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We study the structure of 𝑛-Lie algebras with involutive derivations for 𝑛 ≥ 2. We obtain that a 3-Lie algebra𝐴 is a two-dimensional
extension of Lie algebras if and only if there is an involutive derivation 𝐷 on 𝐴 = 𝐴1 c 𝐴−1 such that dim𝐴1 = 2 or dim𝐴−1 =2, where 𝐴1 and 𝐴−1 are subspaces of 𝐴 with eigenvalues 1 and −1, respectively. We show that there does not exist involutive
derivations on nonabelian 𝑛-Lie algebras with 𝑛 = 2𝑠 for 𝑠 ≥ 1. We also prove that if 𝐴 is a (2𝑠 + 2)-dimensional (2𝑠 + 1)-Lie algebra
with dim𝐴1 = 𝑟, then there are involutive derivations on 𝐴 if and only if 𝑟 is even, or 𝑟 satisfies 1 ≤ 𝑟 ≤ 𝑠 + 2. We discuss also the
existence of involutive derivations on (2𝑠 + 3)-dimensional (2𝑠 + 1)-Lie algebras.

1. Introduction

Derivation is an important tool in studying the structure of
n-Lie algebras [1]. The derivation algebra 𝐷𝑒𝑟(𝐴) of an 𝑛-Lie
algebra 𝐴 over the field of real numbers is the Lie algebra
of the automorphism group 𝐴𝑢𝑡(𝐴), which is a Lie group if
dim𝐴 < ∞ [2]. Any 𝑛-Lie algebra-module (𝑉, 𝜌) is a module
of the inner derivation algebra 𝑎𝑑(𝐴), which is a linear Lie
algebra [3]. Also, derivations have close relationship with
extensions of 𝑛-Lie algebras.

The concept of 3-Lie classical Yang-Baxter equations is
introduced in [4]. It is known that if there is an involutive
derivation 𝐷 on 𝐴, then (𝐴, {, , }𝐷) is a 3-pre-Lie algebra,
where {𝑥, 𝑦, 𝑧}𝐷 = 𝐷(𝑎𝑑(𝑥, 𝑦)𝐷(𝑧)), ∀𝑥, 𝑦, 𝑧 ∈ 𝐴, and the 3-
Lie algebra 𝐴 is a subadjacent 3-Lie algebra of (𝐴, {, , }𝐷), and𝑟 = ∑𝑖 𝑒∗𝑖 ⊗𝐷(𝑒𝑖) −𝐷(𝑒𝑖) ⊗ 𝑒∗𝑖 is a skew-symmetric solution of
the 3-Lie classical Yang-Baxter equation in the 3-Lie algebra𝐴⋉𝑎𝑑∗𝐴∗, where {𝑒1, ⋅ ⋅ ⋅ , 𝑒𝑚} is a basis of 𝐴 and {𝑒∗1 , ⋅ ⋅ ⋅ , 𝑒∗𝑚}
is the dual basis of 𝐴∗.

Due to this importance of involutive derivations on 3-
Lie algebras, we investigate in this paper the existence of
involutive derivations on finite dimensional n-Lie algebras.
More specifically, in Section 2, we discuss the properties of
involutive derivations on n-Lie algebras. In Section 3, we

study the existence of involutive derivations on (2𝑠 + 2)-
dimensional (2𝑠 + 1)-Lie algebras. In Section 4, we consider
the existence of involutive derivations on (2𝑠+3)-dimensional(2𝑠 + 1)-Lie algebras. In Section 5, we investigate a class
of 3-Lie algebras with involutive derivations which are two-
dimensional extension of Lie algebras.

In the following, we assume that all algebras are over an
algebraically closed field F with characteristic zero, 𝐼𝑑 is the
identity mapping, and Z is the set of integers. For 𝜆 ∈ F and
an F-linear mapping 𝐷 on a vector space 𝐴, 𝐴𝜆 denotes the
subspace {𝑥 ∈ 𝐴 | 𝐷(𝑥) = 𝜆𝑥}.
2. 𝑛-Lie Algebras with Involutive Derivations

An 𝑛-Lie algebra [1] is a vector space𝐴 over a field F equipped
with a linear multiplication [, ⋅ ⋅ ⋅ , ] : ∧𝑛𝐴 󳨀→ 𝐴 satisfying,
for all 𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛, 𝑦2, ⋅ ⋅ ⋅ , 𝑦𝑛 ∈ 𝐴,[[𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛] , 𝑦2, ⋅ ⋅ ⋅ , 𝑦𝑛]

= 𝑛∑
𝑖=1

[𝑥1, ⋅ ⋅ ⋅ , [𝑥𝑖, 𝑦2, ⋅ ⋅ ⋅ , 𝑦𝑛] , ⋅ ⋅ ⋅ , 𝑥𝑛] . (1)

Equation (1) is usually called the generalized Jacobi identity,
or Filippov identity.
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The derived algebra of an 𝑛-Lie algebra 𝐴 is a subalgebra
of 𝐴 generated by [𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛] for all 𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛 ∈ 𝐴, and is
denoted by 𝐴1. We use 𝑍(𝐴) to denote the center of 𝐴; that
is, 𝑍(𝐴) = {𝑥 | 𝑥 ∈ 𝐴, [𝑥, 𝐴, ⋅ ⋅ ⋅ , 𝐴] = 0}.

A derivation of 𝐴 is an endomorphism of 𝐴 satisfying

𝐷([𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛]) = 𝑛∑
𝑖=1

[𝑥1, ⋅ ⋅ ⋅ , 𝐷 (𝑥𝑖) , ⋅ ⋅ ⋅ , 𝑥𝑛] ,
∀𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛 ∈ 𝐴. (2)

If a derivation 𝐷 satisfies that 𝐷2 = 𝐼𝑑, then 𝐷 is called
an involutive derivation on 𝐴. Der(𝐴) denotes the derivation
algebra of 𝐴.

For 𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛−1 ∈ 𝐴, map ad(𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛−1): 𝐴 󳨀→ 𝐴,
ad (𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛−1) (𝑥) = [𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛−1, 𝑥] , ∀𝑥 ∈ 𝐴 (3)

is called a leftmultiplication defined by elements 𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛−1.
From (1), left multiplications are derivations.

The following lemma can be easily verified.

Lemma 1. Let 𝑉 be a finite dimensional vector space over F
and 𝐷 be an endomorphism of 𝑉 with 𝐷2 = 𝐼𝑑. Then 𝑉 can
be decomposed into the direct sum of subspaces 𝑉 = 𝑉1 +̇ 𝑉−1,
where 𝑉1 = {V ∈ 𝑉 | 𝐷V = V} and 𝑉−1 = {V ∈ 𝑉 | 𝐷V = −V}.

If 𝐴 is a finite dimensional 𝑛-Lie algebra with an involu-
tive derivation 𝐷, then we have𝐴 = 𝐴1 +̇ 𝐴−1. (4)

Lemma 2. Let 𝐴 be an 𝑛-Lie algebra over F . If 𝐷 ∈ 𝐷𝑒𝑟(𝐴) is
an involutive derivation, then, for all 𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛 ∈ 𝐴,
[𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛] = −2𝑛 − 1∑

𝑖<𝑗

[𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑖−1, 𝐷 (𝑥𝑖) , 𝑥𝑖+1, ⋅ ⋅ ⋅ ,
𝑥𝑗−1, 𝐷 (𝑥𝑗) , 𝑥𝑗+1, ⋅ ⋅ ⋅ , 𝑥𝑛] , (5)

[𝐷 (𝑥1) , ⋅ ⋅ ⋅ , 𝐷 (𝑥𝑛)] = −2𝑛 − 1∑
𝑖<𝑗

[𝐷𝑥1, ⋅ ⋅ ⋅ , 𝐷 (𝑥𝑖−1) , 𝑥𝑖,
𝐷 (𝑥𝑖+1) , ⋅ ⋅ ⋅ , 𝐷 (𝑥𝑗−1) , 𝑥𝑗, 𝐷 (𝑥𝑗+1) , ⋅ ⋅ ⋅ , 𝐷 (𝑥𝑛)] . (6)

Proof. If 𝐷 is an involutive derivation on 𝐴, then, for all𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛 ∈ 𝐴,[𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛] = 𝐷2 ([𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛])
= 𝐷( 𝑛∑

𝑖=1

[𝑥1, ⋅ ⋅ ⋅ , 𝐷 (𝑥𝑖) , ⋅ ⋅ ⋅ , 𝑥𝑛])
= 𝑛 [𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛]+ 2 ∑

1≤𝑖<𝑗≤𝑛

[𝑥1, ⋅ ⋅ ⋅ , 𝐷 (𝑥𝑖) , ⋅ ⋅ ⋅ , 𝐷 (𝑥𝑗) , ⋅ ⋅ ⋅ , 𝑥𝑛] .
(7)

Equation (5) follows. Equation (6) follows from (4) and𝐷2 =𝐼𝑑.

