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We study the structure of n-Lie algebras with involutive derivations for 7 > 2. We obtain that a 3-Lie algebra A is a two-dimensional
extension of Lie algebras if and only if there is an involutive derivation Don A = A, + A_, such that dimA, = 2 or dimA_; =
2, where A and A_, are subspaces of A with eigenvalues 1 and —1, respectively. We show that there does not exist involutive
derivations on nonabelian n-Lie algebras with # = 2s for s > 1. We also prove that if A is a (2s + 2)-dimensional (2s + 1)-Lie algebra
with dimA! = r, then there are involutive derivations on A if and only if r is even, or r satisfies 1 < r < s + 2. We discuss also the
existence of involutive derivations on (2s + 3)-dimensional (2s + 1)-Lie algebras.

1. Introduction

Derivation is an important tool in studying the structure of
n-Lie algebras [1]. The derivation algebra Der(A) of an n-Lie
algebra A over the field of real numbers is the Lie algebra
of the automorphism group Aut(A), which is a Lie group if
dim A < 0o [2]. Any n-Lie algebra-module (V, p) is a module
of the inner derivation algebra ad(A), which is a linear Lie
algebra [3]. Also, derivations have close relationship with
extensions of n-Lie algebras.

The concept of 3-Lie classical Yang-Baxter equations is
introduced in [4]. It is known that if there is an involutive
derivation D on A, then (A,{,,}p) is a 3-pre-Lie algebra,
where {x, y,z}, = D(ad(x, y)D(z)), Vx, y,z € A, and the 3-
Lie algebra A is a subadjacent 3-Lie algebra of (A, {,,}p), and
r=7Y,e; ®D(e;) - D(e;) ®e; is a skew-symmetric solution of
the 3-Lie classical Yang-Baxter equation in the 3-Lie algebra
Ax g+ A", where {e,,--- ,e,,} is a basis of A and {e,--- , e}
is the dual basis of A*.

Due to this importance of involutive derivations on 3-
Lie algebras, we investigate in this paper the existence of
involutive derivations on finite dimensional n-Lie algebras.
More specifically, in Section 2, we discuss the properties of
involutive derivations on n-Lie algebras. In Section 3, we

study the existence of involutive derivations on (2s + 2)-
dimensional (2s + 1)-Lie algebras. In Section 4, we consider
the existence of involutive derivations on (2s+3)-dimensional
(25 + 1)-Lie algebras. In Section 5, we investigate a class
of 3-Lie algebras with involutive derivations which are two-
dimensional extension of Lie algebras.

In the following, we assume that all algebras are over an
algebraically closed field [ with characteristic zero, Id is the
identity mapping, and Z is the set of integers. For A € [ and
an [F-linear mapping D on a vector space A, A, denotes the
subspace {x € A | D(x) = Ax}.

2. n-Lie Algebras with Involutive Derivations

Ann-Lie algebra [1] is a vector space A over a field F equipped

with a linear multiplication [,---,] : A"A — A satisfying,
forall x;, -+, X, V5 > ¥, € A,
(e xals 32 9]
L @
oD LR ORI RS |
i=1

Equation (1) is usually called the generalized Jacobi identity,
or Filippov identity.
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The derived algebra of an n-Lie algebra A is a subalgebra
of A generated by [x,,---,x,] forall x;,---,x, € A, and is
denoted by Al. We use Z(A) to denote the center of A; that
is, Z(A) = {x | x € A, [x,A,--- ,A] = 0}.

A derivation of A is an endomorphism of A satisfying

D[y

)= T D)oo ),

1

(2)
Vxp, -+ ,x, € A

If a derivation D satisfies that D* = Id, then D is called

an involutive derivation on A. Der(A) denotes the derivation

algebra of A.
For x,,---

ad(xl,...

, X, € A, map ad(x;,--- ,x,_): A — A,

"xn—l) (X) = [Xl,"' ’xn—l’x] , VxeA (3)

is called a left multiplication defined by elements x,, - - -
From (1), left multiplications are derivations.
The following lemma can be easily verified.

