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Human Immunodeficiency Virus (HIV) is a virus that attacks or infects cells in the immune system that causes immune decline.
Acquired Immunodeficiency Syndrome (AIDS) is the most severe stage of HIV infection. AIDS is the rapidly spreading and
becoming epidemic diseases in the world of almost complete influence across the country. A mathematical model approach
of HIV/AIDS dynamic is needed to predict the spread of the diseases in the future. In this paper, we presented a fractional-
order model of the spread of HIV and AIDS diseases which incorporates two-sex population. The fractional derivative order
of the model is in the interval (0, 1]. We compute the basic reproduction number and prove the stability of the equilibriums
of the model. The sensitivity analysis also is done to determine the important factor controlling the spread. Using the Adams-
type predictor-corrector method, we then perform some numerical simulations for variation values of the order of the fractional
derivative. Finally, the effects of various antiretroviral therapy (ART) treatments are studied and compared with numerical
approach.

1. Introduction

Human ImmunodeficiencyVirus (HIV) is a virus that attacks
or infects cells in the immune system that causes immune
decline. Acquired Immunodeficiency Syndrome (AIDS) is
the most severe stage of HIV infection, which can take from
2 to 15 years to develop depending on the individual. AIDS is
defined by the development of certain cancers, infections, or
other severe clinical manifestations. HIV can be transmitted
via the exchange of a variety of body fluids from infected
individuals, such as blood, breast milk, semen, and vaginal
secretions. There were approximately 36.7 million people
livingwithHIV at the end of 2016with 1.0million people died
from HIV-related causes globally. In 2015, an estimated 44%
of new infections occurred among key populations and their
partners [1].

Until now, there is no cure for HIV infection. However,
effective antiretroviral therapy (ART) can inhibit HIV pro-
gression in immune defects. Since 1996, ART has begun to
be used by people living with HIV in the world because
it can prevent death early [2]. The benefits of ART for

people with HIV/AIDS are to improve quality of life, pre-
vent mother-to-child transmission of HIV, prolong survival,
and restore the immune system [3]. In 2016, 19.5 mil-
lion people with HIV have been receiving ART globally
[1].

Mathematical models are needed to understand the
dynamics of epidemic infection [4–8]. At present many
models have been proposed to describe the dynamics ofHIV/
AIDS infection [9–11]. For instance, authors in [9] formulated
a mathematical model for the transmission dynamics of
HIV/AIDS in a two-sex population considering counseling
and antiretroviral therapy. Authors in [10] studied the impact
of the optimal control on the treatment of HIV/AIDS incor-
porating use of condom, screening of unaware infective, and
treatment of HIV individuals. In recent year, Yang et al. [11]
formulated a two-group (female sex workers and senior male
clients) compartmental model to study the impact of senior
male clients on the transmission dynamics, the containment,
and the elimination of the HIV.

Memory effect plays an important role in the spread
of disease. The presence of memory effects on past events
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will affect the spread of disease in the future so that the
spread of disease in the future can be controlled.The distance
of memory effect indicates the history of disease spread.
Thus, memory effects on the spread of infectious diseases
can be investigated using fractional derivatives. Fractional
derivatives have been used in the literature to observe the
effect of memory on a system dynamics by replacing the
ordinary derivative order with the fractional derivative order
[12–15]. Sardar et al. [13] formulated the dengue model with
memory in the transmission process by using fractional
differential operator and order of the fractional derivative as
an index of memory. Huo et al. [12] analyzed the effects of
vaccines on mathematical models of fractional order of HIV
disease spread. They also performed a local stability analysis
on the fractional-order framework of HIV disease spread and
bifurcation behavior of the system. In 2017, Saeedian et al. [14]
studied the evolution of the SIR epidemic model, considering
memory effects. Using the fractional calculus technique, the
authors in [14] show that the dynamics of such a system
depend on the strength of memory effects, controlled by the
order of fractional derivatives. In 2017, Pinto and Carvalho
[15] derived a fractional-order model for the dynamics of the
coinfection of HIV and TB in the presence of TB resistant
strains.

