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Harmonic functions can be constructed using two analytic functions acting as their analytic and coanalytic parts but the prediction
of the behavior of convolution of harmonic functions, unlike the convolution of analytic functions, proved to be challenging. In
this paper we use the shear construction of harmonic mappings and introduce dilatation conditions that guarantee the convolution
of two harmonic functions to be harmonic and convex in the direction of imaginary axis.

1. Introduction

For 𝑢 and V real harmonic in the open unit disk D fl {𝑧 :|𝑧| < 1}, the continuous complex-valued harmonic function𝑓 = 𝑢 + 𝑖V can be expressed as 𝑓 = ℎ + 𝑔, where ℎ and 𝑔 are
analytic in E. We call ℎ the analytic part and 𝑔 the coanalytic
part of the harmonic function 𝑓 = ℎ + 𝑔. By a result of Lewy
[1] (see [2] or [3]), a necessary and sufficient condition for a
harmonic function 𝑓 = ℎ + 𝑔 to be locally one-to-one and
sense-preserving in D is that its Jacobian 𝐽𝑓 = |ℎ|2 − |𝑔|2
is positive in D or equivalently, if and only if ℎ(𝑧) ̸= 0 in
D and the second complex dilatation 𝜔 of 𝑓 satisfies |𝜔| =|𝑔/ℎ| < 1 inD. A simply connected domainD ⊂ C is said to
be convex in the direction 𝜃, 0 ≤ 𝜃 < 𝜋 if every line parallel to
the line through 0 and 𝑒𝑖𝜃 either missesD, or is contained in
D, or its intersection withD is either a line-segment or a ray.
For the open unit disk D, an analytic or harmonic function𝑓 : D → C is said to be convex in the direction 𝜃 if 𝑓(D)
is convex in the direction 𝜃 there. We note that if a mapping
is convex in every direction, then it is simply called a convex
mapping.

We let SH be the class of locally one-to-one and sense-
preserving complex-valued harmonic univalent functions𝑓 = ℎ + 𝑔 for which 𝑓(0) = 𝑓𝑧(0) = 𝑓𝑧(0) − 1 = 0
and 𝑔(0) = ℎ(0) = ℎ(0) − 1 = 0. We also let 𝑓1 ∗ 𝑓2 =ℎ1∗ℎ2+𝑔1 ∗ 𝑔2 be the convolution of two harmonic functions𝑓1 = ℎ1 + 𝑔1 and 𝑓2 = ℎ2 + 𝑔2, where the operator ∗

stands for the Hadamard product or convolution of two
Taylor power series. Even though the harmonic functions can
be constructed using two analytic functions acting as their
analytic and coanalytic parts, the prediction of the behavior
of convolution of harmonic functions, unlike the convolution
of analytic functions, proved to be challenging. In a striking
result (see the following Lemma 1), Clunie and Sheil-Small
[2] introduced amethod of constructing harmonic mappings
known as the shear construction that produces harmonic
functions with a specific dilatation onto a domain convex in
one direction.

Lemma 1. A harmonic function 𝑓 = ℎ + 𝑔 locally univalent
in D is a univalent mapping of E onto a domain convex in the
direction 𝜃, 0 ≤ 𝜃 < 𝜋 if and only if ℎ − 𝑒2𝑖𝜃𝑔 is a conformal
univalent mapping of D onto a domain convex in the direction𝜃.

As a follow-up to the above Lemma 1, Clunie and Sheil-
Small [2] provided the following example.

Example 2. Since 𝑧/(1 − 𝑧) is convex analytic in D, the
harmonic function ℎ + 𝑔 defined by

ℎ (𝑧) + 𝑔 (𝑧) = 𝑧1 − 𝑧 ,
𝑔 (𝑧) = −𝑧ℎ (𝑧) (1)

is convex in the direction of imaginary axis.
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Along the same line as the above Example 2, Dorff [4]
proved the following result.