’xn—l'

Lemma 1. Let V be a finite dimensional vector space over F
and D be an endomorphism of V with D* = Id. Then V can
be decomposed into the direct sum of subspaces V. =V, + V_,,
where Vi, ={veV |Dv=vlandV_; ={v e V| Dv=—v}.

If A is a finite dimensional n-Lie algebra with an involu-
tive derivation D, then we have

A=A+ A, (4)

Lemma 2. Let A be an n-Lie algebra over F. If D € Der(A) is
an involutive derivation, then, for all x,--- ,x, € A,

DI

i<j (5)

[x),-»x,] = X D (%) Xipgs e s

xj_l,D(xj),xj+1,~-- ,xn],

-2

n—1

Z [Dxl»“' ,D(x21), x;,
1<) (6)
D (%) ’D(xj—l)’xj’D(xjﬂ)"" ’D(Xn)] .

Proof. If D is an involutive derivation on A, then, for all
X5, X, €A,

[D(x1),-++,D(x,)] =

o5 = D (o

(7)

+2 Z [xl,... ’D(xi)""’D(xj)""’xn]‘

1<i<j<n

Equation (5) follows. Equation (6) follows from (4) and D* =
Id. O
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Theorem 3. Let A be a finite dimensional n-Lie algebra with
n = 2s, s > 1. Then there is an involutive derivation D on A if
and only if A is abelian.

Proof. If A is abelian, then the result is trivial.
Conversely, let D be an involutive derivation on A. By
Lemmal, A = A, + A_,. Then, foranyi € Z,1 <i < n,

XX, € Apand yy, e, y, € A,
D([x1,~~ > Xis Yot )yn—i])
=i[x1,~' > X V1>t ’yn—i]
- (n—-1) [xp'" > Xip Y150 ’yn—i]
| (®)
= (20 =25) [x, X Y1 Yusi] € Agigge

D ([

D[y s yul) = =28 [y, vl -

Thanks to +2s # tland 2i —2s #+ +1, A,;,_, = A, = 0.
Therefore, A is abelian. O

’xn]) =2s [xl"“ ’xn]’

Theorem 4. Let A be a finite dimensional n-Lie algebra with
n=2s+1,s > 1, and D be an involutive derivation on A. Then
A, and A_, are abelian subalgebras, and

AL ALA L AL | =0,
; 251 | 9)

V1<i<2s,i#s, s+1,

A]a 3 )AI)A_] )A_l gA_]; (].O)
L s s+1
Al’“"Al’A—l’“.’A—l gAl' (].].)
L s+1 s J
Proof. Since D € DerA, [A},---,A,A_,---,A;] ¢
i 2s5+1—i
Agigep0<i <25+ LI[A, -, AL A AL #0,

i 2s+1—i
then 2i — 2s — 1 = +1, thatis,i = s + 1, or i = s. Therefore,
[A,---, Al =[A_},---,A_;] = 0. The result follows. O

Theorem 5. Let A be an m-dimensional n-Lie algebra withn =
2s+1, s > 1. Then there is an involutive derivation on A if and
only if A has the decomposition A = B + C (as direct sum of
subspaces), and

[B,--- ,B,C, - ,C] =0,
i

25+1-i (12)
0<i<2s+1,i#ss+1,
[B,--- ,B,C,--- ,C] cC,
N s+1
(13)

[E_V_EQ_V__Q] < B
s+1 S
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Proof. If there is an involutive derivation D on A, then, by
Theorem 4, B= A, and C = A_, satisfy (12) and (13).
Conversely, define an endomorphism D of A by D(x) =
x,D(y) = =y, V¥x € B,y € C. Then D?=1d,B = A, and
C = A_,.By(12) and (13), D is a derivation. O

Corollary 6. Let A be a (2s + 1)-dimensional (2s + 1)-Lie
algebra with the multiplication [e,,--- ,e,,;] = e, where
{er, -+ ey} is a basis of A. Then the linear mapping D :
A — Adefined by D(e;) = e, 1 < i < s+1,D(e) =
—ej, s+2 < j < 2s+ 1is an involutive derivation on
A

Proof. The result follows from a direct computation. O

3. Involutive Derivations on
(n + 1)-Dimensional 7-Lie Algebras
withn=2s+1

In this section, we study involutive derivations on (n + 1)-
dimensional n-Lie algebras over F. From Theorem 3, we only
need to discuss the case of n = 2s + 1, s > 1.