Theorem 3. Let 𝐴 be a finite dimensional 𝑛-Lie algebra with𝑛 = 2𝑠, 𝑠 ≥ 1. Then there is an involutive derivation 𝐷 on 𝐴 if
and only if 𝐴 is abelian.

Proof. If 𝐴 is abelian, then the result is trivial.
Conversely, let 𝐷 be an involutive derivation on 𝐴. By

Lemma 1, 𝐴 = 𝐴1 +̇ 𝐴−1. Then, for any 𝑖 ∈ Z, 1 ≤ 𝑖 ≤ 𝑛,𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛 ∈ 𝐴1, and 𝑦1, ⋅ ⋅ ⋅ , , 𝑦𝑛 ∈ 𝐴−1,𝐷 ([𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑖, 𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑛−𝑖])= 𝑖 [𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑖, 𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑛−𝑖]− (𝑛 − 𝑖) [𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑖, 𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑛−𝑖]= (2𝑖 − 2𝑠) [𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑖, 𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑛−𝑖] ∈ 𝐴2𝑖−2𝑠.𝐷 ([𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛]) = 2𝑠 [𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛] ,𝐷 ([𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑛]) = −2𝑠 [𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑛] .
(8)

Thanks to ±2𝑠 ̸= ±1 and 2𝑖 − 2𝑠 ̸= ±1, 𝐴2𝑖−𝑛 = 𝐴±2𝑠 = 0.
Therefore, 𝐴 is abelian.

Theorem 4. Let 𝐴 be a finite dimensional 𝑛-Lie algebra with𝑛 = 2𝑠+1, 𝑠 ≥ 1, and𝐷 be an involutive derivation on𝐴. Then𝐴1 and 𝐴−1 are abelian subalgebras, and
[𝐴1, ⋅ ⋅ ⋅ , 𝐴1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑖

, 𝐴−1, ⋅ ⋅ ⋅ , 𝐴−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2𝑠+1−𝑖

] = 0,
∀1 ≤ 𝑖 ≤ 2𝑠, 𝑖 ̸= 𝑠, 𝑠 + 1, (9)

[𝐴1, ⋅ ⋅ ⋅ , 𝐴1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑠

, 𝐴−1, ⋅ ⋅ ⋅ , 𝐴−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑠+1

] ⊆ 𝐴−1, (10)

[𝐴1, ⋅ ⋅ ⋅ , 𝐴1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑠+1

, 𝐴−1, ⋅ ⋅ ⋅ , 𝐴−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑠

] ⊆ 𝐴1. (11)

Proof. Since 𝐷 ∈ 𝐷𝑒𝑟𝐴, [𝐴1, ⋅ ⋅ ⋅ , 𝐴1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑖

, 𝐴−1, ⋅ ⋅ ⋅ , 𝐴−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2𝑠+1−𝑖

] ⊆𝐴2𝑖−2𝑠−1, 0 ≤ 𝑖 ≤ 2𝑠 + 1. If [𝐴1, ⋅ ⋅ ⋅ , 𝐴1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑖

, 𝐴−1, ⋅ ⋅ ⋅ , 𝐴−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2𝑠+1−𝑖

] ̸= 0,
then 2𝑖 − 2𝑠 − 1 = ±1, that is, 𝑖 = 𝑠 + 1, or 𝑖 = 𝑠. Therefore,[𝐴1, ⋅ ⋅ ⋅ , 𝐴1] = [𝐴−1, ⋅ ⋅ ⋅ , 𝐴−1] = 0. The result follows.

Theorem5. Let𝐴 be an𝑚-dimensional 𝑛-Lie algebra with 𝑛 =2𝑠 + 1, 𝑠 ≥ 1. Then there is an involutive derivation on𝐴 if and
only if 𝐴 has the decomposition 𝐴 = 𝐵 +̇ 𝐶 (as direct sum of
subspaces), and

[𝐵, ⋅ ⋅ ⋅ , 𝐵⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑖

, 𝐶, ⋅ ⋅ ⋅ , 𝐶⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
2𝑠+1−𝑖

] = 0,
0 ≤ 𝑖 ≤ 2𝑠 + 1, 𝑖 ̸= 𝑠, 𝑠 + 1, (12)

[𝐵, ⋅ ⋅ ⋅ , 𝐵⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑠

, 𝐶, ⋅ ⋅ ⋅ , 𝐶⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑠+1

] ⊆ 𝐶,
[𝐵, ⋅ ⋅ ⋅ , 𝐵⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑠+1

, 𝐶, ⋅ ⋅ ⋅ , 𝐶⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑠

] ⊆ 𝐵. (13)
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Proof. If there is an involutive derivation 𝐷 on 𝐴, then, by
Theorem 4, 𝐵 = 𝐴1 and 𝐶 = 𝐴−1 satisfy (12) and (13).

Conversely, define an endomorphism 𝐷 of 𝐴 by 𝐷(𝑥) =𝑥,𝐷(𝑦) = −𝑦, ∀𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶. Then 𝐷2 = 𝐼𝑑, 𝐵 = 𝐴1 and𝐶 = 𝐴−1. By (12) and (13), 𝐷 is a derivation.

Corollary 6. Let 𝐴 be a (2𝑠 + 1)-dimensional (2𝑠 + 1)-Lie
algebra with the multiplication [𝑒1, ⋅ ⋅ ⋅ , 𝑒2𝑠+1] = 𝑒1, where{𝑒1, ⋅ ⋅ ⋅ , 𝑒2𝑠+1} is a basis of 𝐴. Then the linear mapping 𝐷 :𝐴 󳨀→ 𝐴 defined by 𝐷(𝑒𝑖) = 𝑒𝑖, 1 ≤ 𝑖 ≤ 𝑠 + 1, 𝐷(𝑒𝑗) =−𝑒𝑗, 𝑠 + 2 ≤ 𝑗 ≤ 2𝑠 + 1 is an involutive derivation on𝐴.
Proof. The result follows from a direct computation.

3. Involutive Derivations on(𝑛 + 1)-Dimensional 𝑛-Lie Algebras
with 𝑛 = 2𝑠 + 1

In this section, we study involutive derivations on (𝑛 + 1)-
dimensional 𝑛-Lie algebras over F . FromTheorem 3, we only
need to discuss the case of 𝑛 = 2𝑠 + 1, 𝑠 ≥ 1.
Lemma 7 (see [5]). Let 𝐴 be an (𝑛 + 1)-dimensional non-
abelian 𝑛-Lie algebra over F , 𝑛 ≥ 3. Then up to isomorphisms𝐴 is one and only one of the following possibilities:

(𝑏1) [𝑒2, 𝑒3, ⋅ ⋅ ⋅ , 𝑒𝑛+1] = 𝑒1.(𝑏2) [𝑒1, 𝑒2, ⋅ ⋅ ⋅ , 𝑒𝑛] = 𝑒1.
(𝑐1) {{{[𝑒2, ⋅ ⋅ ⋅ , 𝑒𝑛+1] = 𝑒1,[𝑒1, 𝑒3, ⋅ ⋅ ⋅ , 𝑒𝑛+1] = 𝑒2.