Theorem 3. Let 𝑓1 = ℎ1 + 𝑔1 ∈ SH and 𝑓2 = ℎ2 + 𝑔2 ∈ SH

with ℎ1(𝑧) + 𝑔1(𝑧) = ℎ2(𝑧) + 𝑔2(𝑧) = 𝑧/(1 − 𝑧). If 𝑓1 ∗ 𝑓2 is
locally univalent and sense-preserving, then 𝑓1 ∗𝑓2 ∈ SH and
is convex in the direction of real axis.

The second author in his doctoral dissertation [5] proved
the following theorem.

Theorem 4. For −1 < 𝑎 < 1 consider the harmonic function𝑓𝑎 = ℎ𝑎 + 𝑔𝑎 sheared by ℎ𝑎(𝑧) + 𝑔𝑎(𝑧) = 𝑧/(1 − 𝑧) with the
dilatation𝜔𝑎(𝑧) = 𝑔𝑎(𝑧)/ℎ𝑎(𝑧) = (𝑎−𝑧)/(1−𝑎𝑧). If 𝑓 = ℎ+𝑔
is the harmonic right half planemapping given by ℎ(𝑧)+𝑔(𝑧) =𝑧/(1 − 𝑧) with the dilatation 𝜔(𝑧) = 𝑔(𝑧)/ℎ(𝑧0 = 𝑒𝑖𝜃𝑧𝑛; 𝜃 ∈
R, 𝑛 ∈ N, then the convolution 𝑓𝑎 ∗ 𝑓 ∈ SH and is convex in
the horizontal direction for (𝑛 − 2)/(𝑛 + 2) ≤ 𝑎 < 1.

Since then anumber of related articleswere published and
we refer the readers to three recently published articles ([6–
8]) and the citations therein. As an extension to the above
Theorem 4, Liu et al. [7] proved the following theorem.

Theorem 5. Let 𝑓𝑎 = ℎ𝑎 + 𝑔𝑎 be as given in�eorem 4 and let𝑓𝛼 = ℎ𝛼 + 𝑔𝛼 ∈ SH be a convex harmonic mapping so that 𝑓𝛼
maps D onto the symmetric vertical strip domain

Ω𝛼 = {𝜔 : 𝛼 − 𝜋2 sin 𝛼 < R𝜔 < 𝛼2 sin 𝛼; 𝜋2 ≤ 𝛼 < 𝜋} (2)

with the dilatation 𝜔𝑛(𝑧) = 𝑔𝛼(𝑧)/ℎ𝛼(𝑧) = 𝑒𝑖𝛼𝑧𝑛, 𝜃 ∈ R, and𝑛 ∈ N+. �en 𝑓𝑎 ∗𝑓𝛼 is univalent and convex in the horizontal
direction for (𝑛 − 2)/(𝑛 + 2) ≤ 𝑎 < 1.

We remark that for 𝑎 = 0 the function 𝑓𝑎 given in
Theorems 4 and 5 reduce to the harmonic function ℎ+𝑔 given
in Example 2, where ℎ(𝑧)+𝑔(𝑧) = 𝑧/(1−𝑧). Recently, Dorff et
al. [9] presented the following Theorem 6 on the directional
convexity for the convolution of harmonic functions ℎ+𝑔 for
which ℎ(𝑧) ± 𝑔(𝑧) ̸= 𝑧/(1 − 𝑧).
Theorem6. For 𝑗 = 1, 2 let𝑓𝑗 = ℎ𝑗+𝑔𝑗 ∈ SH, ℎ𝑗(𝑧)−𝑔𝑗(𝑧) =
(1/2) log((1+𝑧)/(1−𝑧)), and𝜔𝑗(𝑧) = 𝑒𝑖𝜃𝑗𝑧𝑗. If𝑓1∗𝑓2 is locally
univalent and sense-preserving in D, then 𝑓1 ∗ 𝑓2 is convex in
the direction of real axis.