Lemma 7 (see [5]). Let A be an (n + 1)-dimensional non-
abelian n-Lie algebra over F, n > 3. Then up to isomorphisms
A is one and only one of the following possibilities:

’en+1] =é.

(o) [epes--

(b,) [ersen--se,] =€

() [e2- s en] = €p
1
e es s en] = e
€yttt ,e =ae, +e (14)
©) le: s epn] = aey + ey, weF ato
lees - seni] =€
(c [eres o seni] =€
3
[e2 -+ €] = €5

(@) lev el ey 12isr,
where{e,, -+ e, }isabasisof A, 3 < r < n+1, and €; means
that e; is omitted.

Theorem 8. Let A be a (2s + 2)-dimensional (2s + 1)-Lie
algebra over F and dim A" = r. Then there exists an involutive

derivation D on A if and only if r is even, or 0 < r < s+
2.

Proof. If dim A' = r < s + 2, then, by Lemma 7, and a direct
computation, the linear mapping D : A — A defined by
D(e;) :ei,D(ej) =-€,1<i<s+2,s+3<j<2s+2,isan
involutive derivation on A.

Now we discuss the case dimA! = r > s+ 3. Let
{er, -+ ey, be a basis of A and the multiplication in the
basis be as follows:

) Serani 2542
61 = (—1) e [61,"’ )éi"" ’6251-2] = Zﬁilel’
= (15)

Ba€F 1<i<2s+2,

where f8; € F,1 < i,] < 2s + 2. Thanks to Theorem 3 in [1], A
is a 3-Lie algebra if and only if the (2s + 2) x (2s + 2)-matrix
B = (f3;) is symmetric.

Ifr =2t > 3,2 <t <s+ 1, then define the multiplication
on A by

[31"" NI ’6231-2] = (_1)16231-3—1"

1<i<t 3-t<i-2s<2, (16)
ler, o8 vern] =0, t<j<2s43-1

thatis, 8,503 = Bogizy; = 1forl <i<tior2s+3-t<
i < 2s + 2, and others are zero. Then, B = (3;) is symmetric.
Therefore, A is a (2s + 1)-Lie algebra with the multiplication
(16).

Define an endomorphism D of Aby De; = ¢;,1 <i < s+1,
and De; = —e; for s + 2 < j < 2s + 2. Then D is an involutive
derivation on A.

For the case dim A' = r = 2t + 1 > s + 3. Suppose | =
dimA,I' =dimA_,.

If there is an involutive derivation D on A, then, by
Theorem 4,1 +1' = 2s+2,s <l <s+2ands <! <s+2.
Since dimA' = r = 2t+1 > s+3,A'nA, # 0and
A'NA_, # 0. Therefore,dim A, = dim A_, = s+ 1. Without
loss of generality, we can suppose {e;, - ,e,;} € A,, and
{egn > X200} € A_1. By (10) and (11), the (25+2) x (25 +2)-
matrix B = (f3;) defined by (15) is nonsymmetric, which is a
contradiction. Therefore, if dim A' = r = 2t + 1 > s + 3, then
there do not exist involutive derivations on A. O

By Theorem 8, if A is a 10-dimensional 9-Lie algebra
with dim A! = 7, or 9, then there does not exist involutive
derivation on A. If 1 < dim A! = r < 10 and r # 7,9, then
there are involutive derivations on A.

4, Involutive Derivations on
(n + 2)-Dimensional #-Lie Algebras
withn =2s+1

By Theorem 3, we only need to discuss the case where # is
odd. So we suppose that A is a (2s + 3)-dimensional (2s + 1)-
Lie algebra over [, s > 1, and that E, = Diag(1,---1) is the
(t X t)-unit matrix.

Lemma9 (see [6]). Let A bea (2s+3)-dimensional (2s+1)-Lie
algebra over F with a basis {e,,-- - , e,,,3}. Then A is isomorphic
to one and only one of the following possibilities:



(a) A is an abelian.