(𝑐2) {{{[𝑒2, ⋅ ⋅ ⋅ , 𝑒𝑛+1] = 𝛼𝑒1 + 𝑒2,[𝑒1, 𝑒3, ⋅ ⋅ ⋅ , 𝑒𝑛+1] = 𝑒2, 𝛼 ∈ F , 𝛼 ̸= 0.
(𝑐3) {{{[𝑒1, 𝑒3, ⋅ ⋅ ⋅ , 𝑒𝑛+1] = 𝑒1,[𝑒2, ⋅ ⋅ ⋅ , 𝑒𝑛+1] = 𝑒2.(𝑑𝑟) [𝑒1, ⋅ ⋅ ⋅ , 𝑒𝑖, ⋅ ⋅ ⋅ , 𝑒𝑛+1] = 𝑒𝑖, 1 ≤ 𝑖 ≤ 𝑟,

(14)

where {𝑒1, ⋅ ⋅ ⋅ , 𝑒𝑛+1} is a basis of𝐴, 3 ≤ 𝑟 ≤ 𝑛+1, and 𝑒𝑖 means
that 𝑒𝑖 is omitted.

Theorem 8. Let 𝐴 be a (2𝑠 + 2)-dimensional (2𝑠 + 1)-Lie
algebra over F and dim𝐴1 = 𝑟. Then there exists an involutive
derivation 𝐷 on 𝐴 if and only if 𝑟 is even, or 0 ≤ 𝑟 ≤ 𝑠+2.
Proof. If dim𝐴1 = 𝑟 ≤ 𝑠 + 2, then, by Lemma 7, and a direct
computation, the linear mapping 𝐷 : 𝐴 󳨀→ 𝐴 defined by𝐷(𝑒𝑖) = 𝑒𝑖, 𝐷(𝑒𝑗) = −𝑒𝑗, 1 ≤ 𝑖 ≤ 𝑠 + 2, 𝑠 + 3 ≤ 𝑗 ≤ 2𝑠 + 2, is an
involutive derivation on 𝐴.

Now we discuss the case dim𝐴1 = 𝑟 ≥ 𝑠 + 3. Let{𝑒1, ⋅ ⋅ ⋅ , 𝑒2𝑠+2} be a basis of 𝐴 and the multiplication in the
basis be as follows:

𝑒𝑖 = (−1)2𝑠+2+𝑖 [𝑒1, ⋅ ⋅ ⋅ , 𝑒𝑖, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 2𝑠+2∑
𝑙=1

𝛽𝑖𝑙𝑒𝑙,
𝛽𝑖𝑙 ∈ 𝐹, 1 ≤ 𝑖 ≤ 2𝑠 + 2, (15)

where 𝛽𝑖𝑙 ∈ F , 1 ≤ 𝑖, 𝑙 ≤ 2𝑠 + 2. Thanks toTheorem 3 in [1], 𝐴
is a 3-Lie algebra if and only if the (2𝑠 + 2) × (2𝑠 + 2)-matrix𝐵 = (𝛽𝑖𝑙) is symmetric.

If 𝑟 = 2𝑡 > 3, 2 ≤ 𝑡 ≤ 𝑠 + 1, then define the multiplication
on 𝐴 by

[𝑒1, ⋅ ⋅ ⋅ , 𝑒𝑖, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = (−1)𝑖 𝑒2𝑠+3−𝑖,1 ≤ 𝑖 ≤ 𝑡, 3 − 𝑡 < 𝑖 − 2𝑠 ≤ 2,
[𝑒1, ⋅ ⋅ ⋅ , 𝑒𝑗, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 0, 𝑡 < 𝑗 ≤ 2𝑠 + 3 − 𝑡,

(16)

that is, 𝛽𝑖,2𝑠+3−𝑖 = 𝛽2𝑠+3−𝑖,𝑖 = 1 for 1 ≤ 𝑖 ≤ 𝑡, or 2𝑠 + 3 − 𝑡 <𝑖 ≤ 2𝑠 + 2, and others are zero. Then, 𝐵 = (𝛽𝑖𝑙) is symmetric.
Therefore, 𝐴 is a (2𝑠 + 1)-Lie algebra with the multiplication
(16).

Define an endomorphism𝐷 of𝐴 by𝐷𝑒𝑖 = 𝑒𝑖, 1 ≤ 𝑖 ≤ 𝑠+1,
and 𝐷𝑒𝑗 = −𝑒𝑗 for 𝑠 + 2 ≤ 𝑗 ≤ 2𝑠 + 2.Then 𝐷 is an involutive
derivation on 𝐴.

For the case dim𝐴1 = 𝑟 = 2𝑡 + 1 ≥ 𝑠 + 3. Suppose 𝑙 =
dim𝐴1, 𝑙󸀠 = dim𝐴−1.

If there is an involutive derivation 𝐷 on 𝐴, then, by
Theorem 4, 𝑙 + 𝑙󸀠 = 2𝑠 + 2, 𝑠 ≤ 𝑙 ≤ 𝑠 + 2 and 𝑠 ≤ 𝑙󸀠 ≤ 𝑠 + 2.
Since dim𝐴1 = 𝑟 = 2𝑡 + 1 ≥ 𝑠 + 3, 𝐴1 ∩ 𝐴1 ̸= 0 and𝐴1 ∩𝐴−1 ̸= 0.Therefore, dim𝐴1 = dim𝐴−1 = 𝑠+ 1. Without
loss of generality, we can suppose {𝑒1, ⋅ ⋅ ⋅ , 𝑒𝑠+1} ⊆ 𝐴1, and{𝑒𝑠+2, ⋅ ⋅ ⋅ , 𝑥2𝑠+2} ⊆ 𝐴−1. By (10) and (11), the (2𝑠+2)×(2𝑠+2)-
matrix 𝐵 = (𝛽𝑖𝑙) defined by (15) is nonsymmetric, which is a
contradiction. Therefore, if dim𝐴1 = 𝑟 = 2𝑡 + 1 ≥ 𝑠 + 3, then
there do not exist involutive derivations on 𝐴.

By Theorem 8, if 𝐴 is a 10-dimensional 9-Lie algebra
with dim𝐴1 = 7, or 9, then there does not exist involutive
derivation on 𝐴. If 1 ≤ dim𝐴1 = 𝑟 ≤ 10 and 𝑟 ̸= 7, 9, then
there are involutive derivations on 𝐴.
4. Involutive Derivations on(𝑛 + 2)-Dimensional 𝑛-Lie Algebras
with 𝑛 = 2𝑠 + 1

By Theorem 3, we only need to discuss the case where 𝑛 is
odd. So we suppose that 𝐴 is a (2𝑠 + 3)-dimensional (2𝑠 + 1)-
Lie algebra over F , 𝑠 ≥ 1, and that 𝐸𝑡 = Diag(1, ⋅ ⋅ ⋅ 1) is the(𝑡 × 𝑡)-unit matrix.

Lemma9 (see [6]). Let𝐴 be a (2𝑠+3)-dimensional (2𝑠+1)-Lie
algebra over F with a basis {𝑒1, ⋅ ⋅ ⋅ , 𝑒2𝑠+3}.Then𝐴 is isomorphic
to one and only one of the following possibilities:



4 International Journal of Mathematics and Mathematical Sciences

(𝑎) 𝐴 𝑖𝑠 𝑎𝑛 𝑎𝑏𝑒𝑙𝑖𝑎𝑛.
(𝑏) dim𝐴1 = 1:

(𝑏1) [𝑒2, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝑒1;(𝑏2) [𝑒1, ⋅ ⋅ ⋅ , 𝑒2𝑠+1] = 𝑒1.(𝑐) dim𝐴1 = 2:
(𝑐1) {{{[𝑒2, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝑒1,[𝑒3, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒2;

(𝑐2) {{{{{{{{{
[𝑒2, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝑒1,[𝑒2, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒2,[𝑒1, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒1;

(𝑐3)
{{{{{{{{{{{{{{{

[𝑒2, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝛼𝑒1 + 𝑒2,[𝑒1, 𝑒3, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝑒2,[𝑒2, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒2,[𝑒1, 𝑒4 ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒1;
(𝑐4)

{{{{{{{{{{{{{{{

[𝑒2, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝑒1,[𝑒2, 𝑒3, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝑒2,[𝑒2, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒2,[𝑒1, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒1;
(𝑐5) {{{[𝑒2, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝑒1,[𝑒1, 𝑒3, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝑒2;