In this paper, we proposed a fractional order of two-
sex mathematical model for dynamic HIV transmission, as a
generalization of an integer model, proposed by Kimbir et al.
[9].We alsomodified the basicmodel in [9] by distinguishing
populations infected with HIV and infected with AIDS.
By using fractional ordinary differential equation, we hope
that the fractional-order model can accommodate the real
phenomenon of the spread ofHIV/AIDS.The structure of the
paper is organized as follows. In Section 2, we introduce the
description of the fractional order of the HIV/AIDS model.
In Section 3, the stability analysis of the equilibriums of the
model is proven. In Section 4, we carry out the sensitivity
analysis of the reproduction number to the parameters in the
model. Section 5 shows some numerical results for distinct
values of the fractional order 𝛼. Finally, in Section 6, we give
a brief conclusion.

2. Description of the Model

In this section we propose a mathematical model of two-
sex HIV/AIDS transmission based on [9]. The model is
constructed under the following assumptions:

(1) The total population is divided into two groups,
namely, the population of males and females.

(2) The population of males is divided into three com-
partments: the susceptible males (𝑆𝑚), the HIV
infected males (𝐼𝑚), and the AIDS infected males(𝐴𝑚). The population of females is also divided into
three compartments: the susceptible females (𝑆𝑓), the
HIV infected females (𝐼𝑓), and the AIDS infected
females (𝐴𝑓). Moreover, the total population ofmales
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Figure 1: HIV/AIDS transmission diagram.

and females is given by𝑁 = 𝑆𝑚 + 𝐼𝑚 + 𝐴𝑚 + 𝑆𝑓 + 𝐼𝑓
+ 𝐴𝑓.

(3) TheHIV transmission is by heterosexual contact only.

(4) Vertical transmission and age-structure are ignored.

(5) The population is homogeneous mixing.

(6) Male and female AIDS populations were isolated and
then do not contribute to HIV infection.

The transmission diagram of the model is shown in Figure 1.
The basic model is derived as follows:𝑑𝑆𝑚𝑑𝑡 = 𝑝Λ − 𝛽𝑓𝐼𝑓𝑆𝑚 − 𝜇𝑆𝑚.𝑑𝐼𝑚𝑑𝑡 = 𝛽𝑓𝐼𝑓𝑆𝑚 − (1 − 𝑟) 𝛾𝑚𝐼𝑚 − 𝜇𝐼𝑚,𝑑𝐴𝑚𝑑𝑡 = (1 − 𝑟) 𝛾𝑚𝐼𝑚 − (𝜇 + 𝛿)𝐴𝑚,𝑑𝑆𝑓𝑑𝑡 = (1 − 𝑝)Λ − 𝛽𝑚𝐼𝑚𝑆𝑓 − 𝜇𝑆𝑓,𝑑𝐼𝑓𝑑𝑡 = 𝛽𝑚𝐼𝑚𝑆𝑓 − (1 − 𝑟) 𝛾𝑓𝐼𝑓 − 𝜇𝐼𝑓,𝑑𝐴𝑓𝑑𝑡 = (1 − 𝑟) 𝛾𝑓𝐼𝑓 − (𝜇 + 𝛿)𝐴𝑓,

(1)

The description of the parameter for model (1) could be
seen in Table 1. The biologically feasible region of model (1)
is

Ω = {(𝑆𝑚, 𝐼𝑚, 𝐴𝑚, 𝑆𝑓, 𝐼𝑓, 𝐴𝑓) ∈ R
6
+ : 0 ≤ 𝑁 ≤ Λ𝜇 } , (2)

and all of the parameters used in model (1) are nonnegative.
The regionΩ is positively invariant. In this region, model