(b) dimA' = 1:

(bl) [ey, -
(bz) [e), -

> eZs+2] =€

> eZs+1] =€.

(c) dim A" =2:

o [len-
(")

[63, ..

[ez’-.-

(cz) (e, €4,

[61,34,"‘

[
3 [61’63"
(<))
(
[er ey
ez’ )
e, s,

[
[
(e €4
[

61,34,"‘

o [len
(<))

[61,33," .

6 [e2 - er0in] =
(<°)

62,34,"'

) ’6231-2] =€

) ’6231-3] =€

’62$+2] =€p
) ’6231-3] =€

’62$+3] =€

€] = ey tey,

e ’62$+2] =€

’62$+3] =€

: ’62$+3] =ép

’62$+2] =€p
’6231-2] =€
’6231-3] =€

’62$+3] =€

: ’6231-2] =é€p

’62$+2] =€

ae; + ey,

aelF, a+#0.

[elre3"“ ’6231-2] =€

(<')

[61,33,"'

’62$+2] =€p
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€y ’ezs+2] =€p

€64 ’6231-3] =€

[

3 [33)34”” ’6231-3] =é€3
(@) :
[

epep ey = 2e

[e2 - exeia] = €1
(d4) lerre3 s eaen] = e

[31"32’34"" ’62$+2] = €3

lenessens] =6
(ds) le, €0+ s ea003] = 3,

lesseqs -+ s erg3] = Bey + (14 B) ess;

[enessens] =6
(ds) [62)34”” ’6231-3] =€

[eseq s eus] = €33

[ereq s exs] =€
(d7) [er €5 eres] =3
[e3.€4 0+ s ea543] = sy + te, + e,
B.s,t,uelF, B+0,1, s#0.
(17)

And n-Lie algebras corresponding to the case (d’) with coef-
ficients s, t,u and s',t',u’ are isomorphic if and only if there
exists a nonzero element A € F such that s = A’s',t = A\*t/,
u=M'ss,t,t, uu €F.

(r) dimA' =7,

4<r<2s+3, for2<j<r, 1<i<r,

(rl) [ez s eaa] = €1, (18)

[62,"' ’ej’... ’eZS+3] = ej;

[exes s exn] = €

(d) dim A' = 3:

[ez"“ ’ezs+2] =€p
(dl) [32)34”" ’6231-3] =€
[63"" ’ezs+3] = €3

[ez)"’ ’6231-2] =é€p
(dz) s, -

[62’34"" ’62$+3] = €3

[

€1,€45 " ’6231-3] =ep

ey = €5+ aey,

(”2) [‘31"" NN ’625+2] =¢.

Theorem 10. If A is a (2s+3)-dimensional (2s+1)-Lie algebra

over F with dim A}
derivations on A.

= r < s+ 3, then there are involutive

Proof. Define linear mappings D;: A — A, 1< j < 6by

e, 1<i<s+2, ori=2s+3,
D, (ei) =

—e;, otherwise;

e, 1<i<s+2,
D, (ei) =

—e;, otherwise;



International Journal of Mathematics and Mathematical Sciences

—e, S+2<i<2s+1,

e;,  otherwise;

e, 1<i<s+1,ori=2+2,

—e;, otherwise;

1<i<s+1,ori=2s+3,

otherwise;

e, 1<i<s+3,

—e;, otherwise.
(19)

Since dim A" = r < s+ 2, it is easy to verify that D, is
an involutive derivation on the 3-Lie algebras of the cases of
"), (¢, (d’), and (+F), where 1 < i < 7,1 < j < 4 and
1 < k < 2. D, isan involutive derivation on the 3-Lie algebras
of the cases of ('), (d*), and (c'), where 5 < i < 7. Ds, Dy,
and Ds are involutive derivations on the 3-Lie algebras of the

case of (b?). And Dy is an involutive derivation on the 3-
Lie algebras of the cases of (d°), (d%), and (d7). Also D, are
involutive derivations on abelian algebras for1 <i<6. O

Next, we discuss the case of dim A' = # > s + 3. Let D be
an endomorphism of A,

25+3
De;= Y bye;, bjelF, 1<i<2s+3, (20)
j=1

and B = (bij) be the (2s + 3) X (2s + 3)-matrix. Then

T T
D(el"" ’62$+3) = B(el"" ’62$+3)
B, B, T @D
= e ’..- ’e N
(5 ) e

where (g; gg) is the block matrix of B. First we discuss

(2s + 3)-dimensional (2s + 1)-Lie algebras of the case (r') in
Lemma 9.