(𝑐6) {{{[𝑒2, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝛼𝑒1 + 𝑒2,[𝑒1, 𝑒3, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝑒2; 𝛼 ∈ F , 𝛼 ̸= 0.
(𝑐7){{{[𝑒1, 𝑒3, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝑒1,[𝑒2, 𝑒3, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝑒2;(𝑑) dim𝐴1 = 3:
(𝑑1) {{{{{{{{{

[𝑒2, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝑒1,[𝑒2, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒2,[𝑒3, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒3;
(𝑑2)

{{{{{{{{{{{{{{{

[𝑒2, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝑒1,[𝑒3, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒3 + 𝛼𝑒2,[𝑒2, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒3,[𝑒1, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒1;

(𝑑3)
{{{{{{{{{{{{{{{

[𝑒2, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝑒1,[𝑒3, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒3,[𝑒2, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒2,[𝑒1, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 2𝑒1;
(𝑑4) {{{{{{{{{

[𝑒2, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝑒1,[𝑒1, 𝑒3, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝑒2,[𝑒1, 𝑒2, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝑒3;
(𝑑5) {{{{{{{{{

[𝑒1, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒1,[𝑒2, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒3,[𝑒3, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝛽𝑒2 + (1 + 𝛽) 𝑒3,;
(𝑑6) {{{{{{{{{

[𝑒1, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒1,[𝑒2, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒2,[𝑒3, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒3;
(𝑑7) {{{{{{{{{

[𝑒1, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒2,[𝑒2, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒3,[𝑒3, 𝑒4, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑠𝑒1 + 𝑡𝑒2 + 𝑢𝑒3,𝛽, 𝑠, 𝑡, 𝑢 ∈ F , 𝛽 ̸= 0, 1, 𝑠 ̸= 0.
(17)

And n-Lie algebras corresponding to the case (𝑑7) with coef-
ficients 𝑠, 𝑡, 𝑢 and 𝑠󸀠, 𝑡󸀠, 𝑢󸀠 are isomorphic if and only if there
exists a nonzero element 𝜆 ∈ F such that 𝑠 = 𝜆3𝑠󸀠, 𝑡 = 𝜆2𝑡󸀠,𝑢 = 𝜆𝑢󸀠, 𝑠, 𝑠󸀠, 𝑡, 𝑡󸀠, 𝑢, 𝑢󸀠 ∈ F .(𝑟) dim𝐴1 = 𝑟,4 ≤ 𝑟 < 2𝑠 + 3, 𝑓𝑜𝑟 2 ≤ 𝑗 ≤ 𝑟, 1 ≤ 𝑖 ≤ 𝑟,

(𝑟1) {{{
[𝑒2, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝑒1,[𝑒2, ⋅ ⋅ ⋅ , 𝑒𝑗, ⋅ ⋅ ⋅ , 𝑒2𝑠+3] = 𝑒𝑗;

(𝑟2) [𝑒1, ⋅ ⋅ ⋅ , 𝑒𝑖, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 𝑒𝑖.
(18)

Theorem 10. If𝐴 is a (2𝑠+3)-dimensional (2𝑠+1)-Lie algebra
over F with dim𝐴1 = 𝑟 < 𝑠 + 3, then there are involutive
derivations on 𝐴.
Proof. Define linear mappings 𝐷𝑗 : 𝐴 󳨀→ 𝐴, 1 ≤ 𝑗 ≤ 6 by

𝐷1 (𝑒𝑖) = {{{𝑒𝑖, 1 ≤ 𝑖 ≤ 𝑠 + 2, or 𝑖 = 2𝑠 + 3,−𝑒𝑖, otherwise;
𝐷2 (𝑒𝑖) = {{{𝑒𝑖, 1 ≤ 𝑖 ≤ 𝑠 + 2,−𝑒𝑖, otherwise;
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𝐷3 (𝑒𝑖) = {{{
−𝑒𝑖, 𝑠 + 2 ≤ 𝑖 ≤ 2𝑠 + 1,𝑒𝑖, otherwise;

𝐷4 (𝑒𝑖) = {{{
𝑒𝑖, 1 ≤ 𝑖 ≤ 𝑠 + 1, or 𝑖 = 2𝑠 + 2,−𝑒𝑖, otherwise;

𝐷5 (𝑒𝑖) = {{{
𝑒𝑖, 1 ≤ 𝑖 ≤ 𝑠 + 1, or 𝑖 = 2𝑠 + 3,−𝑒𝑖, otherwise;

𝐷6 (𝑒𝑖) = {{{
𝑒𝑖, 1 ≤ 𝑖 ≤ 𝑠 + 3,−𝑒𝑖, otherwise.

(19)

Since dim𝐴1 = 𝑟 ≤ 𝑠 + 2, it is easy to verify that 𝐷1 is
an involutive derivation on the 3-Lie algebras of the cases of(𝑏1), (𝑐𝑖), (𝑑𝑗), and (𝑟𝑘), where 1 ≤ 𝑖 ≤ 7, 1 ≤ 𝑗 ≤ 4 and1 ≤ 𝑘 ≤ 2. 𝐷2 is an involutive derivation on the 3-Lie algebras
of the cases of (𝑏1), (𝑑4), and (𝑐𝑖), where 5 ≤ 𝑖 ≤ 7. 𝐷3, 𝐷4,
and 𝐷5 are involutive derivations on the 3-Lie algebras of the
case of (𝑏2). And 𝐷6 is an involutive derivation on the 3-
Lie algebras of the cases of (𝑑5), (𝑑6), and (𝑑7). Also 𝐷𝑖 are
involutive derivations on abelian algebras for 1 ≤ 𝑖 ≤ 6.

Next, we discuss the case of dim𝐴1 = 𝑟 ≥ 𝑠 + 3. Let 𝐷 be
an endomorphism of 𝐴,

𝐷𝑒𝑖 = 2𝑠+3∑
𝑗=1

𝑏𝑖𝑗𝑒𝑗, 𝑏𝑖𝑗 ∈ F , 1 ≤ 𝑖 ≤ 2𝑠 + 3, (20)

and 𝐵 = (𝑏𝑖𝑗) be the (2𝑠 + 3) × (2𝑠 + 3)-matrix. Then

𝐷(𝑒1, ⋅ ⋅ ⋅ , 𝑒2𝑠+3)𝑇 = 𝐵 (𝑒1, ⋅ ⋅ ⋅ , 𝑒2𝑠+3)𝑇
= (𝐵1 𝐵0𝐵2 𝐵3) (𝑒1, ⋅ ⋅ ⋅ , 𝑒2𝑠+3)𝑇 , (21)

where ( 𝐵1 𝐵0𝐵2 𝐵3 ) is the block matrix of 𝐵. First we discuss(2𝑠 + 3)-dimensional (2𝑠 + 1)-Lie algebras of the case (𝑟1) in
Lemma 9.

Lemma 11. If 𝐴 is a (2𝑠 + 3)-dimensional (2𝑠 + 1)-Lie algebra
of the case (𝑟1) with dim𝐴1 = 𝑟 ≥ 𝑠 + 3, 𝑠 ≥ 1.Then the linear
mapping 𝐷 is an involutive derivation on 𝐴 if and only if the
block matrix 𝐵 = ( 𝐵1 𝐵0𝐵2 𝐵3 ) satisfies that 𝐵0 = 𝑂𝑟×(2𝑠+3−𝑟) (which
is the zero (𝑟 × (2𝑠 + 3 − 𝑟))-matrix), and𝐵21 = 𝐸𝑟,𝐵23 = 𝐸2𝑠+3−𝑟,𝐵2𝐵1 + 𝐵3𝐵2 = 0,

(22)

2𝑠+2∑
𝑗=2

𝑏𝑗𝑗 = 𝑏11,
2𝑠+3∑
𝑗=2,𝑗 ̸=𝑖

𝑏𝑗𝑗 = 𝑏𝑖𝑖, 2 ≤ 𝑖 ≤ 𝑟,
𝑏2𝑠+3,𝑖 = (−1)𝑖+1 𝑏𝑖,1, 2 ≤ 𝑖 ≤ 𝑟,𝑏𝑗,𝑖 = (−1)𝑗−𝑖−1 𝑏𝑖𝑗, 2 ≤ 𝑖, 𝑗 ≤ 𝑟, 𝑖 ̸= 𝑗.