In the following Theorem 7 we improve the shear of the
analytic map ℎ𝑗(𝑧) − 𝑔𝑗(𝑧) = (1/2) log((1 + 𝑧)/(1 − 𝑧)) to the
general case ℎ𝑗(𝑧) + 𝑒𝑖𝜃𝑗𝑔𝑗(𝑧) = (1/2) log((1 + 𝑧)/(1 − 𝑧)),𝑗 = 1, 2, and expand the powers of 𝑧 in the dilatation 𝜔𝑗(𝑧) =
𝑒𝑖𝜃𝑗𝑧𝑗; 𝑗 = 1, 2 to 𝜔1(𝑧) = ±𝑒−𝑖𝜃1𝑧𝑚 and 𝜔2(𝑧) = ±𝑒−𝑖𝜃2𝑧𝑛,
where𝑚 and 𝑛 are arbitrary positive integers. The arguments
presented here to prove our Theorem 7 and Example 9 are
new andhave not yet beenused in any of the preceding related
articles.

Theorem 7. For 𝑗 = 1, 2 and for positive integers 𝑚 and 𝑛
let 𝑓𝑗 = ℎ𝑗 + 𝑔𝑗 ∈ SH be the shear of the analytic map
ℎ𝑗(𝑧)+𝑒𝑖𝜃𝑗𝑔𝑗(𝑧) = (1/2) log((1+𝑧)/(1−𝑧))with the dilatations

𝜔1(𝑧) = 𝑔1(𝑧)/ℎ1(𝑧) = ±𝑒−𝑖𝜃1𝑧𝑚 and 𝜔2(𝑧) = 𝑔2(𝑧)/ℎ2(𝑧) =±𝑒−𝑖𝜃2𝑧𝑛, where 𝜃1 +𝜃2 = (2𝑘+1)𝜋; 𝑘 = 0, 1, 2, 3, . . .. If 𝑓1 ∗𝑓2
is locally univalent and sense-preserving in D, then 𝑓1 ∗ 𝑓2 is
convex in the direction of imaginary axis.

2. Preliminaries, Proof and Example

Making use of the fact that a function 𝐹 is convex in the
direction 𝛾 if and only if the function 𝑒𝑖(𝜋/2−𝛾)𝐹 is convex in
the direction of imaginary axis, in the following we state a
lemma that is a variation of a result due to Royster and Ziegler
[10].

Lemma 8. Let 𝐹 be a nonconstant analytic function inD. �e
function 𝐹 maps D univalently onto a domain convex in the
direction 𝛾 if and only if there are numbers 𝜇 and ], where 0 ≤𝜇 < 2𝜋 and 0 ≤ ] ≤ 𝜋 so that

R [𝑒𝑖(𝜇−𝛾) (1 − 2 cos ]𝑒−𝑖𝜇𝑧 + 𝑒−2𝑖𝜇𝑧2) 𝐹 (𝑧)] ≥ 0. (3)

Proof of �eorem 7. Adding the identities

(ℎ1 + 𝑒𝑖𝜃1𝑔1) ∗ (ℎ2 − 𝑒𝑖𝜃2𝑔2)
= ℎ1 ∗ ℎ2 − 𝑒𝑖𝜃2 (ℎ1 ∗ 𝑔2) + 𝑒𝑖𝜃1 (𝑔1 ∗ ℎ2) + 𝑔1 ∗ 𝑔2

(4)

and

(ℎ1 − 𝑒𝑖𝜃1𝑔1) ∗ (ℎ2 + 𝑒𝑖𝜃2𝑔2)
= ℎ1 ∗ ℎ2 + 𝑒𝑖𝜃2 (ℎ1 ∗ 𝑔2) − 𝑒𝑖𝜃1 (𝑔1 ∗ ℎ2) + 𝑔1 ∗ 𝑔2

(5)

we get

2 (ℎ1 ∗ ℎ2 + 𝑔1 ∗ 𝑔2) = (ℎ2 + 𝑒𝑖𝜃2𝑔2) ∗ (ℎ1 − 𝑒𝑖𝜃1𝑔1)
+ (ℎ1 + 𝑒𝑖𝜃1𝑔1)
∗ (ℎ2 − 𝑒𝑖𝜃2𝑔2) .

(6)

Substituting for ℎ𝑗 + 𝑒𝑖𝜃𝑗𝑔𝑗 = (1/2) log((1 + 𝑧)/(1 − 𝑧)) yields
4 (ℎ1 ∗ ℎ2 + 𝑔1 ∗ 𝑔2) = (log 1 + 𝑧1 − 𝑧) ∗ (ℎ1 − 𝑒𝑖𝜃1𝑔2)

+ (log 1 + 𝑧1 − 𝑧)
∗ (ℎ2 − 𝑒𝑖𝜃2𝑔2) .