(1) is well-posed. So, if it is given an initial condition in the
region, then the solution is defined for all time 𝑡 ≥ 0 and
remains in the region.
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Next, we consider a fractional-order model of system
(1). The fractional model corresponding to system (1) is as
follows:

𝑑𝛼𝑆𝑚𝑑𝑡𝛼 = 𝑝Λ − 𝛽𝑓𝐼𝑓𝑆𝑚 − 𝜇𝑆𝑚,𝑑𝛼𝐼𝑚𝑑𝑡𝛼 = 𝛽𝑓𝐼𝑓𝑆𝑚 − (1 − 𝑟) 𝛾𝑚𝐼𝑚 − 𝜇𝐼𝑚,𝑑𝛼𝐴𝑚𝑑𝑡𝛼 = (1 − 𝑟) 𝛾𝑚𝐼𝑚 − (𝜇 + 𝛿)𝐴𝑚,𝑑𝛼𝑆𝑓𝑑𝑡𝛼 = (1 − 𝑝)Λ − 𝛽𝑚𝐼𝑚𝑆𝑓 − 𝜇𝑆𝑓,𝑑𝛼𝐼𝑓𝑑𝑡𝛼 = 𝛽𝑚𝐼𝑚𝑆𝑓 − (1 − 𝑟) 𝛾𝑓𝐼𝑓 − 𝜇𝐼𝑓,𝑑𝛼𝐴𝑓𝑑𝑡𝛼 = (1 − 𝑟) 𝛾𝑓𝐼𝑓 − (𝜇 + 𝛿)𝐴𝑓,

(3)

where 𝛼 ∈ (0, 1] is the order of the fractional derivative.
Fractional derivative of model (3) is in the sense of Caputo.
The Caputo approach is mostly used in real applications. The
main advantages of Caputo approach are the initial values for
fractional differential equations with the Caputo derivatives
taking on the same form as for integer order differential
equations [16]. The Caputo fractional derivative is defined as
follows.

Definition 1 (see [16]). The Caputo fractional differential
operator of order 𝛼 > 0, with 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ N, is
defined by

𝑑𝛼𝑓 (𝑡)𝑑𝑡𝛼 fl 𝐼𝑛−𝛼 𝑑𝑛𝑓 (𝑡)𝑑𝑡𝑛
= 1Γ (𝑛 − 𝛼) ∫𝑡0 (𝑡 − 𝑠)(𝑛−𝛼−1) 𝑓(𝑛) (𝑠) 𝑑𝑠, (4)

where Γ(⋅) is the gamma function.

3. Model Analysis

In this section, we study the stability of the equilibrium of
the fractional-order model (3). We begin by computing the
basic reproduction number (𝑅0) of model (3). The basic
reproduction number is defined as the number of secondary
cases of primary case during the infectious period due to the
type of infection [17, 18].

Now, we recall the properties of the stability of the
fractional-order systems.The stability theorem on fractional-
order system is as follows.

Table 1: Parameters of model (1).

Description Parameter

Recruitment rate Λ
Proportion of the recruitment rate 𝑝
Natural death rate 𝜇
Transmission rate by an infected male 𝛽𝑚
Transmission rate by an infected female 𝛽𝑓
Progression rate from male HIV infection to
AIDS 𝛾𝑚
Progression rate from female HIV infection to
AIDS 𝛾𝑓
AIDS disease induced death rate 𝛿
Proportion of the efficacy of ART treatment for
HIV infection 𝑟
Theorem 2 (see [19, 20]). Consider the following autonomous
nonlinear fractional-order system:

𝑑𝛼𝑥𝑑𝑡𝛼 = 𝑓 (𝑥) ,𝑥 (0) = 𝑥0, (5)

with 0 < 𝛼 < 1 and𝑥 ∈ R𝑛.The equilibriumpoints of the above
system are solutions to the equation 𝑓(𝑥) = 0. An equilibrium
is locally asymptotically stable if all eigenvalues (𝜆𝑗) of the
Jacobianmatrix 𝐽 = 𝜕𝑓/𝜕𝑥 evaluated at the equilibrium satisfy| arg(𝜆𝑗)| > 𝛼𝜋/2.