(23)

Proof. By (2), and a direct computation, 𝐷 is a derivation of𝐴 if and only if matrix 𝐵 has the property:

2𝑠+2∑
𝑗=2

𝑏𝑗𝑗 = 𝑏11,
2𝑠+3∑
𝑗=2,𝑗 ̸=𝑖

𝑏𝑗𝑗 = 𝑏𝑖𝑖, 2 ≤ 𝑖 ≤ 𝑟,
𝑏1𝑙 = 0, 2 ≤ 𝑙 ≤ 2𝑠 + 3,𝑏2𝑠+3,𝑖 = (−1)𝑖+1 𝑏𝑖,1, 𝑏𝑖𝑙 = 0, 2 ≤ 𝑖 ≤ 𝑟, 𝑙 ≥ 𝑟 + 1,𝑏𝑗,𝑖 = (−1)𝑗−𝑖−1 𝑏𝑖𝑗, 2 ≤ 𝑖, 𝑗 ≤ 𝑟, 𝑖 ̸= 𝑗.

(24)

Therefore, matrix 𝐵 satisfies (23) and 𝐵0 = 𝑂𝑟×(2𝑠+3−𝑟). And𝐷2 = 𝐼𝑑 if and only if

𝐵2 = ( 𝐵21 𝐵1𝐵0 + 𝐵0𝐵3𝐵2𝐵1 + 𝐵3𝐵2 𝐵2𝐵0 + 𝐵23 )
= (𝐸𝑟 𝑂𝑂 𝐸2𝑠+3−𝑟) . (25)

Thanks to 𝐵0 = 𝑂𝑟×(2𝑠+3−𝑟), (22) holds.
Theorem 12. Let 𝐴 be a (2𝑠 + 3)-dimensional (2𝑠 + 1)-Lie
algebra of the case (𝑟1) with dim𝐴1 = 𝑟 ≥ 𝑠 + 3, 𝑠 ≥ 1. If 𝑟
is odd, then there are involutive derivations on 𝐴.
Proof. Let 𝑟 = 2𝑡 + 1 ≥ 𝑠 + 3. Then 𝑡 ≥ 2 and 𝑟 ≥ 5. Suppose𝐷 is an endomorphism of𝐴 and the matrix of𝐷with respect
to the basis {𝑒1, ⋅ ⋅ ⋅ 𝑒2𝑠+3} is 𝐵 = (𝑏𝑖𝑗) = ( 𝐵1 𝐵0𝐵2 𝐵3 ) which satisfies
(22) and (23), and 𝐵0 = 𝑂𝑟×(2𝑠+3−𝑟). Then

𝐵1

= ((((((
(

𝑏11 0 0 ⋅ ⋅ ⋅ 0 0𝑏21 𝑏22 𝑏23 ⋅ ⋅ ⋅ 𝑏2,𝑟−1 𝑏2,𝑟𝑏31 𝑏23 𝑏33 ⋅ ⋅ ⋅ 𝑏3,𝑟−1 𝑏3,𝑟... ... ... d
...𝑏𝑟−1,1 (−1)𝑟 𝑏2,𝑟−1 (−1)𝑟−1 𝑏3,𝑟−1 ⋅ ⋅ ⋅ 𝑏𝑟−1,𝑟−1 𝑏𝑟−1,𝑟𝑏𝑟,1 (−1)𝑟+1 𝑏2,𝑟 (−1)𝑟 𝑏3,𝑟 ⋅ ⋅ ⋅ 𝑏𝑟−1,𝑟 𝑏𝑟,𝑟

))))))
)

,
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𝐵2 = (
(

𝑏𝑟+1,1 𝑏𝑟+1,2 𝑏𝑟+1,3 ⋅ ⋅ ⋅ 𝑏𝑟+1,𝑟... ... ... d
...𝑏2𝑠+2,1 𝑏2𝑠+2,2 𝑏2𝑠+2,3 ⋅ ⋅ ⋅ 𝑏2𝑠+2,𝑟𝑏2𝑠+3,1 −𝑏2,1 𝑏3,1 ⋅ ⋅ ⋅ (−1)𝑟+1 𝑏𝑟,1

)
)

.
(26)

Since ∑2𝑠+2𝑗=2 𝑏𝑗𝑗 = 𝑏11, ∑2𝑠+3𝑗=2,𝑗 ̸=𝑖 𝑏𝑗𝑗 = 𝑏𝑖𝑖, 2 ≤ 𝑖 ≤ 𝑟, we have−𝑏11 + 2𝑏22 − 𝑏2𝑠+3,2𝑠+3 = 0, (𝑟 − 3)𝑏22 + ∑𝑟+12𝑠+3 𝑏𝑖𝑖 = 0, 𝑏22 =𝑏𝑖𝑖, 3 ≤ 𝑖 ≤ 𝑟. Therefore,

𝑏11 = −1𝑟 − 3 ((𝑟 − 1) 𝑘1 + 22𝑠+3−𝑟∑
𝑗=2

𝑘𝑗) ,
𝑏𝑖𝑖 = −1𝑟 − 3 2𝑠+3−𝑟∑

𝑗=1

𝑘𝑗, 2 ≤ 𝑖 ≤ 𝑟,
𝑏𝑗𝑗 = 𝑘2𝑠+3−𝑗+1, 𝑟 + 1 ≤ 𝑗 ≤ 2𝑠 + 3, 𝑘2𝑠+3−𝑗+1 ∈ F .

(27)

Suppose

𝐵21 =
(((((((((((
(

𝑐11 𝑐12 ⋅ ⋅ ⋅ 𝑐1𝑖 ⋅ ⋅ ⋅ 𝑐1𝑗 ⋅ ⋅ ⋅ 𝑐1𝑟... ... d
... d

... d
...𝑐𝑖1 𝑐𝑖2 ⋅ ⋅ ⋅ 𝑐𝑖𝑖 ⋅ ⋅ ⋅ 𝑐𝑖𝑗 ⋅ ⋅ ⋅ 𝑐𝑖𝑟... ... d

... d
... d

...𝑐𝑗1 𝑐𝑗2 ⋅ ⋅ ⋅ 𝑐𝑗𝑖 ⋅ ⋅ ⋅ 𝑐𝑗𝑗 ⋅ ⋅ ⋅ 𝑐𝑗𝑟... ... d
... d

... d
...𝑐𝑟1 𝑐𝑟2 ⋅ ⋅ ⋅ 𝑐𝑟𝑖 ⋅ ⋅ ⋅ 𝑐𝑟𝑗 ⋅ ⋅ ⋅ 𝑐𝑟𝑟

)))))))))))
)

. (28)

By (23),

𝑐11 = 𝑏211,𝑐1𝑙 = 0, 2 ≤ 𝑙 ≤ 𝑟,
𝑐𝑖𝑖 = 𝑖∑
𝑙=1

(−1)𝑖+𝑙−1 𝑏2𝑙𝑖 + 𝑟∑
𝑙=𝑖+1

(−1)𝑖+𝑙−1 𝑏2𝑖𝑙 , 2 ≤ 𝑖 ≤ 𝑟,
𝑐𝑖𝑗 = 𝑖∑
𝑙=1

(−1)𝑙+𝑖+1 𝑏𝑙𝑖𝑏𝑙𝑗 + 𝑗∑
𝑙=𝑖+1

𝑏𝑖𝑙𝑏𝑙𝑗
+ 𝑟∑
𝑙=𝑗+1

(−1)𝑙+𝑗+1 𝑏𝑖𝑙𝑏𝑗𝑙, 2 ≤ 𝑖 < 𝑗 ≤ 𝑟.
𝑐𝑖𝑗 = 𝑗∑
𝑙=1

(−1)𝑙+𝑖+1 𝑏𝑙𝑗𝑏𝑙𝑖 + 𝑖∑
𝑙=𝑗+1

(−1)𝑖+𝑗 𝑏𝑗𝑙𝑏𝑙𝑖
+ 𝑟∑
𝑙=𝑖+1

(−1)𝑙+𝑗+1 𝑏𝑗𝑙𝑏𝑖𝑙, 1 ≤ 𝑗 < 𝑖 ≤ 𝑟.

