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A real form G0 of a complex semisimple Lie group G has only finitely many orbits in any given compact G-homogeneous
projective algebraic manifold Z � G/Q. A maximal compact subgroup K0 of G0 has special orbits C which are complex sub-
manifolds in the open orbits ofG0.+ese special orbitsC are characterized as the closed orbits in Z of the complexificationK ofK0.
+ese are referred to as cycles. +e cycles intersect Schubert varieties S transversely at finitely many points. Describing these points
and their multiplicities was carried out for all real forms of SL(n,C) by Brecan (Brecan, 2014) and (Brecan, 2017) and for the other
real forms by Abu-Shoga (Abu-Shoga, 2017) and Huckleberry (Abu-Shoga and Huckleberry). In the present paper, we deal with
the real form SO(p, q) acting on the SO (2n, C)-manifold of maximal isotropic full flags. We give a precise description of the
relevant Schubert varieties in terms of certain subsets of theWeyl group and compute their total number. Furthermore, we give an
explicit description of the points of intersection in terms of flags and their number.+e results in the case of G/Q for all real forms
will be given by Abu-Shoga and Huckleberry.

1. Background

Let G be a complex semisimple Lie group and B a Borel
subgroup. +e compact algebraic homogeneous space Z �

G/B is called a complex flag manifold. Let G0 be a real form
of G in the sense that there is an antiholomorphic involution
τ : G⟶ G such that G0 is the fixed point set of τ. It is well
known [1] that there are only finitely many G0-orbits on Z.
+erefore, at least one of them must be open. Such open
orbits are called flag domains.

Fix a Cartan involution θ : G0⟶ G0. +e fixed point
set of θ in G0 is a maximal compact subgroup of G0 denoted
by K0, and K is its complexification.

If D is a flag domain on Z, then K0 has exactly one open
orbit in D that is a complex submanifold and denoted by C0.
+e complex submanifold C0 is both the unique K-orbit inD
that is compact and the unique K0-orbit in D that is
complex. +is is the origin of what is known as “Matsuki
duality.”

Consider an Iwasawa decomposition G0 � K0A0N0 of
the real form G0. We refer to a Borel subgroup B ⊂ G as an
Iwasawa–Borel subgroup of G if it contains an Iwasawa
factor A0N0. Of course, these are just the Borel subgroups

which occur as the isotropy groups at points of the closed
G0-orbit in G/B.

In general, given any Borel subgroup B in G and a point
z ∈ G/B, the closure S � cl(O) of the orbit O � B.z is called
the Schubert variety or Schubert cycle. An Iwasawa–
Schubert variety S � cl(O) is transversal (relative to an open
G0-orbit D) if S∩D is nonempty and contained in the open
B-orbit O, and codim S � q − r where r � dimC0 and the
intersection S∩C0 is transversal at each of its points.

+us, although the determination of the r-codimensional
Iwasawa–Schubert varieties which have nonempty inter-
section with D, along with their points of intersection with
C0, is apparently a problem of a combinatorial nature, such
information has complex analytic significance.

Since S∩D≠∅ implies that S∩C0 ≠∅, the first goal of
this paper is to determine which Schubert varieties S have
nonempty intersection with C0. After doing so, we then
describe this intersection in the case where S is of com-
plementary dimension to C0. +e Schubert varieties are
determined by the elements of the Weyl group WI of a
distinguished maximal torus TI in the Borel subgroup BI

which fixes a certain base point in ccℓ. +ese Schubert
varieties are denoted by Sw where w ∈WI. Consequently,
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our results are formulated in terms of conditions on ele-
ments w in the Weyl group WI. In this paper, we discussed
both even and odd cases for p and q. (In some steps, we
discuss only the even case because the odd case is included
in the even case.)

2. Flag Intersection for SO(p, q)

2.1. Preliminaries. Consider the semisimple Lie group G �

SO(m,C) with the real form SO(p, q). In this case, it is
convenient to choose the bilinear form b on C2n depending
on p and q. If p or q is even, then we choose it in the usual
way:

b(v, w) � − 

q

i�1
viwi + 

m

i�q+1
viwi. (1)

Let σ be the complex conjugation σ(v) � v, then the
Hermitian form h(v, w) of signature (p, q) which defines the
real form is defined by

h(v, w) � b(v, σ(w)) � − 

q

i�1
viσ wi(  + 

m

i�q+1
viσ wi( . (2)

If both p and q are odd, then the complex bilinear form is

b(v, w) � − 

q− 1

i�1
viwi + vqwq+1 + vq+1wq  + 

m

i�q+2
viwi, (3)

and the Hermitian form h(v, w) is defined by

h(v, w) � − 

q

i�1
viwi + 

m

i�q+1
viwi. (4)

+e real form is G0 � SO(p, q) � SO(2n,C)∩ SU(p, q).
A Cartan involution θ � so(p, q)⟶ so(p, q) in the Lie

algebra level is given by θ(g) � − gt, and the maximal
compact subgroup associated with it is K0 ≔ S(O(p)

× O(q)) ⊂ S(U(p) × U(q)).

2.2. Introduction to theFlags inZ. Recall that the (indefinite
metric) orthogonal group G � SO(p, q) acts on the space
of full flags by two orbits: closed orbit and open orbit. +e
closed orbit is the set of all maximally b-isotropic full
flags F with respect to b, where the maximally b-isotropic
full flag F is defined as a sequence of (2n + 1)-vector
spaces:

F � 0{ } � V0 ⊂ V1 ⊂ . . . ⊂ V2n � C
2n

 , (5)

such that dimVi � i, for all 0≤ i≤ 2n, and V2n− i � V⊥i ,

for 1≤ i≤ n. In particular, Vi is isotropic for 1≤ i≤ n. +e set
of all maximal isotropic flags is denoted by Z. +e mani-
fold structure of Z arises from the fact that the Lie
group G acts transitively on it with Z � G/B where B
is the stabilizer of any particular maximally b-isotropic
flag in Z.

