free equilibrium, the HIV-free equilibrium, the TB-
free equilibrium, and the endemic equilibrium. We further
obtain two thresholds, 𝑅

𝑡
and 𝑅

ℎ
, which are basic reproduc-

tion ratios for TB and HIV infections, respectively. These
ratios determine the existence and stability of the equilibria of
the model. The existence of the equilibria with respect to the
thresholds 𝑅

𝑡
and 𝑅

ℎ
is summarized in Figure 2. If both the

thresholds are less than unity then the diseases-free equilib-
rium is locally asymptotically stable. But if 𝑅

𝑡
is greater than

unity with the condition 𝑅
𝑡
> 𝑅
ℎ
and 𝑅

ℎ
is greater than unity

with the condition 𝑅
ℎ
> 𝑅
𝑡
, then the HIV-free and TB-free

equilibriums are locally asymptotically stable, respectively.
Finally, the optimal control theory for TB-HIV coinfection
model is derived analytically by applying the Pontryagin
Maximum Principle.The numerical simulations were carried
out to perform the optimal anti-TB and ARV treatment con-
trols. From our analysis and numerical results, we conclude
that the combination of anti-TB and ARV treatments is the
most effective to reduce the TB-HIV coinfection. However, if
we have to use only one control, then the anti-TB treatment
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is better than ARV treatment to eliminate the number of TB-
HIV/AIDS coinfection populations.
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