(29)

Therefore, the endomorphisms 𝐷 of 𝐴, which are defined by𝐷𝑒1 = 𝑒1
or 𝐷𝑒1 = −𝑒1,

𝐷𝑒2 = 𝑟∑
𝑘=3

𝑒𝑘,
𝐷𝑒𝑖 = (−1)𝑖−1 𝑒2 + 𝑖−1∑

𝑘=3

(−1)𝑖 𝑒𝑘 + (−1)𝑖−1 𝑟∑
𝑘=𝑖+1

𝑒𝑘,
3 ≤ 𝑖 ≤ 𝑟,𝐷𝑒𝑗 = (−1)𝑗 𝑒𝑗, 𝑟 + 1 ≤ 𝑗 ≤ 2𝑠 + 3,𝐷𝑒1 = 𝑒1

or 𝐷𝑒1 = −𝑒1,
𝐷𝑒2 = 𝑟∑

𝑘=3

𝑒𝑘,
𝐷𝑒𝑖 = (−1)𝑖−1 𝑒2 + 𝑖−1∑

𝑘=3

(−1)𝑖 𝑒𝑘 + (−1)𝑖−1 𝑟∑
𝑘=𝑖+1

𝑒𝑘,
3 ≤ 𝑖 ≤ 𝑟,𝐷𝑒𝑗 = (−1)𝑗−1 𝑒𝑗, 𝑟 + 1 ≤ 𝑗 ≤ 2𝑠 + 3,

(30)

are involutive derivations on 𝐴.
Theorem 13. Let 𝐴 be a (2𝑠 + 3)-dimensional (2𝑠 + 1)-Lie
algebra of the case (𝑟1) with dim𝐴1 = 𝑟 = 2𝑠 + 2 (𝑠 ≥ 1),
then there does not exist an involutive derivation on 𝐴.
Proof. If 𝐷 is an involutive derivation on 𝐴, then, by
Lemma 11 and (23),

𝑏11 = − (2𝑠 + 1) 𝑘12𝑠 − 1 ,
𝑏2𝑠+3,2𝑠+3 = 𝑘1,𝑏𝑖𝑖 = −𝑘12𝑠 − 1 ,

2 ≤ 𝑖 ≤ 𝑟, 𝑘1 ∈ F .
(31)

Thanks to (22), 𝑏22𝑠+3,2𝑠+3 = 𝑏211 = 𝑘21 = 1. Therefore,(−(2𝑠 + 1)𝑘1/(2𝑠 − 1))2 = ((2𝑠 + 1)/(2𝑠 − 1))2 = 1, which
is a contradiction.

Now we discuss case (𝑟2).
Theorem 14. Let 𝐴 be a (2𝑠 + 3)-dimensional (2𝑠 + 1)-Lie
algebra of the case (𝑟2) with dim𝐴1 = 𝑟 ≥ 𝑠 + 3. Then there
exist involutive derivations on 𝐴 if and only if 𝑟 is even.
Proof. By Lemma 7, 𝐴 = 𝐴1 +̇ F𝑒2𝑠+3, where 𝑒2s+3 ∈ 𝑍(𝐴),
and 𝐴1 is a (2𝑠 + 2)-dimensional (2𝑠 + 1)-Lie subalgebra
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of 𝐴 with dim𝐴1 = dim𝐴11 = 𝑟. Then there exist
involutive derivations on𝐴 if and only if there exist involutive
derivations on 𝐴1.

By Theorem 3 in [1], there is a basis {𝑒1, ⋅ ⋅ ⋅ , 𝑒2𝑠+2} of 𝐴1
such that[𝑒1, ⋅ ⋅ ⋅ , 𝑒𝑗, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = 0, 𝑡 < 𝑗 ≤ 2𝑠 + 3 − 𝑡,[𝑒1, ⋅ ⋅ ⋅ , 𝑒𝑖, ⋅ ⋅ ⋅ , 𝑒2𝑠+2] = (−1)𝑖 𝑒2𝑠+3−𝑖,1 ≤ 𝑖 ≤ 𝑡, or 2𝑠 + 3 − 𝑡 < 𝑖 ≤ 2𝑠 + 2. (32)

If 𝑟 is even, then 𝑟 = 2𝑡 ≥ 4. By Theorem 8 and (32),
endomorphism 𝐷1 of 𝐴1 defined by

𝐷1 (𝑒𝑖) = {{{𝑒𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑠 + 1,−𝑒𝑖, 𝑖 = 𝑠 + 2, ⋅ ⋅ ⋅ , 2𝑠 + 2 (33)

is an involutive derivation on 𝐴1. Therefore, the endomor-
phism 𝐷 of 𝐴 defined by𝐷 (𝑒𝑖) = 𝑒𝑖, 1 ≤ 𝑖 ≤ 𝑠 + 1,𝐷 (𝑒𝑗) = −𝑒𝑗, 𝑠 + 2 ≤ 𝑗 ≤ 2𝑠 + 2,𝐷 (𝑒2𝑠+3) = ±𝑒2𝑠+3

(34)

is involutive derivation on 𝐴.
If dim𝐴1 = 𝑟 is odd and endomorphism 𝐷 of 𝐴 is an

involutive derivation on 𝐴, then 𝑟 = 2𝑡 + 1 > 4. Suppose𝐷(𝑒𝑖) = ∑2𝑠+3𝑗=1 𝑎𝑖𝑗𝑒𝑗, 1 ≤ 𝑖 ≤ 2𝑠 + 3. Then[𝐷 (𝑒2𝑠+3) , 𝑒𝑖1 , ⋅ ⋅ ⋅ , 𝑒𝑖2𝑠]= 𝐷 [𝑒2𝑠+3, 𝑒𝑖1 , ⋅ ⋅ ⋅ , 𝑒𝑖2𝑠]
− 2𝑠∑
𝑗=1

[𝑒2𝑠+3, ⋅ ⋅ ⋅ , 𝐷𝑒𝑖𝑗 , ⋅ ⋅ ⋅ , 𝑒𝑖2𝑠] = 0. (35)

We get 𝐷(𝑒2𝑠+3) ∈ 𝑍(𝐴) = F𝑒2𝑠+3. Since 𝐷2 = 𝐼𝑑, 𝐷(𝑒2𝑠+3) =±𝑒2𝑠+3. By (32), 𝐴1 = F𝑒1 + ⋅ ⋅ ⋅ + F𝑒𝑡 + F𝑒2𝑠+1 + ⋅ ⋅ ⋅ + F𝑒2𝑠+3−𝑡,
and (−1)𝑖𝐷 (𝑒2𝑠+3−𝑖)

= 2𝑠+2∑
𝑘=1,𝑘≠𝑖

[𝑒1, ⋅ ⋅ ⋅ , 𝑒𝑖, ⋅ ⋅ ⋅ , 𝐷 (𝑒𝑘) , ⋅ ⋅ ⋅ , 𝑒2𝑠+2] , (36)

where 1 ≤ 𝑖 ≤ 𝑡, and 2𝑠 + 3 − 𝑡 < 𝑖 ≤ 2𝑠 + 2. Then 𝑎𝑖,2𝑠+3 = 0,
for 1 ≤ 𝑖 ≤ 𝑡, or 2𝑠 + 3 − 𝑡 < 𝑖 ≤ 2𝑠 + 2, and 𝐷𝐴1 ⊆ 𝐴1. Then
the endomorphism 𝐷2 of 𝐴1 defined by𝐷2 (𝑒𝑖) = 𝐷 (𝑒𝑖) ,1 ≤ 𝑖 ≤ 𝑡, or 2𝑠 + 3 − 𝑡 < 𝑖 ≤ 2𝑠 + 2,

𝐷2 (𝑒𝑗) = 𝐷(𝑒𝑗) − 𝑎𝑗,2𝑠+3𝑒2𝑠+3 = 2𝑠+2∑
𝑗=1

𝑎𝑖𝑗𝑒𝑗,
𝑡 < 𝑗 ≤ 2𝑠 + 3 − 𝑡

(37)

is an involutive derivation on the (2𝑠+2)-dimensional (2𝑠+1)-
Lie algebra 𝐴1, contradiction (Theorem 8). Therefore, there
does not exist involutive derivation on 𝐴.