+e signature of a flag F � (0 ⊂ V1 ⊂ . . . ⊂ V2n) ∈ Z

with respect to h consists of three sequences:

a : 0≤ a1 ≤ a2 ≤ . . . ≤ a2n,

b : 0≤ b1 ≤ b2 ≤ . . . ≤ b2n,

d : 0≤ d1 ≤ d2 ≤ . . . ≤d2n,

(6)

with sign(Vi) � (ai, bi, di) where ai (resp., bi) denotes the
dimension of a maximal negative (positive) subspace and di

the degeneracy Vi of the restriction of h to Vi and
ai + bi + di � i ∀1≤ i≤ 2n. +e 3-tuple (a, b, d) is called the
signature of the flag F. If d � 0, we refer to F as being
nondegenerate and write sign(F) � (a, b).

2.3. Base Points. To parametrize the Schubert cells, it is
important to focus on a maximal Torus TI in an
Iwasawa–Borel subgroup BI of G which fixes the associated
flag FI. On the contrary, we need another maximal torus TS

which defines a basis to determine the base cycles called the
standard basis. +ese two tori are conjugate.

In the following, we define bases depending on p and q as
well as the positive and negative spaces which will be es-
sential for understanding the base cycle. Although the goal of
the paper is to handle the case where m is even, since in this
paragraph the discussion for the odd case is essentially the
same, we include it. Also, the fundamental maximal torus TS

is defined in each case by requiring that each basis vector is a
TS-eigenvector.

(i) If m � 2n and q are even, the ordered b-isotropic
basis is

e1 + ie2, e3 + ie4, . . . , e2n− 1 + ie2n, e2n− 1

− ie2n, . . . , e1 − ie2,
(7)

where

E
− ≔ 〈e1 + ie2, e3 + ie4, . . . , eq− 1 + ieq, e1 − ie2, e3

− ie4, . . . , eq− 1 − ieq〉,

E
+ ≔ 〈eq+1 + ieq+2, . . . , e2n− 1 + ie2n, eq+1

− ieq+2, . . . , e2n− 1 − ie2n〉.

(8)

(ii) If m � 2n and q are odd, the ordered b-isotropic basis
is

e1 + ie2, e3 + ie4, . . . , e2n− 1 + ie2n, eq, eq+1, e2n− 1 − ie2n, . . . , e1 − ie2,

(9)

where

E
−

�〈e1 + ie2, e3 + ie4, . . . , eq, e1 − ie2, e3

− ie4, . . . , eq− 1 − ieq〉,

E
+

�〈eq+1, eq+2 + ieq+3, . . . , e2n− 1 + ie2n, eq+2

− ieq+3, . . . , e2n− 1 − ie2n〉.

(10)

Note that the vectors eq and eq+1 are isotropic and
b(eq, eq+1) � − 1. Moreover, h(e3, e3) � − 1 and
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h(e4, e4) � 1 which means that eq ∈ E− and
eq+1 ∈ E+.

(iii) If m � 2n + 1 and q are even, the ordered b-isotropic
basis is

e1 + ie2, e3 + ie4, . . . , e2n + ie2n+1, eq+1, e2n

− ie2n+1, . . . , e1 − ie2,
(11)

where

E
− ≔ 〈e1 + ie2, e3 + ie4, . . . , eq− 1 + ieq, e1 − ie2, e3

− ie4, . . . , eq− 1 − ieq〉,

E
+

�〈eq+1, eq+2 + ieq+3, . . . , e2n− 1 + ie2n, eq+2

− ieq+3, . . . , e2n− 1 − ie2n〉.
(12)

(iv) If m � 2n + 1 and q are odd, the ordered b-isotropic
basis is

e1 + ie2, e3 + ie4, . . . , e2n + ie2n+1, eq, e2n

− ie2n+1, . . . , e1 − ie2,
(13)

where

E
−

�〈e1 + ie2, e3 + ie4, . . . , eq, e1 − ie2, e3

− ie4, . . . , eq− 2 − ieq− 1〉,

E
+

�〈eq+1 + ieq+2, . . . , e2n + ie2n+1, eq+1

− ieq+2, . . . , e2n − ie2n+1〉.

(14)

Remark 1. If m � 2n + 1, we have the vector eq or eq+1 in the
ordered b-isotropic basis. In this case, the vector sits in a
fixed position in the middle of the basis and the terms at the
beginning skip over eq or eq+1.

+e above bases define the standard maximal torus TS in
each case as the subgroup of diagonal matrices, i.e.,

TS � g ∈ G0 : g � diag t1, t2, . . . , tn, − tn, . . . , − t2, − t1( ,

ti ∈ C if m � 2n,

or TS � g ∈ G0 : g � diag t1, t2, . . . , tn, 0, − tn, . . . , − t2, − t1( ,

ti ∈ C if m � 2n + 1.

(15)

For any of the ordered bases above, we denote by FS the
associated flag in Z, where the reordering on these bases will
determine the flag domains, the base cycles, and the in-
tersection points.

Just as in the case of TS, the maximal torus TI is defined
to have a certain basis of eigenvectors which depends on m
being odd or even.