Lemma 11. If A is a (2s + 3)-dimensional (2s + 1)-Lie algebra
of the case (") with dim A" = r > s+ 3,5 > 1. Then the linear
mapping D is an involutive derivation on A if and only if the
block matrix B = (gé g‘; ) satisfies that By = O,y (y543-y) (Which
is the zero (r X (2s + 3 — r))-matrix), and

B =E,

2
B3 = Eyq3-ps (22)

B,B, + ByB, = 0,

5
25+2
Zbﬁzhv
j=2
2s5+3
Z bjj=b;, 2<i<r, (23)
j=2,j#i

i+1 .
by 3;=(-1)""b,, 2<i<r,

b, =(-1Y""by, 2<ij<r, i#].

Proof. By (2), and a direct computation, D is a derivation of
A if and only if matrix B has the property:

25+2
> by = b,
j=2
2s+3
Y bj=b, 2<is<r,
j=2,j#i (24)
by=0, 2<I1<2s+3,

byys; = (1), by=0,2<i<r, I2r+1,

by, =(-1Y""by, 2<i,j<r, i#].

Therefore, matrix B satisfies (23) and By = O, (5513-,)- And
D? = Id if and only if

. B} BB, + B,B,
B,B, + B;B, B,B,+B;
(25)
(6 52r.)
0] E2$+3—r .
Thanks to By = O,y (3543-r)> (22) holds. O

Theorem 12. Let A be a (2s + 3)-dimensional (2s + 1)-Lie
algebra of the case (r') with dim A" = r > s+3,s > L. If r
is odd, then there are involutive derivations on A.

Proof. Letr =2t +1 > s+ 3. Thent > 2and r > 5. Suppose
D is an endomorphism of A and the matrix of D with respect
to the basis {e;, - 55,3} is B = (b)) = (g; gg ) which satisfies
(22) and (23), and By = O,y (5543-r)- Then

B,
by 0 0 0 0
by, by, by by by,
by, by by by, by,

b, (-1)'by, (-1)! by, , - b

r=Lr—1 b‘r—l,r
br,l (_1)Y+1 bZ,r (_l)r b3,r e brfl,r br,r
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bin bz By o by Therefore, the endomorphisms D of A, which are defined by
B, = De, = ¢,
b25+2,1 b25+2,2 b25+2,3 b25+2,r D
. or De, = —ey,
b25+3,1 _bZ,l b3,1 . (_1) . br,l ! !
(26) d
De, = Zek,
2542 2543 . k=3
Since Y757 bj; = by X i b = bin2 < 11 < r, we have o .
. ) ) )
=byy +2by, — byg3503 = 0, (’” 3)bzz + X3 bi = 0, by = De; = (-1)"e, + Z (1) e, + (1) Z €
b;,3 <i < r. Therefore, s kel
2s+3-1 3<isr,
b, = -1k, +2 k; i
1 (r=1) Jz; Dej=(-1)e;, r+1<j<2s+3,
(30)
_ De, =e
-1 2s+3-r1 (27) 1 1
b, = ij, 2<i<r,
r—3 a or De; = —ey,
. r
bjj=kygajorr TH1<j<2543, kyps jq € De, = Zekr
k=3
Suppose -
i— r
De;=(-1)"ey+ Y (-Dep+ (-1 ) g
Gr G2 "t G ottt G ottt Gy k=3 k=i+1
3<i<r,
G1 G Cii Cij Cir Dej = (—1)"_1 e, r+ 1<j<2s+3,
2 _
B, = (28) are involutive derivations on A. O
G oo G G Cir imensi ;
Theorem 13. Let A be a (2s + 3)-dimensional (2s + 1)-Lie
algebra of the case (r') with dimA' = r = 2s+2 (s > 1),
then there does not exist an involutive derivation on A.
G1 G2 Gy er Crr
Proof. If D is an involutive derivation on A, then, by
By (23), Lemma 11 and (23),
-(2s+1)k,
2 b,=—"—,
ar = by 1 2s—1
=0, 2<i<r, bysi3se3 = ks
(31)
i 1+l 1 i+l-1 _ _kl
Gi=y ()" + Z(l) bj, 2<i<r i = 31
=1 I=i+1
' 2<i<r, k; eF.
1
l+z+1
C. = ( 2 2
VT & lél b Thanks to (22), b 25+3 2603 b, = ki = 21. Therefore,
(29) (=25 + Dk, /(25 — 1))* = ((2s + 1)/(2s = 1))* = 1, which
+ Z (- 1)l+]+1 bb, 2<i<j<r. is a contradiction. O