Based onTheorem 2, the equilibria are obtained by setting
the right-hand sides of the equations in model (3) to zero.
The disease-free equilibrium of model (3) to the coordinate(𝑆𝑚, 𝐼𝑚, 𝐴𝑚, 𝑆𝑓, 𝐼𝑓, 𝐴𝑓) is given by 𝐸0 = (Λ𝑝/𝜇, 0, 0, Λ(1 −𝑝)/𝜇, 0, 0).

Then, the basic reproduction number (𝑅0) is computed
by using the next-generation method [21, 22]. For the next-
generation matrix method [22], we take the infected com-
partments (𝐼𝑚, 𝐼𝑓).The Jacobianmatrices𝐹 and𝑉 for the new
infection in the compartment and the transfer of individuals
between the compartment respectively, evaluated at 𝐸0, are
given by

𝐹 = ( 0 𝛽𝑓Λ𝑝𝜇𝛽𝑚Λ (1 − 𝑝)𝜇 0 ) ,
𝑉 = ( 1(1 − 𝑟) 𝛾𝑚 + 𝜇 00 1(1 − 𝑟) 𝛾𝑓 + 𝜇) .

(6)
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The basic reproduction number of model (3) is the spectral
radius of the matrix 𝐹𝑉−1 such that we have

𝑅0 = Λ𝜇√ 𝛽𝑚𝛽𝑓𝑝 (1 − 𝑝)((1 − 𝑟) 𝛾𝑚 + 𝜇) ((1 − 𝑟) 𝛾𝑓 + 𝜇) . (7)

The following theorem provides the local stability of the
disease-free equilibrium.

Theorem 3. The disease-free equilibrium 𝐸0 is locally asymp-
totically stable if 𝑅0 < 1.
Proof. The Jacobian matrix of model (3) around the disease-
free equilibrium, 𝐸0, is given by

𝐽 =
(((((((((((((((((
(

−𝜇 0 0 0 −𝛽𝑓𝑝Λ𝜇 0
0 − (1 − 𝑟) 𝛾𝑚 − 𝜇 0 0 𝛽𝑓𝑝Λ𝜇 00 (1 − 𝑟) 𝛾𝑚 −𝜇 − 𝛿 0 0 0
0 𝛽𝑚Λ (𝑝 − 1)𝜇 0 −𝜇 0 0
0 −𝛽𝑚Λ (𝑝 − 1)𝜇 0 0 − (1 − 𝑟) 𝛾𝑓 − 𝜇 00 0 0 0 (1 − 𝑟) 𝛾𝑓 −𝜇 − 𝛿

)))))))))))))))))
)

. (8)

The eigenvalues of matrix 𝐽 are 𝜆1 = 𝜆2 = −𝜇 and 𝜆3 =𝜆4 = −(𝜇 + 𝛿) and the roots of quadratic equation 𝑥2 +𝑎1𝑥 + 𝑎2 = 0, where 𝑎1 = 2(1 − 𝑟)𝜇(𝛾𝑚 + 𝛾𝑓) and 𝑎2 =[(1 − 𝑟)2𝛾𝑚𝛾𝑓 + 𝜇(1 − 𝑟)(𝛾𝑚 + 𝛾𝑓) + 𝜇2](1 − 𝑇0), with 𝑅0 =√𝑇0. Thus, we have | arg(𝜆1)| = | arg(𝜆2)| = | arg(𝜆3)| =| arg(𝜆4)| = 𝜋 > 𝛼𝜋/2. Next, we check the roots of the
quadratic equation 𝑥2 + 𝑎1𝑥 + 𝑎2 = 0. Authors in [23] show
that the Routh-Hurwitz criteria, 𝑎1, 𝑎2 > 0, are necessary
and sufficient for | arg(𝜆𝑖)| > 𝛼𝜋/2. It is clear that all of the
eigenvalues are negative (| arg(𝜆𝑗)| > 𝛼𝜋/2, for 𝑗 = 1, 2, . . . , 6)
if 𝑇0 < 1 or equivalently 𝑅0 < 1. Hence, the disease-free
equilibrium 𝐸0 is locally asymptotically stable for 𝛼 ∈ (0, 1] if𝑅0 < 1.