(i) If m is even, then the basis is

e1 + e2q, . . . , eq + eq+1, e2q+1 + ie2q+2, e2q+3

+ ie2q+4, . . . , e2n− 1 + ie2n,

e2n− 1 − ie2n, . . . , e2q+3 − ie2q+4, e2q+1 − ie2q+2, eq

− eq+1, . . . , e1 − e2q.

(16)

(ii) If m is odd, then the basis is

e1 + e2q, e2 + e2q− 1, . . . , eq + eq+1, e2q+1, e2q+2

+ ie2q+3, e2q+4 + ie2q+5, . . . , e2n + ie2n+1,

e2q+1, e2n − ie2n+1, . . . , e2q+4 − ie2q+5, e2q+2

− ie2q+3, eq − eq+1, . . . , e2 − e2q− 1, e1 − e2q.

(17)

We denote by BI the Iwasawa–Borel subgroup of G
which fixes the associated flag FI.

2.4. Weyl Groups, Flag Domains, and Base Cycles. Let us use
shorthand notation for the bases used above. By
(r, s) − form, we mean a basis (r1, . . . , rn, sn, . . . , s1) where
b(ri, rj) � b(si, sj) � 0 and b(ri, sj) � δij for all i and j. +is
occurs in the even-dimensional case. By (r, t, s)-form, which
occurs in the odd-dimensional case, ri and si satisfy the same
conditions and t is a single vector with b(t, t) � ± 1 and
b(t, ri) � b(t, si) � 0 for all i.

Here, we discuss the Weyl groups W(TS) and W(TI) by
their actions on these bases. If T is either of these tori, then it
stabilizes the spaces spanned by ri and si for i � 1, . . . , n for
both kinds of bases. In this, we regard T as a product
T � T1 · . . . · Tn, in the second case acting trivially on the
space spanned by t. In both cases, an arbitrary permutation
in Sn acting diagonally on these spaces by
(ri, si)⟼ (rπ(i), sπ(i)) normalizes the T-action and is in the
given orthogonal group G.

A simple reflection (ri, si)⟼ (si, ri) for one such i, and
being the identity on the other 2-dimensional spaces, is
denoted by a sign change.+is normalizes T but has negative
determinant. In the first case, this means that only an even
number of sign changes are allowed. In the second case, we
may couple the sign change with the map t⟼ − t so that
this slightly modified sign change has positive determinant.
+us, in both cases, we have the action of Sn ⋉ Zn

2 nor-
malizing the T-representation on the basis at hand.+is is in
fact the action of the full Weyl group.

As in the cases of Sp(2n,R) and SO∗(2n), to describe the
flag domains and their K0-base cycles, we use the Weyl
group W(TS) of the standard torus TS. +e base point for α
is the flag FS defined by the standard basis. +en, all base
points are Fα ≔ w(FS) where w ∈ Zn− 1

2 if m � 2n and
w ∈ Zn

2 if m � 2n + 1 is associated with the sign-change
vector α. As before, the base cycles and flag domains are the
orbits K.Fα and G0.Fα, respectively, and α defines a non-
degenerate sign with sign(Fα) � (a, b) and then Dα � Da,b.

In our particular case, there are two maximal tori, the
maximal torus TI and the maximal torus TS, which were
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defined earlier. Recall that these two maximal tori TI andTS

are conjugates, and a conjugation induces an isomorphism ψ
of the associated Weyl groups. In this case, the bijective map
ψ is described, depending on the case, as follows:

(i) If m � 2n and q are even, define WTS
to be the Weyl

group with respect to the basis (7) and let WI be the
Weyl group with respect to the basis (16). In this
case, the bijective map between WI and WTS

is
ψ(∓(2i − 1)) � ± i,ψ(∓2i) � ±(q − i + 1) if 1≤ i

≤ q/2 and ψ(±i) � ±i if i> q.
(ii) If m � 2n and q are odd, define WTS

to be the Weyl
group with respect to the basis (9) and let WI be the
Weyl group with respect to the basis (16); then, the
bijective map in this case is ψ : WI⟶WTo

defined
by ψ(∓(2i − 1)) � ± i,ψ(∓2i) � ±(q − i) if 1≤ i≤
(q − 1)/2 and ψ(± i) � ±(i − 1) if i> q and
ψ(− q) � − n.

(iii) If m � 2n + 1 and q are even, define WTe
to be the

Weyl group with respect to the basis (11) and let WI

be the Weyl group with respect to the basis (17);
then, we can define the bijective map between them
to be ψ(∓(2i − 1)) � ± i,ψ(∓2i) � ±(q − i + 1) if
1≤ i≤ q/2 and ψ(± i) � ± i if i> q.

(iv) If m � 2n + 1 and q are odd, define WTo
to be the

Weyl group with respect to the basis (13). Let WI be
the Weyl group with respect to the basis (17). +e
bijective map ψ between WI and WTo

can be defined
as ψ(∓(2i − 1)) � ± i,ψ(∓2i) � ±(q − i) if 1≤ i≤
(q − 1)/2 and ψ(± i) � ±(i) if i> q.

Moreover, through an argument quite similar to
Proposition 1, the base cycle Cα is the set

Cα � F ∈ Z : Vi � Vi ∩E
−

( ⊕ Vi ∩E
+

( , 1≤ i≤m , (18)

where E− and E+ defined in Section 2.3 and the intersection
dimensions are determined by α (resp., (a, b)). +e flag do-
mains are parametrized by the signature of their base cycles.

2.5.=eLength of the Elements of Sn ⋉Zn
2. Recall that every B-

Schubert cell S contains exactly one T-fixed point. Hence, at
least in Z � G/B where the Weyl group acts freely and
transitively on Fix(T), we should be able to compute di mCS in
terms of a corresponding Weyl element. In fact, if z0 is the B-
fixed point in Z � G/B and w ∈W, then the complex di-
mension of the Schubert cell Sw � B.w(z0) is the length ℓ(w).