(7)

Differentiating

𝐹1 (𝑧) = (log 1 + 𝑧1 − 𝑧) ∗ (ℎ1 (𝑧) − 𝑒𝑖𝜃1𝑔1 (𝑧)) (8)

and

𝐹2 (𝑧) = (log 1 + 𝑧1 − 𝑧) ∗ (ℎ2 (𝑧) − 𝑒𝑖𝜃2𝑔2 (𝑧)) (9)
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we obtain

𝐹1 (𝑧) = (1𝑧 log 1 + 𝑧1 − 𝑧) ∗ (ℎ1 (𝑧) − 𝑒𝑖𝜃1𝑔1 (𝑧))
= (1𝑧 log 1 + 𝑧1 − 𝑧)

∗ (ℎ1 (𝑧) + 𝑒𝑖𝜃1𝑔1 (𝑧)) 1 − 𝑒𝑖𝜃1 (𝑔1 (𝑧) /ℎ1 (𝑧))1 + 𝑒𝑖𝜃1 (𝑔1 (𝑧) /ℎ1 (𝑧))
= (1𝑧 log 1 + 𝑧1 − 𝑧) ∗ ( 21 − 𝑧2 )(1 − (±𝑧𝑚)

1 + (±𝑧𝑚) )

(10)

and

𝐹2 (𝑧) = (1𝑧 log 1 + 𝑧1 − 𝑧) ∗ ( 21 − 𝑧2 )(1 − (±𝑧𝑛)
1 + (±𝑧𝑛) ) . (11)

Since

log 1 + 𝑧1 − 𝑧 ∗ 𝜓 (𝑧) = ∫ 𝜓 (𝑧) − 𝜓 (−𝑧)𝑧 𝑑𝑧, (12)

𝐹1(𝑧)may be written as

𝐹1 (𝑧) = 2𝑧 [log 1 + 𝑧1 − 𝑧 ∗ ( 𝑧1 − 𝑧2
1 − (±𝑧𝑚)
1 + (±𝑧𝑚) )]

= 2𝑧 ∫ (𝑧/ (1 − 𝑧2)) ((1 − (±𝑧𝑚)) / (1 + (±𝑧𝑚))) − (−𝑧/ (1 − 𝑧2)) ((1 − (± (−𝑧)𝑚)) / (1 + (± (−𝑧)𝑚)))
𝑧 𝑑𝑧

= 2𝑧 ∫ 11 − 𝑧2 [
1 − (±𝑧𝑚)
1 + (±𝑧𝑚) + 1 − (± (−𝑧)𝑚)

1 + (± (−𝑧)𝑚)] 𝑑𝑧.
(13)

If𝑚 is even, then

𝐹1 (𝑧) = 4𝑧 ∫ 11 − 𝑧2
1 − (±𝑧𝑚)
1 + (±𝑧𝑚) 𝑑𝑧. (14)

If𝑚 is odd, then

𝐹1 (𝑧) = 4𝑧 ∫ 11 − 𝑧2 1 + 𝑧2𝑚1 − 𝑧2𝑚 𝑑𝑧. (15)

One can easily verify that

𝑃 (𝑧) = 1 − (±𝑧𝑚)
1 + (±𝑧𝑚) (16)

is a positive real part function in D with real coefficients. So,
by a result of Rogosinski [11] (or see Duren [12] page 56) we
conclude that

𝜙 (𝑧) = 𝑧1 − 𝑧2𝑃 (𝑧) = 𝑧1 − 𝑧2
1 + (±𝑧𝑚)
1 − (±𝑧𝑚) (17)

is typically real inD (also see Clunie and Sheil-Small [2] page
22). Therefore the integral function

𝜓 (𝑧) = ∫ 𝜙 (𝑧)𝑧 𝑑𝑧 = ∫ 11 − 𝑧2
1 + (±𝑧𝑚)
1 − (±𝑧𝑚) 𝑑𝑧 (18)

is also typically real in D (e.g., see Theorem 2 in Robertson
[13] or Duren [12], page 247). Consequently,

1 − 𝑧2𝑧 𝜓 (𝑧) = 1 − 𝑧2𝑧 ∫ 11 − 𝑧2
1 + (±𝑧𝑚)
1 − (±𝑧𝑚) 𝑑𝑧 (19)

is of positive real part in D with real coefficients. The
argument for𝑚 oddwould be similar since (1+𝑧2𝑚)/(1−𝑧2𝑚)
is a positive real part function in D with real coefficients.