We continue with the computing of the endemic equilib-
rium (𝐸1) of model (3). The endemic equilibrium 𝐸1 is given
by

𝐸1 = (𝑆∗𝑚, 𝐼∗𝑚, 𝐴∗𝑚, 𝑆∗𝑓, 𝐼∗𝑓 , 𝐴∗𝑓) , (9)

where

𝑆∗𝑚 = 𝑝Λ𝛽𝑓𝐼∗𝑓 + 𝜇,𝐼∗𝑚
= [(1 − 𝑟) 𝛾𝑚 + 𝜇] [(1 − 𝑟) 𝛾𝑓 + 𝜇] 𝜇2 [𝑇0 − 1]𝛽𝑚 [(1 − 𝑟) 𝛾𝑚 + 𝜇] [𝛽𝑓Λ (1 − 𝑝) + ((1 − 𝑟) 𝛾𝑓 + 𝜇) 𝜇] ,

𝐴∗𝑚 = (1 − 𝑟) 𝛾𝑚𝐼∗𝑚𝜇 + 𝛿 ,
𝑆∗𝑓 = (1 − 𝑝)Λ𝛽𝑚𝐼∗𝑚 + 𝜇,
𝐼∗𝑓 = 𝛽𝑚𝐼∗𝑚 (1 − 𝑝)Λ[(1 − 𝑟) 𝛾𝑓 + 𝜇] [𝛽𝑚𝐼∗𝑚 + 𝜇] ,
𝐴∗𝑓 = (1 − 𝑟) 𝛾𝑓𝐼∗𝑓𝜇 + 𝛿 ,

(10)

with 𝑅0 = √𝑇0. The endemic equilibrium 𝐸1 exists if 𝑇0 > 1
or equivalently 𝑅0 > 1.

The stability of the endemic equilibrium 𝐸1 is difficult
to prove analytically, because it involves a quartic equation
which depend on the variables 𝐼𝑚 and 𝐼𝑓. Numerical simu-
lations show that the endemic equilibrium is locally asymp-
totically stable if 𝑅0 > 1. This can be seen in Figures
2 and 3. Using three different initial conditions for the
simulation, these orbits converge to the same point as time
evolves.

4. Sensitivity Analysis

In this section we present the sensitivity analysis of the
reproduction number 𝑅0 to the parameters in model (3). The
aim of this analysis was to measure the parameters that have
the most effects on the reproduction number. We derived
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Figure 2: Phase portrait of model (3) in 𝑆𝑚-𝑆𝑓 plane for 𝛼 = 0.8.
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Figure 3: Phase portrait of model (3) in 𝑆𝑚-𝑆𝑓 plane for 𝛼 = 0.9.
analytically the sensitivity index of 𝑅0 to each parameter
following the approach in [24].

Definition 4 (see [24]). The normalized forward sensitivity
index of a variable, 𝑅0, that depends differentially on a
parameter, 𝑙, is defined as

Υ𝑅0
𝑙

fl
𝜕𝑅0𝜕𝑙 × 𝑙𝑅0 . (11)

Based on Definition 4, the sensitivity indices of 𝑅0 with
respect to each parameter such as Λ, 𝜇, 𝛽𝑚, 𝛽𝑓, 𝛾𝑚, 𝛾𝑓, and 𝑝
can be computed in the same way as (11). For example, the
sensitivity index of 𝑅0 with respect to Λ is

Υ𝑅0Λ fl
𝜕𝑅0𝜕Λ × Λ𝑅0 = 1. (12)

Table 2: Parameter values for simulations.