As indicated above, we used a special way of writing the
Weyl elements which is defined in the paper [2]. For di-
mension computations, let us state how we can compute the
length of elements w ∈ Sn ⋉Zn

2 relative to the notation for
the Weyl group elements used in [2].

Lemma 1 (see [2]). Fix w ∈ Sn ⋉Zn
2 and construct

w ∈ Sn ⋉Zn
2 by the following algorithm:

(1) Starting from left to right in w, using simple reflec-
tions, place all positive numbers in w step by step in a
sequence of n− empty boxes beginning from the first
one in w, in the same order as they appeared in w.

(2) From left to right in w, replace a negative number with
its absolute value in the n− empty boxes starting from
right to left.

If w � (w(1), w(2), . . . , w(n)), then define L( w) �

(n2 − n)/2 − number of w(i) : i< k and w(i)< w(k){ }, and if
we have m negative signs in w in the following positions
j1, j2, . . . , jm, then define f(w) � 

m
i�1[(n − ji)]. It follows

that the length of w is

l(w) � L(w) + f(w) + m. (19)

Example 1. Let w � 5(− 34)(− 12) ∈ S5 ⋉Z5
2, then by fol-

lowing the above remark, we have

5(− 34)(− 12)⟹ 542(− 3 − 1)⟹ 542(13), (20)

so w � 5(− 34)(− 12) and w � 542(13), and then L( w) � 8
and f(w) � 4.

Hence, l(w) � 8 + 4 + 2 � 14.

2.6. Description of the BI-Orbits. In the previous section, we
have chosen a flag FI defined by the basis
e1 − e2n, e2 − e2n− 1, . . . , en − en+1, en + en+1, . . . , e2 + e2n− 1, e1 + e2n,

(21)

which belongs to the G0-closed orbit ccl. Given a Weyl el-
ement w ∈W, we consider the Schubert cell BI.Fw and an
element F � b(Fw) in it which is defined by an ordered basis
(b.vw1

, . . . , b.vw2n
), b ∈ BI, where vi � ei − e2n− i+1, 1≤ i≤ n,

and vi � e2n− i+1 + ei, n + 1≤ i≤ 2n. If F ∈ Cα, then it can be
defined by an ordered basis (ε1, . . . , ε2n) where for all k the
vector εk is either in V− or in V+ and is a linear combination

εk � 
j≤k

cjb.vwj
.

(22)

In this case, we call the basis a split basis. According to
the above discussion for Sp(2n,C), we can write the for-
mulas for b.vwj

for any element b ∈ BI as follows:

b.vwj
� ηj e− wj

+ e2n+wj+1  + ζj e− wj
− e2n+wj+1  + Bj,

− n≤wj ≤ − 1,

b.vwj
� ζj ewj

− e2n− wj+1  + Bj, 1≤wj ≤ n,

(23)

where Bj does not involve the basis vectors ewj
and e2n− wj+1.

Remark 2. When discussing the BI-orbit of the base point
FI, it is important to explicitly understand the orbits BI.(ei −

e2n− i+1) and BI.(ei + e2n− i+1). As we explained above, we have
the following facts.

If FI and BI are as above, then the orbits of interest are
BI.(ei ± e2n− i+1), i � 1, . . . , n. In this case, the orbits BI.(ei +

e2n− i+1) and BI.(ei − e2n− i+1) have points of the forms
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b ei + e2n− i+1(  � λ ei + e2n− i+1(  + · · · + bn en + en+1( 

+ an en − en+1(  + · · · + a1 e1 − e2n( ,

b ei − e2n− i+1(  � λ ei − e2n− i+1(  + ai− 1 ei− 1 − e2n− i( 

+ · · · + a1 e1 − e2n( ,

(24)

respectively, with λ≠ 0. Note that, in the above orbits, if b is
chosen appropriately, then we can arrange b(ei + e2n+i− 1) �

ei or b(ei + e2n+i− 1) � e2n− i+1 for all i. Does this play a role in
the proof of +eorem 1.

2.7. Flag Domains and Base Cycles. In order to parametrize
the flag domains, it is enough to parametrize the closed K-
orbits (see [3], Sections 4.2 and 4.3). For this, we choose a
base point FS ∈ Fix(TS). It follows that the setC of closed K-
orbits can be identified with the Weyl group orbit
WG(TS).FS (see [3], Corollary 4.2.4). As we have observed
above, WG(TS) � Sn ⋉Zn

2 where the Sn factor can be iden-
tified with WK(TS). In fact, it is exactly the stabilizer of K.FS

in C. Consequently, C can be identified with Zn
2.FS. We

regard an element of Zn
2 as a vector α of length n consisting

of plus and minus signs, and thus, C can be identified with
the set of such vectors. In concrete terms, the K-orbits (resp.,
G0-orbits) of base points ( ± e1, . . . , ± en) are exactly the
base cycles (resp., flag domains) in Z. +e respective flag
domains are denoted by Dα.

Observe that α defines a nondegenerate signature (a, b)

and that Dα ⊂ Da,b ≔ F : sign(F) � (a, b) . Conversely,
given F with sign(F) � (a, b), we may choose a basis
(v, w) ≔ (v1, . . . , vn, wn, . . . , w1) which defines F and which
has the following properties:

(1) b is in canonical form
(2) (v, w) is h-orthogonal
(3) ‖vj‖

2
h

� ±1 with sgn(‖vj‖h) � αj

(4) ‖wj‖
2
h

� − ‖vj‖
2
h

If sign(F) � sign(F), then we choose bases (v, w) and
(v, w) for F and F, respectively, and note that the trans-
formation which takes the one basis to the other is in G0.
+is argument shows that Da,b � Dα.