Therefore, for any positive integer 𝑚 we have R[(1 −𝑧2)𝐹1(𝑧)] ≥ 0.

Similarly, for any positive integer 𝑛 we have R[(1 −𝑧2)𝐹2(𝑧)] ≥ 0.
So, for all positive integers of 𝑚 and 𝑛, we proved that

R(1 − 𝑧2)[𝐹1(𝑧) + 𝐹2(𝑧)] ≥ 0.
Thus for ] = 𝜇 = 𝛾 = 𝜋/2, it follows from Lemma 8

that the function 𝐹1 +𝐹2 or the analytic convolution function(ℎ1∗ℎ2)+(𝑔1∗𝑔2) is convex in the direction of the imaginary
axis. This in conjunction with Lemma 1, for 𝜃 = 𝜋/2 prove
that the harmonic convolution function (𝑓1∗𝑓2) = (ℎ1∗ℎ2)+(𝑔1 ∗ 𝑔2) ∈ SH and is convex in the direction of imaginary
axis.

To demonstrate the beauty of Theorem 7, we give an
example of two harmonic functions that satisfy the dilatation
stated inTheorem 7 and we then prove that their convolution
is locally one-to-one, sense-preserving, and convex in the
direction of imaginary axis.

Example 9. For 𝑓1 = ℎ1 + 𝑔1 ∈ SH let ℎ1(𝑧) − 𝑔1(𝑧) =(1/2) log((1 + 𝑧)/(1 − 𝑧)) with the dilatation 𝑤1(𝑧) =𝑔1(𝑧)/ℎ1(𝑧) = 𝑧2 and for 𝑓2 = ℎ2 + 𝑔2 ∈ SH let ℎ2(𝑧) +𝑔2(𝑧) = (1/2) log((1 + 𝑧)/(1 − 𝑧)) with the dilatation 𝑤2(𝑧) =𝑔2(𝑧)/ℎ2(𝑧) = 𝑧2. Then 𝑓1 ∗ 𝑓2 is locally univalent, sense-
preserving, and convex in the direction of imaginary axis.

First we will show that the harmonic convolution func-
tion

(𝑓1 ∗ 𝑓2) (𝑧) = (ℎ1 ∗ ℎ2) (𝑧) + (𝑔1 ∗ 𝑔2) (𝑧)
= 𝐻 (𝑧) + 𝐺 (𝑧) (20)

is locally one-to-one and sense-preserving inD, that is, |𝑊| =|𝐺/𝐻| < 1 in D. Under the hypotheses of Example 9, a
simple calculation reveals that

ℎ1 (𝑧) = 12 𝑧1 − 𝑧2 + 14 log 1 + 𝑧1 − 𝑧 ,
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𝑔1 (𝑧) = 12 𝑧1 − 𝑧2 − 14 log 1 + 𝑧1 − 𝑧 ,
ℎ2 (𝑧) = 12 tan−1 (𝑧) + 14 log 1 + 𝑧1 − 𝑧 ,
𝑔2 (𝑧) = −12 tan−1 (𝑧) + 14 log 1 + 𝑧1 − 𝑧 .