I=j+1

> D) by,

I=j+1

j
o
6= 2 (D" by +
I=1

+ z (_1)l+j+1 bjlbil’

I=i+1

l<j<is<r.

Now we discuss case (r2).

Theorem 14. Let A be a (2s + 3)-dimensional (2s + 1)-Lie
algebra of the case (r*) with dim A' = r > s + 3. Then there
exist involutive derivations on A if and only if r is even.

Proof. By Lemma 7, A = A, + Fe,,,5, where e,.,; € Z(A),
and A, is a (2s + 2)-dimensional (2s + 1)-Lie subalgebra
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of A with dimA' = dimA] = r. Then there exist
involutive derivations on A if and only if there exist involutive
derivations on A;.

By Theorem 3 in [1], there is a basis {e;, -+ ,e,.,,} of A,

such that
ler 28 venn| =0, t<j<2s43-1
lers 58 s eaen] = (51 epgspn (32)

1<i<t,or2s+3—-t<i<2s+2.

If r is even, then r = 2t > 4. By Theorem 8 and (32),
endomorphism D, of A, defined by

e, i=1,-,s+1,
D (e;) = (33)

-, 1=5+2,--,25+2

is an involutive derivation on A,. Therefore, the endomor-
phism D of A defined by

D (ei) =€

D(e;) = -e;,

D (e55:3) = *eyqy3

is involutive derivation on A.

If dim A' = 7 is odd and endomorphism D of A is an
involutive derivation on A, then r = 2t + 1 > 4. Suppose
D(e;) = Y= a.e;, 1 <i<2s+3.Then

1<i<s+1,

S+2<j<25+2, (34)

j=1 %ij=jp
[D (er543) > €€
=D [62$+3’ eil’ o eizs] (35)
2s
_ Z; [6251-3"“ ’Deij,... ’eiZS] =0.
j=

We get D(e,,;) € Z(A) = Fe,,,;. Since D* = Id, D(e,,,;) =
+ey.,5. By (32), A = Fe; + -+ Fe, + Feygyy + -+ + Feygpspo
and

(-1)'D (ezs+3—i)

2542 (36)

= ) lens@Dle) el
k=1,k#i

where1 <i<t,and2s+3 —t <i<2s+2.Thena,,.; =0,

forl <i<t,or2s+3—t<i<2s+2and DA' € A,. Then
the endomorphism D, of A, defined by

D, (e;) = D(e;),
1<i<t or2s+3-t<i<2s+2,

25+2 (37)
D, (ej) =D (ej) T G2543€2543 = Z;aijej’
=

t<j<2s+3-t

is an involutive derivation on the (2s+2)-dimensional (2s+1)-
Lie algebra A, contradiction (Theorem 8). Therefore, there
does not exist involutive derivation on A. O

5. Structure of 3-Lie Algebras with
Involutive Derivations

Let (L, [,]) be a Lie algebra over [F, and p be an element which
is not contained in L. Then A = L + Fp is a 3-Lie algebra in
the multiplication

[x.y.2] =0,

[P y] =[x 5], (38)
for all x, y,z € L.