Denote E+ � 〈e1, . . . , en〉 and E− � 〈en+1, . . . , e2n〉,
where C2n � E+ ⊕E− .

Proposition 1. For a fixed open orbit Dα, the base cycle Cα is
the set

Cα � F ∈ Z : Vi � Vi ∩E
−

( ⊕ Vi ∩E
+

( , 1≤ i≤ 2n .

(25)

Proof. Firstly, it was shown above that there is a base point
Fα with the splitting condition. Since K0 is the product
K0 � K+

0 × K−
0 , it acts transitively on all such flags. Let

F ∈ Cα where V−
i � Vi ∩E− and V+

i � Vi ∩E+. Define F+ and
F− to be the sets of maximally isotopic flags in E+ and E− ,

respectively. Recall that K0 � K+
0 × K−

0 where K+
0 and K−

0 act
transitively on the sets F+ and F− , respectively, which implies
that K0 acts transitively on the set of maximal isotropic flags
obtained by put flags from F+ and F− in a way such that the
new flag has signature α. Hence, Cα is a complex manifold.
But K0 has a unique orbit in Dα which is a complex
manifold. +erefore, Cα is the base cycle. □

3. Conditions for Sw ∩Cα ≠ �

Here, we deal with the homogeneous space Z of maximally
isotropic full flags of the complex orthogonal symmetric
group G � SO(2n,C) equipped with the action of the real
form G0 � SO(p, q). +e general results here are stated in
terms of algorithms (See Definitions 1 and 2); in fact, it
seems impossible to avoid this. In Corollary 1, we give
concrete formulas for the intersection points in Sw ∩Cα if the
intersection is nonempty and Sw is of complementary di-
mension. Also, the number of intersection points with C0 is
explicitly computed in +eorem 2.

Since the Schubert variety Sw is determined by the Weyl
element w, we will describe in this section the conditions for
an element w of the Weyl group which parametrize the
Schubert variety Sw that satisfies Sw ∩Dα ≠∅ for some flag
domain Dα. As would be expected, a special type of per-
mutation plays a fundamental role.

Definition 1. An element w ∈W is called a harmonic per-
mutation if it satisfies the following conditions:

If q is even, the number − (2i − 1), 1≤ i≤ q/2, sits in any
place to the left of the number (2i) or (− 2i), 1≤ i≤ q/2,
in the one line notation of the permutation and the
order of the numbers or − (q + i), where 1≤ i≤p − q is
arbitrary.
If q is odd, the number − (2i − 1), 1≤ i≤ (q − 1)/2, sits
in any place to the left of the number
(2i), 1≤ i≤ (q − 1)/2, and the number − q sits in the last
position in the one line notation of the permutation and
the order of the numbers q + i or − (q + i), where
1≤ i≤ (p − q)/2 is arbitrary.

Example 2. In SO(4, 2), the relevant pairs are (− 12) and
(− 1 − 2). As a result, we have 6 harmonic permutations.
+ey are (− 12 − 3), (− 1 − 32), (− 3 − 12), (− 1 − 23),

(− 13 − 2), an d (3 − 1 − 2).
Recall that the fixed point in the closed orbit ccl is the flag

associated with the following ordered basis:

(i) If m is even, then the basis is

e1 + e2q, . . . , eq + eq+1, e2q+1 + ie2q+2, e2q+3

+ ie2q+4, . . . , e2n− 1 + ie2n,

e2n− 1 − ie2n, . . . , e2q+3 − ie2q+4, e2q+1

− ie2q+2, eq − eq+1, . . . , e1 − e2q.

(26)

(ii) If m is odd, then the basis is
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e1 + e2q, e2 + e2q− 1, . . . , eq + eq+1, e2q+1, e2q+2 + ie2q+3, e2q+4

+ ie2q+5, . . . , e2n + ie2n+1,

e2q+1, e2n − ie2n+1, . . . , e2q+4 − ie2q+5, e2q+2 − ie2q+3, eq

− eq+1, . . . , e2 − e2q− 1, e1 − e2q.

(27)

Remark 3. For vi, any such basis vector, and b ∈ BI, the form
of b.vi is given as follows:

(1) b.(ei − e2q− i+1) � λ(ei − e2q− i+1) + · · · + bn(eq − eq+1)

+ an(eq + eq+1) + · · · + a1(e1 + e2q)

(2) b.(ei + e2q− i+1) � λ(ei + e2q− i+1) + ai− 1(ei− 1 − e2q− i) +

· · · + a1(e1 − e2q)

(3) b.(e2q+2j− 1 − ie2q+2j) � λ(e2q+2j− 1 − ie2q+2j) + · · · +

bm(em− 1 − em) + am(em− 1 + em) + · · · + a1(e1 + e2q)

where m � 2n or 2n + 1
(4) b.(e2q+2j− 1 + ie2q+2j) � λ(e2q+2j− 1 + ie2q+2j) + ai− 1

(e2q+2j+1 + ie2q+2j+2) + · · · + a1(e1 + e2q)

(5) b.(e2q+1) � λ(e2q+1) + an(e2n + ie2n+1) + · · · + a1(e1 +

e2q) if m � 2n + 1
λ≠ 0 in all cases above. Note that, in the above orbits,
if b is chosen appropriately, then we can arrange all
linear combination for every one of the above vectors
to be in the standard basis of TS-eigenvectors. See
+eorem 1.