5. Structure of 3-Lie Algebras with
Involutive Derivations

Let (𝐿, [, ]) be a Lie algebra over F , and 𝑝 be an element which
is not contained in 𝐿. Then 𝐴 = 𝐿 +̇ F𝑝 is a 3-Lie algebra in
the multiplication[𝑥, 𝑦, 𝑧] = 0,[𝑝, 𝑥, 𝑦] = [𝑥, 𝑦] ,

for all 𝑥, 𝑦, 𝑧 ∈ 𝐿. (38)

And the 3-Lie algebra (𝐴, [, , ]) is called one-dimensional
extension of 𝐿.
Theorem 15. Let 𝐴 be a 3-Lie algebra, then 𝐴 is one-
dimensional extension of a Lie algebra if and only if there exists
an involutive derivation 𝐷 on 𝐴 such that dim𝐴1 = 1, or
dim𝐴−1 = 1.
Proof. If 𝐴 is an one-dimensional extension of a Lie algebra𝐿, then 𝐴 = 𝐿 +̇ F𝑝. Define the endomorphism 𝐷 of 𝐴 by𝐷(𝑝) = −𝑝 (or 𝑝), and 𝐷(𝑥) = 𝑥 (or −𝑥), ∀𝑥 ∈ 𝐿. Thanks to
(38),𝐷2 = 𝐼𝑑, and 𝐷([𝑥, 𝑦, 𝑧]) = 0 = [𝐷𝑥, 𝑦, 𝑧] + [𝑥,𝐷𝑦, 𝑧] +[𝑥, 𝑦,𝐷𝑧],𝐷([𝑝, 𝑥, 𝑦]) = [𝑝, 𝑥, 𝑦] = [𝐷𝑝, 𝑥, 𝑦] + [𝑝,𝐷𝑥, 𝑦] +[𝑝, 𝑥, 𝐷𝑦], for all 𝑥, 𝑦, 𝑧 ∈ 𝐿. Therefore, 𝐷 is an involutive
derivation on 𝐴, and dim𝐴−1 = 1 (or dim𝐴1 = 1).

Conversely, let 𝐷 be an involutive derivation on a 3-Lie
algebra 𝐴, and dim𝐴−1 = 1 (or dim𝐴1 = 1). Let 𝐴−1 = F𝑝,
and 𝐴1 = 𝐿 (or 𝐴−1 = 𝐿,𝐴1 = F𝑝), where 𝑝 ∈ 𝐴−𝐿. Thanks
to Theorem 3, 𝐿 is a Lie algebra with the multiplication[𝑥, 𝑦] = [𝑝, 𝑥, 𝑦], for all 𝑥, 𝑦 ∈ 𝐿, and 𝐴 is one-dimensional
extension of 𝐿.

Let (𝐿, [, ]1) and (𝐿, [, ]2) be Lie algebras and {𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑚}
be a basis of 𝐿. For convenience, denote Lie algebras (𝐿, [, ]𝑘)
by 𝐿𝑘, 𝑘 = 1, 2, respectively. Suppose 𝑝1 and 𝑝2 are two
distinct elements which are not contained in 𝐿, and 3-
Lie algebras (𝐵, [, , ]1) and (𝐶, [, , ]2) are one-dimensional
extensions of Lie algebras 𝐿1 and 𝐿2, respectively, where𝐵 = 𝐿 +̇ F𝑝1, 𝐶 = 𝐿 +̇ F𝑝2. Then 𝐷𝑒𝑟(𝐿1) and 𝐷𝑒𝑟(𝐿2) are
subalgebras of 𝑔𝑙(𝐿).
Definition 16. Let 𝐿1 = (𝐿, [, ]1) and 𝐿2 = (𝐿, [, ]2) be two
Lie algebras, and 𝑝1, 𝑝2 be two distinct elements which are
not contained in 𝐿, and 𝐴 = 𝐿 +̇ F𝑝1 +̇ F𝑝2. Then 3-algebra(𝐴, [, , ]) is called a two-dimensional extension of Lie algebras𝐿𝑘, 𝑘 = 1, 2, where [, , ] : 𝐴 ∧ 𝐴 ∧ 𝐴 󳨀→ 𝐴 defined by[𝑥, 𝑦, 𝑝1] = [𝑥, 𝑦]1 ,[𝑥, 𝑦, 𝑝2] = [𝑥, 𝑦]2 ,[𝑥, 𝑦, 𝑧] = 0,[𝑝1, 𝑝2, 𝑥] = 𝜆𝑥𝑝1 + 𝜇𝑥𝑝2, ∀𝑥, 𝑦, 𝑧 ∈ 𝐿, 𝜆𝑥, 𝜇𝑥 ∈ F .

(39)

If 𝐴 is a 3-Lie algebra, then 𝐴 is called a two-dimensional
extension 3-Lie algebra of Lie algebras 𝐿𝑘, 𝑘 = 1, 2.
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Let 𝐴 = 𝐿 +̇ 𝑊 be a two-dimensional extension of Lie
algebras 𝐿𝑘, 𝑘 = 1, 2, where 𝑊 = F𝑝1 +̇ F𝑝2. Define linear
mappings 𝐷1, 𝐷2 : 𝐿 󳨀→ 𝐸𝑛𝑑(𝐿) and 𝐷 : 𝐿 󳨀→ 𝑊 by𝐷1 (𝑥) = 𝑎𝑑 (𝑝1, 𝑥) ,𝐷2 (𝑥) = 𝑎𝑑 (𝑝2, 𝑥) ,𝐷 (𝑥) = 𝑎𝑑 (𝑝1, 𝑝2) (𝑥) ,∀𝑥 ∈ 𝐿,

(40)

that is, for all 𝑦 ∈ 𝐿, 𝐷1(𝑥)(𝑦) = [𝑝1, 𝑥, 𝑦] = [𝑥, 𝑦]1,𝐷2(𝑥)(𝑦) = [𝑝2, 𝑥, 𝑦] = [𝑥, 𝑦]2, 𝐷(𝑥) = [𝑝1, 𝑝2, 𝑥]. We have
the following result.

Theorem 17. Let 3-algebra 𝐴 be a two-dimensional extension
of Lie algebras 𝐿1 and 𝐿2. Then 𝐴 is a 3-Lie algebra if and only
if linear mappings 𝐷1, 𝐷2, and 𝐷 satisfy that 𝐷1 : 𝐿1 󳨀→𝐷𝑒𝑟(𝐿1), 𝐷2 : 𝐿2 󳨀→ 𝐷𝑒𝑟(𝐿2) are Lie homomorphisms, and𝐷1 (𝑥3) ([𝑥1, 𝑥2]2) = [𝐷1 (𝑥3) (𝑥1) , 𝑥2]2+ [𝑥1, 𝐷1 (𝑥3) (𝑥2)]2− 𝜆𝑥3 [𝑥1, 𝑥2]1 − 𝜇𝑥3 [𝑥1, 𝑥2]2 ,

(41)

𝐷2 (𝑥3) ([𝑥1, 𝑥2]1) = [𝐷2 (𝑥3) (𝑥1) , 𝑥2]1+ [𝑥1, 𝐷2 (𝑥3) (𝑥2)]1+ 𝜆𝑥3 [𝑥1, 𝑥2]1 + 𝜇𝑥3 [𝑥1, 𝑥2]2 ,
(42)

𝐷 ([𝑥1, 𝑥2]1) = (𝜇𝑥1𝜆𝑥2 − 𝜆𝑥1𝜇𝑥2) 𝑝1,𝐷 ([𝑥1, 𝑥2]2) = (𝜇𝑥1𝜆𝑥2 − 𝜆𝑥1𝜇𝑥2) 𝑝2, (43)