(21)

It is easy to verify that |𝐺(0)| = 0 < 1 = |𝐻(0)|; therefore
we shall take 𝑧 in 𝐷0, where 𝐷0 = {𝑧 : 0 < |𝑧| < 1}. Now for𝑧 ∈ 𝐷0
𝑊(𝑧) = 𝐺 (𝑧)𝐻 (𝑧) = ((𝑔1 ∗ 𝑔2) (𝑧))((ℎ1 ∗ ℎ2) (𝑧)) =

𝑔1 (𝑧) ∗ 𝑧𝑔2 (𝑧)ℎ1 (𝑧) ∗ 𝑧ℎ2 (𝑧)
= (1/2) (𝑧/ (1 − 𝑧2) − (1/2) log ((1 + 𝑧) / (1 − 𝑧))) ∗ 𝑧𝑔2 (𝑧)(1/2) (𝑧/ (1 − 𝑧2) + (1/2) log ((1 + 𝑧) / (1 − 𝑧))) ∗ 𝑧ℎ2 (𝑧)
= 𝑧3/ (1 − 𝑧4) + (1/2) tan−1𝑧 − (1/4) log ((1 + 𝑧) / (1 − 𝑧))

𝑧/ (1 − 𝑧4) + (1/2) tan−1𝑧 + (1/4) log ((1 + 𝑧) / (1 − 𝑧))
= 𝑧3/ (1 − 𝑧4) − 𝑔2 (𝑧)𝑧/ (1 − 𝑧4) + ℎ2 (𝑧) = 𝑧3 − (1 − 𝑧4) 𝑔2𝑧 + (1 − 𝑧4) ℎ2 .

(22)

In order to prove that |𝑊| < 1 in 𝐷0 it suffices to show that|𝑧 + (1 − 𝑧4)ℎ2(𝑧)| > |𝑧3 − (1 − 𝑧4)𝑔2(𝑧)| for all 𝑧 ∈ 𝐷0 or
[𝑧 + (1 − 𝑧4) ℎ2 (𝑧)] [𝑧 + (1 − 𝑧4) ℎ2 (𝑧)]

− [𝑧3 − (1 − 𝑧4) 𝑔2 (𝑧)] [𝑧3 − (1 − 𝑧4) 𝑔2 (𝑧)]
> 0.

(23)

The left hand side of the above inequality reduces to

|𝑧|2 (1 − |𝑧|4) + 1 − 𝑧42 [ℎ2 (𝑧)2 − 𝑔2 (𝑧)2]
+ 2R [(1 − 𝑧4) (𝑧ℎ2 (𝑧) + 𝑧3𝑔2 (𝑧))] . (24)

A result of Robinson [14] states that if 𝑞 and 𝑝 are analytic in𝐷0 so that |𝑞(𝑧)| < |𝑝(𝑧)| in 𝐷0, then |𝑞(𝑧)| < |𝑝(𝑧)| if 𝑝 is

star-like in 𝐷0. Applying this fact to the functions 𝑔2 and ℎ2
given in Example 9, we obtain |ℎ2(𝑧)|2 − |𝑔2(𝑧)|2 > 0 since|𝑔2(𝑧)| < |ℎ2(𝑧)| and ℎ2 is star-like in𝐷0.

On the other hand, observe that

R ((1 − 𝑧4) 𝑧ℎ2 (𝑧))
= |𝑧|2R(1 − ∞∑

𝑘=1

4(4𝑘 + 1) (4𝑘 − 3)𝑧4𝑘)
> |𝑧|2(1 − ∞∑

𝑘=1

4(4𝑘 + 1) (4𝑘 − 3) |𝑧|4𝑘)
> |𝑧|2 [1 − ∞∑

𝑘=1

( 14𝑘 − 3 − 14𝑘 + 1)] ≥ 0.

(25)

Similarly,

R [(1 − 𝑧4) 𝑧3𝑔2 (𝑧)]
> |𝑧|6 [13 − ∞∑

𝑘=1

( 14𝑘 − 1 − 14𝑘 + 3)] ≥ 0. (26)

Thus |𝑊| = |𝐺/𝐻| < 1 in 𝐷0 and hence |𝑊| = |𝐺/𝐻| < 1
for all 𝑧 ∈ D.

Next we will show that the harmonic convolution func-
tion 𝑓1 ∗ 𝑓2 = 𝐻 + 𝐺 is convex in the direction of imaginary
axis. By Lemma 1, it suffices to show that𝐻+𝐺 = ℎ1∗ℎ2+𝑔1∗𝑔2 is convex in the direction 𝜋/2. Equivalently, by Lemma 8,
we need to show that

R {(1 − 𝑧2) [𝐻 (𝑧) + 𝐺 (𝑧)]}
= R {(1 − 𝑧2) [ℎ1 (𝑧) ∗ ℎ2 (𝑧) + 𝑔1 (𝑧) ∗ 𝑔2 (𝑧)]}
≥ 0.