And the 3-Lie algebra (A,[,,]) is called one-dimensional
extension of L.

Theorem 15. Let A be a 3-Lie algebra, then A is one-
dimensional extension of a Lie algebra if and only if there exists
an involutive derivation D on A such that dimA, = 1, or
dimA_, =1.

Proof. If A is an one-dimensional extension of a Lie algebra
L, then A = L + Fp. Define the endomorphism D of A by
D(p) = —p (or p), and D(x) = x (or —x), Vx € L. Thanks to
(38), D* = Id, and D([x, v,2z]) =0 = [Dx, y,z] + [x, Dy, z] +
[, y, Dz], D([p, x, y1) = [p, %, y] = [Dp, x, y] + [p, Dx, y] +
[p,x,Dy], for all x, y,z € L. Therefore, D is an involutive
derivation on A, and dimA_, =1 (ordim A, =1).
Conversely, let D be an involutive derivation on a 3-Lie
algebra A,and dimA_;, = 1 (ordim A, =1). Let A_, = Fp,
and A, =L(or A_; =L, A, = Fp), where p € A— L. Thanks
to Theorem 3, L is a Lie algebra with the multiplication
[x, y] = [p,x, y], for all x, y € L, and A is one-dimensional
extension of L. O

Let (L, [,],) and (L, [, ],) be Lie algebras and {x, - -+ , x,,,}
be a basis of L. For convenience, denote Lie algebras (L, [, ];.)
by L, k = 1,2, respectively. Suppose p, and p, are two
distinct elements which are not contained in L, and 3-
Lie algebras (B,[,,];) and (C,[,,],) are one-dimensional
extensions of Lie algebras L, and L,, respectively, where
B =1L+ Fp,,C =L + Fp,. Then Der(L,) and Der(L,) are
subalgebras of gI(L).

Definition 16. Let L, = (L,[,];) and L, = (L,[,],) be two
Lie algebras, and p,, p, be two distinct elements which are
not contained in L, and A = L + Fp; + Fp,. Then 3-algebra
(A, [,,]) is called a two-dimensional extension of Lie algebras
L, k=1,2,where[,,]: ANANA — A defined by

ESNAEIESIE
[y, p2] =[x, 5],
[x,y,2] =0, (39)
(1> 2o X] = APy + i Do
Vx,y,z €L, A,u, €F.

If A is a 3-Lie algebra, then A is called a two-dimensional
extension 3-Lie algebra of Lie algebras L, k = 1,2.



Let A = L + W be a two-dimensional extension of Lie
algebras Ly, k = 1,2, where W = Fp, + Fp,. Define linear
mappings D;,D, : L — End(L)and D : L — W by

D, (x) =ad (p,,x),
D, (x) = ad (p,, x),

D (x) = ad (py, p,) (%),
Vx €L,

(40)

that is, for all y € L, Di(x)(y) = [pp,x%y] = [x ¥,
Dy(x)(y) = [Py x, y] = [x, y],, D(x) = [py, py> x]. We have
the following result.

Theorem 17. Let 3-algebra A be a two-dimensional extension
of Lie algebras L, and L,. Then A is a 3-Lie algebra if and only
if linear mappings D,, D,, and D satisfy that D, : L, —
Der(L,), D, : L, — Der(L,) are Lie homomorphisms, and

D, (x3) ([x1,%,],) = [Dy (3%5) (x1)» %, ],
+ [x1, Dy (x3) (%)), (41)
= Ay, [ 3] =y, [x %],

D, (x3) ([x1,%,],) = [D5 (x3) (x1) x5 ]
+ [x1, D, (x35) (%), (42)
+ Ay, (20 %0]) + e, [%155%5]5 5

D([‘xl’xZ]l) = (”x1Ax2 _Axll’txz)Pl’

(43)
D([xl’xZ]z) = (/’lxl/\xz - Axlﬂxz)pZ’
/\[xpxz]] = ”[xpxz]z = ”xlez - Axl‘uxz’
(44)
tu[xl’xzh = /\[xl»xz]z =0,
Dy (x,) (x) = =Dy () (x1)
(45)

for all x,x, €L, k=1,2,
where x1,x,,x3 € L, D(x;) = A, py + . P, i = 1,2,3.