Parameter Value Ref.𝑝 0.5 AssumedΛ 20 [12]𝛽𝑚 2 × 10−3 Assumed𝛽𝑓 5 × 10−3 Assumed𝜇 0.02 [12]𝛿 0.125 [12]𝛾𝑚 8 × 10−3 Assumed𝛾𝑓 9 × 10−3 Assumed𝑟 0.5 Assumed

Table 3: Sensitivity indices to parameter for model (3).

Parameter Sensitivity indexΛ 1𝛽𝑚 0.5𝛽𝑓 0.5𝑟 0.175𝜇 −1.825𝛾𝑓 −0.092𝛾𝑚 −0.083𝑝 0

Thus, we compute the sensitivity indexes of the remaining
parameters using the parameter values in the Table 2. The
results are given in Table 3.

The sensitivity index can be analyzed as follows. The
positive sensitivity index shows that an increase in the
parameters will lead to increase in the basic reproduction
number, while a negative sensitivity index means that an
increase in the parameter will lead to a decrease in the basic
reproduction number. For example, for Υ𝑅0

𝛽𝑚
= 0.5, increasing

the value 𝛽𝑚 by 10% increases the reproduction number 𝑅0
by 5%.Thus, increasing natural death rate 𝜇 by 10% decreases𝑅0 by 18.25%.

We also perform sensitivity simulation to verify our sen-
sitivity analysis.The parameter values used in the simulations
are given in Table 2. In Figures 4 and 5, we can see that,
for the parameter chosen with distinct values of 𝛽𝑓 and 𝛽𝑚,
respectively,𝑅0 increasesmonotonicallywith both𝛽𝑚 and𝛽𝑓.
This results indicate that increasing 𝛽𝑚 and 𝛽𝑓 will increase
the basic reproduction number 𝑅0.
5. Numerical Simulation

In this section, we conduct several numerical simulations
of model (3). An Adams-type predictor-corrector method
[25–27] is applied to solve the numerical solution of the
fractional-order model (3). Parameters values used in these
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Figure 5: Sensitivity of 𝑅0 with respect to 𝛽𝑓 for different values of𝛽𝑚.
simulations could be seen in Table 2. The adopted initial
conditions are (𝑆𝑚(0), 𝐼𝑚(0), 𝐴𝑚(0), 𝑆𝑓(0), 𝐼𝑓(0), 𝐴𝑓(0)) =(150, 10, 6, 300, 7, 2). Here, we take 500 days for the
time horizon. The simulations are carried out with
varying values of the order of the fractional derivative𝛼 ∈ [0.5, 1.0].
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Figure 6: Dynamic of nonendemic 𝑆𝑚.
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Figure 7: Dynamic of nonendemic 𝑆𝑓.

In Figures 6–11, we display the dynamic of the populations
when𝑅0 < 1 and in Figures 12–17 when𝑅0 > 1. In each figure
six different values of 𝛼 are employed.

Now, we set 𝛽𝑚 = 2 × 10−5 and 𝛽𝑓 = 5 × 10−5 and
the remaining of parameters as in Table 2 to simulate Figures
6–11. In this case, the value of 𝑅0 is 𝑅0 = 0.6521 < 1
which means that the infection will die out in the population.
This condition is confirmed by simulation results in Figures
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Figure 8: Dynamic of nonendemic 𝐼𝑚.
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Figure 9: Dynamic of nonendemic 𝐼𝑓.
6 and 7, Figures 8 and 9, and Figures 10 and 11 for sus-
ceptible male and female populations, respectively, infected
by HIV and infected by AIDS. These figures show that the
solutions of model (3) are convergent to the disease-free
equilibrium. Moreover, we observe that the solutions with
higher order𝛼have faster convergence speed compared to the
smaller.