In the following result, ψ : WI⟶WS denotes the bi-
jective map between Weyl groups which was introduced in
Section 2.

Proposition 2. If w is a harmonic permutation, then the flag
Fψ(w) belongs to the orbit BI(Fw).

Proof. We handle the case where m � 2n. +e proof for m �

2n + 1 goes analogously. Let us first prove the theorem for
the case that q is even. For this, let w ∈WI be a harmonic
permutation and define Fw � w.(FI) to be the isotropic full
flag associated with w. Denote by

0{ } ⊂ 〈uw1
〉 ⊂ 〈uw1

, uw2
〉 ⊂ . . . ⊂ 〈uw1

, . . . , uwn
〉, (28)

the first n subspaces of Fw � w(FI), where uwi
is a vector

from the basis above. Let w ∈WS be the image of w under
the bijective map ψ, and let Y w be the isotropic flag asso-
ciated with w such that the first half of Yw is

0{ } ⊂ 〈ε w1
〉 ⊂ 〈ε w1

, ε w2
〉 ⊂ . . . ⊂ 〈ε w1

, . . . , ε wn
〉. (29)

Our claim here is that this flag is an intersection point in
B.Fw ∩Cα. To prove this, we will construct b with
b(Fw) � Y w. From the definition of harmonic permutation,
there are two possibilities for w1: |w1| � 2i − 1≤ q or |w1|> q.

Case 1: if |w1|> q, then uw1
� v w1

, so the orbit BI.〈uw1
〉

contains the point 〈ε w1
〉.

Case 2: if |w1| � 2i − 1≤ q, then we must consider the
orbit BI.〈e2 w1− 1 − e2q+w1+1〉. By Remark 3 above, the
orbit BI.〈e2 w1− 1 − e2q+w1+1〉 contains points of the form

y � 〈α1 e2 w1− 1 + e2q+w1+1  + α2 e2 w1
+ e2q+w1

 

+ α3 e2 w1
− e2q+w1

  + α4 e2w1− 1 − e2q+w1+1 〉,
(30)

where α1 � ± α4 and α2 � ± α3. By taking α1 � α4 �

1/2 and α2 � α3 � (1/2)i, it follows that y � 〈e2 w1− 1
+ ie2 w1

〉 � 〈v w1
〉.

To construct the j-vector of b(vwj
) to obtain the subspace

V wj
, we must consider three cases:

Case 1: if |wj|> q, then wj � wj and ε wj
� uwj

, so the
orbit BI.〈uwj

〉 contains the point ε wj
.

Case 2: if |wj| � 2i − 1≤ q, then our job goes through
the orbit BI.〈e2 wj

− 1 − e2q+wj+1〉. By using Remark 3, we
see that the orbit BI.〈e2 wj

− 1 − e2q+wj+1〉 contains points
of the form

y � 〈α1 e2 wj
− 1 + e2q+wj+1  + α2 e2 wj

+ e2q+wj
 

+ α3 e2 wj

− e2q+wj
  + α4 e2 wj

− 1 − e2q+wj+1 〉,
(31)

where α1 � ± α4 and α2 � ± α3. By taking α1 � α4 �

1/2 and α2 � α3 � (1/2)i, it follows that y � 〈e2 wj
− 1 +

ie2 wj
〉 � 〈ε wj

〉. +erefore, b is constructed to obtain the
flag

0{ } ⊂ 〈ε w1
〉 ⊂ 〈ε w1

, ε w2
〉 ⊂ . . . ⊂ 〈ε w1

, . . . , ε wj
〉.

(32)
Case 3: if |wj| � 2i, then the orbit is BI.〈e|wj| + e|2wj|− 1〉

which is relevant. In this case, the points

y � 〈α1 e
wj|− 1


+ e

2 wj




⎛⎝ ⎞⎠ + α2 e

wj



+ e

2 wj
|− 1


⎛⎝ ⎞⎠

+ α3 e
wj|− 1


+ ie

wj




 〉
(33)

belong to the orbit BI.〈e|wj| + e|2 wj
|− 1〉. For α1 � − i,

α2 � 1, and α3 � i, we have y � 〈e|2 wj
|− 1 + ie|2 wj

|〉.
+erefore, the j-vector of b is constructed in this case as
well.

+us, by induction, we observe that b ∈ BI can be
constructed with b(Fw) � Y w.

We complete the proof by handling the case where q is
odd. For this point, we can repeat the steps of the proof
above for wj > q and |wj| � 2i − 1. For the case where
|wj| � 2i, we apply the samemethod as above, only changing
2|wj| by 2(|wj| + 1). If wn � − q, then wj � − n. In this case,
the orbit of relevance is BI.〈eq − eq+1〉. As we see from
Remark 3, y � α1(eq + eq+1) + α2(eq − eq+1) belongs to this
orbit. +e desired result is then obtained by taking
α1 � 1, α2 � − 1, and the point y � eq+1 belongs to the orbit
BI.〈eq − eq+1〉. +erefore, the element of BI is also con-
structed in the case where q is odd. □
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Theorem 1 (harmonic permutation theorem). =e following
are equivalent:

(i) w is harmonic
(ii) BI(Fw)∩Dα ≠∅ for some α

Under either of these conditions for every α, the nonempty
intersection BI(Fw)∩Cα contains a TS-fixed point.