𝜆[𝑥1,𝑥2]1 = 𝜇[𝑥1,𝑥2]2 = 𝜇𝑥1𝜆𝑥2 − 𝜆𝑥1𝜇𝑥2 ,𝜇[𝑥1,𝑥2]1 = 𝜆[𝑥1,𝑥2]2 = 0, (44)

𝐷𝑘 (𝑥1) (𝑥2) = −𝐷𝑘 (𝑥2) (𝑥1) ,𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥1, 𝑥2 ∈ 𝐿, 𝑘 = 1, 2, (45)

where 𝑥1, 𝑥2, 𝑥3 ∈ 𝐿, 𝐷(𝑥𝑖) = 𝜆𝑥𝑖𝑝1 + 𝜇𝑥𝑖𝑝2, 𝑖 = 1, 2, 3.
Proof. If 𝐴 is a two-dimensional extension 3-Lie algebra,
then, by Definition 16, linear mappings 𝐷𝑘 satisfy that𝐷𝑘(𝐿𝑘) ⊆ 𝐷𝑒𝑟(𝐿𝑘), and𝐷𝑘 are Lie homomorphisms, 𝑘 = 1, 2.
Thanks to (39),𝐷1 (𝑥3) ([𝑥1, 𝑥2]2) = [𝑝2, [𝑝1, 𝑥3, 𝑥1] , 𝑥2]+ [𝑝2, 𝑥1, [𝑝1, 𝑥3, 𝑥2]]+ [[𝑝1, 𝑥3, 𝑝2] , 𝑥1, 𝑥2]= [𝐷1 (𝑥3) (𝑥1) , 𝑥2]2+ [𝑥1, 𝐷1 (𝑥3) (𝑥2)]2− 𝜆𝑥3 [𝑥1, 𝑥2]1 − 𝜇𝑥3 [𝑥1, 𝑥2]2 ,

(46)

for all 𝑥1, 𝑥2, 𝑥3 ∈ 𝐿, (41) holds. Similarly, we have (42).
Thanks to (39) and (40),𝐷([𝑥1, 𝑥2]1) = 𝑎𝑑 (𝑝1, 𝑝2) [𝑥1, 𝑥2]1= 𝜆[𝑥1,𝑥2]1𝑝1 + 𝜇[𝑥1,𝑥2]1𝑝2= (𝜇𝑥1𝜆𝑥2 − 𝜆𝑥1𝜇𝑥2) 𝑝1,𝐷 ([𝑥1, 𝑥2]2) = 𝑎𝑑 (𝑝1, 𝑝2) [𝑥1, 𝑥2]2= 𝜆[𝑥1,𝑥2]2𝑝1 + 𝜇[𝑥1,𝑥2]2𝑝2= (𝜇𝑥1𝜆𝑥2 − 𝜆𝑥1𝜇𝑥2) 𝑝2,

(47)

Equations (43) and (44) hold. Equation (45) follows from (39)
and (40), directly.

Conversely, by (39), ∀𝑥1, 𝑥2, 𝑥3, 𝑥 ∈ 𝐿,[𝑥1, 𝑥2, 𝑥3] = 0,[𝑝1, 𝑥1, 𝑥2] = 𝐷1 (𝑥1) (𝑥2) = [𝑥1, 𝑥2]1 ,[𝑝2, 𝑥1, 𝑥2] = 𝐷2 (𝑥1) (𝑥2) = [𝑥1, 𝑥2]2 ,[𝑝1, 𝑝2, 𝑥] = 𝐷 (𝑥) = 𝜆 (𝑥) 𝑝1 + 𝜇𝑥𝑝2.
(48)

Since𝐷𝑘(𝐿) ⊆ 𝐷𝑒𝑟(𝐿𝑘) and𝐷𝑘 are Lie homomorphisms, 𝐵 =𝐿 +̇ F𝑝1 and 𝐶 = 𝐿 +̇ F𝑝2 are 3-Lie algebras, which are one-
dimensional extension 3-Lie algebras of Lie algebras 𝐿𝑘, 𝑘 =1, 2, respectively.

Next we only need to prove that the multiplication on𝐴 defined by (39) satisfies (1). For all 𝑥𝑖 ∈ 𝐿, 1 ≤ 𝑖 ≤5, that products [[𝑥1, 𝑥2, 𝑥3], 𝑥4, 𝑥5], [[𝑝𝑗, 𝑥2, 𝑥3], 𝑥4, 𝑥5],[[𝑥1, 𝑥2, 𝑥3], 𝑥4, 𝑝𝑗] and [[𝑥1, 𝑥2, 𝑝𝑗], 𝑥4, 𝑝𝑗] satisfy (1), 𝑗 =1, 2 follow from that 𝐵 and 𝐶 are one-dimensional extension3-Lie algebras of 𝐿𝑘 and (39), directly.
From (41) and (42), it follows that products[[𝑝𝑖, 𝑥1, 𝑥2], 𝑝𝑗, 𝑥3], 1 ≤ 𝑖 ̸= 𝑗 ≤ 2, satisfy (1). It

follows from (43)–(45) that products [𝑝1, 𝑝2, [𝑝𝑖, 𝑥1, 𝑥2]],[𝑥1, 𝑥2, [𝑝𝑖, 𝑝2, 𝑥3]], and [𝑝𝑖, 𝑥1, [𝑝1, 𝑝2, 𝑥2], 𝑖 = 1, 2, satisfy
(1). We omit the computation process.

Theorem 18. Let (𝐴, [, , ]) be a 3-Lie algebra. Then 𝐴 is a two-
dimensional extension 3-Lie algebra of Lie algebras if and only
if there is an involutive derivation𝑇 on𝐴 such that dim𝐴1 = 2
or dim𝐴−1 = 2.
Proof. If 𝐴 is a two-dimensional extension 3-Lie algebra of
Lie algebras. Then byTheorem 15, there are Lie algebras 𝐿1 =(𝐿, [, ]1) and 𝐿2 = (𝐿, [, ]2), such that 𝐴 = 𝐿 +̇ 𝑊 and the
multiplication of 𝐴 is defined by (39), where𝑊 = F𝑝1 + F𝑝2.

Define the endomorphism 𝑇 of 𝐴 by 𝑇(𝑥) = 𝑥, 𝑇(𝑝1) =−𝑝1, 𝑇(𝑝2) = −𝑝2, or 𝑇(𝑥) = −𝑥, 𝑇(𝑝1) = 𝑝1, 𝑇(𝑝2) =𝑝2, ∀𝑥 ∈ 𝐿.Then𝑇2 = 𝐼𝑑, and𝐴1 = 𝐿,𝐴−1 = 𝑊, or𝐴−1 = 𝐿,𝐴1 = 𝑊.Thanks to (38) and (41)-(45), 𝑇 is a derivation of 𝐴.
Conversely, if there is an involutive derivation 𝑇 on the3-Lie algebra 𝐴 such that dim𝐴−1 = 2 (or dim𝐴1 = 2).

By Theorem 4, [𝐴1, 𝐴1, 𝐴1] = 0, [𝐴1, 𝐴1, 𝐴−1] ⊆ 𝐴1,[𝐴1, 𝐴−1, 𝐴−1] ⊆ 𝐴−1. Let 𝐿 = 𝐴1 and 𝐴−1 = F𝑝1 +̇ F𝑝2.
Then [𝐿, 𝐿, 𝑝1] ⊆ 𝐿, [𝐿, 𝐿, 𝑝2] ⊆ 𝐿, and (𝐿, [, ]1) and
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(𝐿, [, ]2) are Lie algebras, where [𝑥, 𝑦]1 = [𝑥, 𝑦, 𝑝1], [𝑥, 𝑦]2 =[𝑥, 𝑦, 𝑝2], ∀𝑥, 𝑦 ∈ 𝐿.Thanks toTheorem 17, the 3-Lie algebra𝐴 is a two-dimensional extension 3-Lie algebra of Lie algebras𝐿1 and 𝐿2.
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