Next, we plot in Figures 12–17 the numerical simulations
using the parameters as in Table 2. In this condition, the
value of 𝑅0 is 𝑅0 = 65.2051 > 1 which means that the
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Figure 10: Dynamic of nonendemic 𝐴𝑚.
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Figure 11: Dynamic of nonendemic 𝐴𝑓.
infection will persist in the population. In Figures 12 and 13,
Figures 14 and 15, and Figures 16 and 17 the dynamics of
the susceptible male and female populations, respectively, are
seen, infected by HIV and infected by AIDS with different
values of 𝛼. The figures show that the solutions of model
(3) converge to the endemic equilibrium when 𝑅0 > 1.
Similar to the nonendemic condition, we see that as the order𝛼 increases, the convergence of solutions is faster for the
endemic condition.
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Figure 12: Dynamic of endemic 𝑆𝑚.

100 200 300 400 5000
Time

0

50

100

150

200

250

300

Su
sc

ep
tib

le
 fe

m
al

e

 = 0.5
 = 0.6
 = 0.7

 = 0.8
 = 0.9
 = 1

Figure 13: Dynamic of endemic 𝑆𝑓.
In Figures 18–23, we depict the dynamic of bothmale and

female populations infected by AIDS for different values of
the efficacy of ART treatment (𝑟) for 𝛼 = 1, 𝛼 = 0.7, and𝛼 = 0.5. For 𝛼 = 1, we observe that the AIDS infected
both male and female populations decrease when the value
of 𝑟 is increase. On the contrary, the number of both AIDS
infections increases when the efficacy of ART treatment, 𝑟,
is smaller. The similar behavior is seen for 𝛼 = 0.7 and𝛼 = 0.5. It is well known that the ART treatment could
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Figure 14: Dynamic of endemic 𝐼𝑚.
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Figure 15: Dynamic of endemic 𝐼𝑓.
improve the quality of HIV infected both male and female
patients.

6. Conclusion

In this paper, we have investigated a fractional order of two-
sex mathematical model for dynamic HIV, as a generaliza-
tion of an integer order model, proposed by Kimbir et al.
[9]. The basic model in [9] is modified by distinguishing
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Figure 16: Dynamic of endemic 𝐴𝑚.
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Figure 17: Dynamic of endemic 𝐴𝑓.

populations infected withHIV andAIDS.We have computed
the basic reproduction number (𝑅0) and proved the stability
of equilibriums of the fractional-order model of the HIV
infection. Based on the mathematical analysis, the disease-
free equilibrium is locally asymptotically stable when 𝑅0 <1 that means the infection will die out in the population.
Numerically, the endemic equilibrium tends to be locally
asymptotically stable when 𝑅0 > 1 which means that the
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Figure 18: Dynamic of 𝐴𝑚 with 𝛼 = 1 for various 𝑟.
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Figure 19: Dynamic of 𝐴𝑓 with 𝛼 = 1 for various 𝑟.

infection will persist in the population. We also studied ana-
lytically and numerically the sensitivity analysis to measure
the parameters that have high impact on 𝑅0. Finally, we have
carried out the numerical simulations for different values of
the order (𝛼) of the fractional derivative. The simulations
results show that the solutions with higher order 𝛼 have
faster convergence compared to the smaller 𝛼. We also found
that as the efficacy of ART treatment (𝑟) increases there is a
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Figure 20: Dynamic of 𝐴𝑚 with 𝛼 = 0.7 for various 𝑟.
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Figure 21: Dynamic of 𝐴𝑓 with 𝛼 = 0.7 for various 𝑟.
corresponding decrease in the number of the AIDS infected
bothmale and female populations for three values of 𝛼.These
results indicate the effectiveness of the ART treatment to
reduce the AIDS infected.
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Figure 22: Dynamic of 𝐴𝑚 with 𝛼 = 0.5 for various 𝑟.
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Figure 23: Dynamic of 𝐴𝑓 with 𝛼 = 0.5 for various 𝑟.
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