Proof. (i)⟹ (ii) is exactly the statement of Proposition 2.
(ii)⟹ (i) Assuming that w is not harmonic permu-

tation, we will show that Sw ∩Dα � ∅, for all α, i.e., Sw has no
TS-fixed points. Assume on the contrary that there exists
b ∈ BI such that b.(Fw) ∈ Sw ∩Cα. For b(Fw) to be fixed, b
has to have a certain shape, and at each stage where the
condition of harmonicity is violated, we should prove that
there is no such b. For this, recall that the complex bilinear
form b has been defined to satisfy the following orthogo-
nality condition:

b ej − e2q− j+1, ej + e2q− j+1  � 1, 1≤ j≤ q,

b ej ± e2q− j+1, ek ± e2q− k+1  � 0, for k≠ j.
(34)

Since w is not a harmonic permutation, there exists a
pair of the form (− (2i − 1), 2i) or of the form
(− (2i − 1), − 2i), where 1≤ i≤ q/2, such that ∓2i sits to the
left of − (2i − 1). Assume that wj � 2i is the first even
number which appears in w such that 2i sits to the left of
− (2i − 1). +en, b does in fact yield a TS-fixed partial flag,
i.e.,

0{ } ⊂ 〈ε w1
〉 ⊂ 〈ε w1

, ε w2
〉 ⊂ . . . ⊂ 〈ε w1

, . . . , v wj− 1
〉. (35)

Now, we check that there is no b ∈ BI so that b.(vwj
)

defines an extended partial flag which is TS-fixed. For this,
we consider the orbit BI.〈e|wj| + e|2 wj

|− 1〉 which contains
points of the form

α1 e1 + e2q  + α2 e2 + e2q− 1  + · · · + αj e
wj



+ e

2wj|− 1


 .

(36)

+is is a linear combination of h-isotropic vectors for all
αi. Recall that the flag of intersection has non-h-isotropic
vectors, and to have one of these vectors in this step which is
linearly independent of all vectors in the flag (35) above, we
should add the point 〈(e|wj|− 1 + ie|wj|)〉 from the flag (35) to
the linear combination in (36), but this vector is not in the
flag (35). +us, as was claimed, no b ∈ BI has the property
that b(Fw) is TS-fixed.

If wj � − 2i is the first even number such that − 2i sits to
the left of − (2i − 1), then the relevant orbit is BI.〈e|wj| +

e|2 wj
|− 1〉 which contains points of the form

α1 e1 + e2q  + · · · + αq eq + eq+1  + αq+1 eq − eq+1 

+ · · · + αs e
wj



− e

2 wj
|− 1


⎛⎝ ⎞⎠.

(37)

To have the nonisotropic point which is linearly inde-
pendent of all points in the flag (35), we should add any of

the points (e|wj|− 1 + ie|wj|)> , (e|wj|− 1 − ie|wj|)> , (e2q− |wj|+1

+ie2q− |wj|+2)> , or (e2q− |wj|+1 − ie2q− |wj|+2)> from the flag (35)
to the linear combination in (36). But the flag (35) does not
contain any of these points. So again, for all b ∈ BI, the flag
b(Fw) is not TS-fixed, and consequently, Sα ∩Dα � ∅. □

4. Introduction to the Combinatorics

For the remainder of this paper, we only discuss the in-
tersection properties of the Iwasawa–Schubert cells which
are of complementary dimension to C0. Recall that the
maximal compact subgroup of SO(p, q) is
K0 ≔ S(O(p) × O(q)) ⊂ S(U(p) × U(q)). For E+ and E− as
in Section 2.4, the base cycle in the flag domain Da,b is given
by

C0 � F ∈ Z : dimVi ∩E
−

� 
i

j�1
aj and dimVi ∩E

+
� 

i

j�1
bj, 1≤ i≤m

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(38)

If m � 2n, we have two cases: If q is even, the dimension
of C0 is (p(p − 2)/4) + (q(q − 2)/4). If q is odd, then C0 has
the dimension ((p − 1)2/4) + ((q − 1)2/4). If m � 2n + 1,
then the dimension of the base cycle is ((p − 1)2/4) + (q(q −

2)/4) if q is even and is (p(p − 2)/4) + ((q − 1)2/4) if q is
odd. Since we have restricted to the case where Z � G/B is
the manifold of complete flags, it follows that dim Sw � pq/2
if q and n are even and dim Sw � (pq − 1)/2 if q or n is odd.

Definition 2. A harmonic permutation w ∈ Sn ⋉Zn− 1
2 is

called a perfect harmonic permutation if it is constructed by
the following algorithm:

(A)Start with a sequence of n empty boxes which are to
be filled in order to construct w.
(B)Consider the pairs (− (2j − 1), 2j) and (− (2j − 1),

− 2j) for all 1≤ j≤ q/2.
(C)If q is even,

(1) +e pairs in step B are (− 1, 2), (− 1, − 2), (− 3, 4),

. . . , (− (q − 1), q), (− (q − 1), − q).
(2) Step by step, starting from (− 1, 2) until

(− (q − 1), − q), for each 1≤ j≤ q/2, we have two
pairs of the forms (− (2j − 1), 2j) and (− (2j − 1),

− 2j), so choose only one pair of them for each step
and omit the other from the above list.

(3) If we choose the pair of the form (− (2j − 1), 2j),
place this pair in any box in w such that the
components − (2j − 1) and 2j of this pair sit as close
as possible to each other.

(4) If we choose the pair of the form (− (2j − 1), − 2j),
place this pair in any box in w such that the
components − (2j − 1) and − 2j of this pair sit as
close as possible to each other and all pairs (− (2i −

1), 2i) or (− (2i − 1), − 2i) with i> j are sitting to the
left of this pair and the pairs of the form (− (2i −

1), − 2i) with i< j are sitting in a decreasing order
with respect to i to the right of (− (2j − 1), − 2j).
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(5) Once a pair is placed, its position can be ignored so
that the places at the immediate left and right of this
pair become adjacent.