(27)

We observe that

[𝐻 (𝑧) + 𝐺 (𝑧)] = [ℎ1 (𝑧) ∗ ℎ2 (𝑧) + 𝑔1 (𝑧) ∗ 𝑔2 (𝑧)] = 14 [(log 1 + 𝑧1 − 𝑧) ∗ ((ℎ1 (𝑧) + 𝑔1 (𝑧)) + (ℎ2 (𝑧) − 𝑔2 (𝑧)))]

= 14 1𝑧 (log 1 + 𝑧1 − 𝑧) ∗ [(ℎ1 (𝑧) + 𝑔1 (𝑧)) + (ℎ2 (𝑧) − 𝑔2 (𝑧))]
= 14 1𝑧 (log 1 + 𝑧1 − 𝑧) ∗ [ 11 − 𝑧2 (

1 + 𝑔1 (𝑧) /ℎ1 (𝑧)1 − 𝑔1 (𝑧) /ℎ1 (𝑧) + 1 − 𝑔2 (𝑧) /ℎ2 (𝑧)1 + 𝑔2 (𝑧) /ℎ2 (𝑧))]

= 14 1𝑧 (log 1 + 𝑧1 − 𝑧) ∗ [ 11 − 𝑧2 (1 + 𝑧21 − 𝑧2 + 1 − 𝑧21 + 𝑧2)] = 14 1𝑧 [log 1 + 𝑧1 − 𝑧 ∗ ( 𝑧1 − 𝑧2
2 (1 + 𝑧4)
1 − 𝑧4 )]

= 12 1𝑧 ∫ (𝑧/ (1 − 𝑧2)) ((1 + 𝑧4) / (1 − 𝑧4)) − (−𝑧/ (1 − 𝑧2)) ((1 + 𝑧4) / (1 − 𝑧4))
𝑧 𝑑𝑧

= 1𝑧 ∫( 11 − 𝑧2 1 + 𝑧41 − 𝑧4)𝑑𝑧.

(28)
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Figure 1: Images of |𝑧| = 𝑟 < 1 under 𝑓1.

The Taylor Expansion of (1 − 𝑧2)[𝐻(𝑧) + 𝐺(𝑧)] yields

𝑃 (𝑧2) = (1 − 𝑧2) [𝐻 (𝑧) + 𝐺 (𝑧)]
= 1 − 𝑧2𝑧 ∫( 11 − 𝑧2 1 + 𝑧41 − 𝑧4)𝑑𝑧
= 1 − 23𝑧2 + 415𝑧4 − 635𝑧6 + 863𝑧8 − 1099𝑧10

+ 12143𝑧12 − ⋅ ⋅ ⋅ .

(29)

By a result of Fejér [15] (or see Goodman [16], Chapter 7),

R [𝑃 (−𝑧)] = R(𝑐0 + ∞∑
𝑘=1

2𝑘(2𝑘 − 1) (2𝑘 + 1)𝑧𝑘) > 0 (30)

where 𝑐0 = 1 and 𝑐𝑘 = 2𝑘/(2𝑘 − 1)(2𝑘 + 1); 𝑘 = 1, 2, 3 . . . is a
convex null sequence.

Therefore,R{𝑃(𝑧2)} > 0, that is,R(1−𝑧2)[𝐻(𝑧)+𝐺(𝑧)] ≥0
The images of |𝑧| = 𝑟 < 1 under 𝑓1 and 𝑓2 are shown

in Figures 1 and 2, respectively. Figure 3 clearly demonstrates
the directional convexity of the convolution 𝑓1 ∗𝑓2 along the
imaginary axis.
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Figure 2: Images of |𝑧| = 𝑟 < 1 under 𝑓2.
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Figure 3: Images of |𝑧| = 𝑟 < 1 under 𝑓1 ∗ 𝑓2.
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