Proof. If A is a two-dimensional extension 3-Lie algebra,
then, by Definition 16, linear mappings D, satisfy that
D (Ly) € Der(Ly),and D, are Lie homomorphisms, k = 1, 2.
Thanks to (39),

D, (x3) ([x1,x2],) = [p2> [P1 %30 1] %]
+ [P %1, [ 1> %3, %,]]
+[[p1> %3 pa] %15 %,
= [Dy (x3) (x1)» x,],
+ [x1, Dy (x3) ()],

- /\x3 [xl’xz]l ~ Uy, [xl’xz]z’

(46)
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for all x,, x,, x5 € L, (41) holds. Similarly, we have (42).
Thanks to (39) and (40),

D([x1,x,],) = ad (py, p,) [x15%,],
= A[xl,xz]lpl + ‘u[xl,thPZ
= (/’lxlez - /\x“”xz)pl’
(47)
D([x1,x,],) = ad (p1> p,) [x1, x,],
= A[xl»xz]zpl + ‘M[xl»xz]zpz
= (”xlez - Axll’txz)PZ’

Equations (43) and (44) hold. Equation (45) follows from (39)
and (40), directly.
Conversely, by (39), Vx,, x5, x5, x € L,

[xl’xz”%] =0,
(1> %1, %,] = Dy (%)) (x,) = [xl’xz]l >

(P2 X1, %,] = Dy (3,) (x,) = [xl’xz]z’

(48)

[P1> P2>x] = D(x) = A(X) py + ph 5

Since Dy (L) < Der(L) and D, are Lie homomorphisms, B =
L + Fp, and C = L + Fp, are 3-Lie algebras, which are one-
dimensional extension 3-Lie algebras of Lie algebras Ly, k =
1,2, respectively.

Next we only need to prove that the multiplication on
A defined by (39) satisfies (1). For all x; € L, 1 < i <
5, that products [[x},x,, %3], %y, X5], [[pj,xz,x3], X4 X5,
[[x1, %5, x3], x4, p;] and [[x}, x5, p;l, x4, p;] satisty (1), j =
1,2 follow from that B and C are one-dimensional extension
3-Lie algebras of L and (39), directly.

From (41) and (42), it follows that products
[[pi,xl,xz],pj, X3, 1 < i # < 2, satisty (1). It
follows from (43)-(45) that products [p;, p,, [P X1, %5115
[x1, %5, [ P> P2> X51), and [ p;, xq, [py> oy X515 1 = 1,2, satisty
(1). We omit the computation process. O

Theorem 18. Let (A, [,,]) be a 3-Lie algebra. Then A is a two-
dimensional extension 3-Lie algebra of Lie algebras if and only
ifthere is an involutive derivation T on A such that dim A, = 2
ordimA_, =2.

Proof. If A is a two-dimensional extension 3-Lie algebra of
Lie algebras. Then by Theorem 15, there are Lie algebras L, =
(L,[,])) and L, = (L,[,],), such that A = L + W and the
multiplication of A is defined by (39), where W = Fp, + Fp,.

Define the endomorphism T of A by T'(x) = x,T(p;) =
-pT(py) = —pyor T(x) = —x,T(p) = p,.T(p,) =
P, Vx € L. Then T? = Id, and A =LA =W,orA_ =1,
A, = W. Thanks to (38) and (41)-(45), T is a derivation of A.

Conversely, if there is an involutive derivation T on the
3-Lie algebra A such that dimA_; = 2 (or dimA, = 2).
By Theorem 4, [A|,A,A;] = 0, [A,A,A_]] € A,
[A,A,A ] C A . LetL =A and A | = Fp; + Fp,.
Then [L,L,p,] < L,[L,L,p,] < L, and (L,[,];) and
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(L, [, ],) are Lie algebras, where [x, ¥], = [x, v, p;], [x, y], =
[x, ¥, p»], Vx, y € L. Thanks to Theorem 17, the 3-Lie algebra
Aisatwo-dimensional extension 3-Lie algebra of Lie algebras
L,and L,. g
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