(6) After all pairs are placed, the remaining numbers
± (q + i) for 1≤ i≤ (p − q)/2 are placed in the
remaining spots in the strictly increasing order with
respect to |w(i)| such that all numbers ± (q + i) for
1≤ i≤ (p − q)/2 are sitting to the left of the pairs
(− (2i − 1), − 2i) 1≤ i≤ q/2. If the number of negative
signs in all pairs from steps 2 and 3 is even, then all the
remaining numbers are positive, and if the number of
negative signs is odd, then all the remaining numbers
are positive except the number n is negative.

(D)If q is odd,

(1) +e pairs in step B are (− 1, 2), (− 3, 4), (− 5, 6), . . . ,

(− (q − 2), q − 1), − q.
(2) In the last box of w, put the number − q.
(3) Step by step, starting from (− 1, 2) until (− (q −

2), q − 1), choose a pair and place this pair in any box
of the first n − 1 boxes in w such that the components
− (2j − 1) and 2j of this pair sit as close as possible to
each other. +is means that once a pair is placed, it
can be ignored so that the places at the immediate left
and right of this pair become adjacent.

(4) After all pairs are placed, the numbers ± (q + i) for
1≤ i≤p − q/2 are placed in the remaining spots in
the strictly increasing order with respect to |w(i)|. If
the number of negative signs in all pairs from steps
1 and 2 is even, then all the remaining numbers are
positive, and if the number of negative signs is odd,
then all the remaining numbers are positive except
the number n is negative.

Remark 4. If q is odd, then the signature of the flag domain
Dα is + in the last position.

Remark 5. If W � Sn ⋉Zn
2, then a perfect harmonic per-

mutation consists only of pairs of the form (− (2j − 1), 2j)

for all 1≤ j≤ q/2. It is constructed as above, in particular
such that the sign of n is +.

Example 3. If p � 6, q � 4, then the perfect harmonic per-
mutations are

(− 12)(− 34)5, (− 12)5(− 34), 5(− 12)(− 34), (− 3 4)(− 1 2)5,

· (− 3 4)5(− 1 2), 5(− 3 4)(− 1 2),

(− 12) − 5(− 3 − 4), − 5(− 12)(− 3 − 4), − 5(− 3 − 4)(− 12),

· (− 34) − 5(− 1 − 2), − 5(− 34)(− 1 − 2),

5(− 3 − 4)(− 1 − 2), (− 3 − 1 2 4)5, 5(− 3 − 1 2 4),

− 5(− 3 − 12 − 4).

(39)

Example 4. If p � 10, q � 6, then the element 78(− 5 6)(− 3 −

4)(− 1 2) is a perfect harmonic permutation, while the

element 78(− 3 − 4)(− 1 2)(− 5 6) is not a perfect harmonic
permutation.

Recall that the dimension of the cells corresponds to the
length of the word w in the Weyl group, i.e., if Fw � w.FI,
then dim(B.Fw) � l(w). So if we want to discuss the di-
mension of the Schubert cell, it is enough to discuss the
length of Weyl elements.

Proposition 3. Every perfect harmonic permutation
w ∈ Sn ⋉Zn− 1

2 has dimension pq/2 if q is even and (pq − 1)/2
if q is odd.

Proof. Given a perfect harmonic permutation w, we con-
sider three cases. +ese depend on which of the pairs
(− 1 2), (− 3 4), (− 1 − 2), or (− 3 − 4) is contained in w. In
each of these cases, our proof goes by induction on the
dimension of the flag manifold. Without loss of generality,
let p> q≥ 6 because if q≤ 6, then the permutation has only
one or two pairs and the proof becomes trivial. □

Case 1. +e permutation w contains the pairs (− 1 2) and
(− 3 4).

First, we remove the pairs (− 1 2) and (− 3 4) from w to
have a new permutation v consisting of the numbers
5, 6, . . . , n{ }. We define a function f : 5, . . . , n{ }

⟶ 1, . . . , n − 4{ } by f(i) � i − 4 for all 1≤ i≤ n − 4. +is is
a bijective map which sends v to w ∈ Sn− 4 ⋉Zn− 5

2 . Note that w

is a perfect harmonic permutation in Sn− 4 ⋉Zn− 5
2 .+us by the

induction assumption, l(w) � (p − 4)(q − 4)/2. Since
v � f− 1(w), it follows that v has the same length as w. So we
put the numbers 1234 to the left of v to have an element
w ∈ Sn ⋉Zn− 1

2 with length (p − 4)(q − 4)/2. To split the sign
of 1 and 3 (i.e., to change the positive sign to the negative
sign), we add n − 4 + 1 to (p − 4)(q − 4)/2 to send 3 to the
last position and add n − 4 + 2 to send 1 to the position
before the last position. Consequently, we have the element
(24)v(13) with length ((p − 4)(q − 4)/2) + n − 4 + 1+ n −

4 + 2 � ((p − 4)(q − 4)/ 2) + 2n − 5, and it follows that the
element (24)v(− 3 − 1) has length ((p − 4)(q − 4)/2) +

2n − 4.We then return to the original w and remove only the
pair (− 1 2). +en, we define g to be the number of positions
to the left of (− 34). As a result, we have n − 4 − g positions to
the left of (− 3 4), and − 3 should cross n − 4 − g + 1 positions
to end up in the last position and 4 should cross g boxes to
end up in the first position.

Finally, we return to the original w and define h to be the
number of positions to the left of (− 1 2) and n − 2 − f to the
right. In this situation, − 1 must cross n − 2 − h + 1 positions
to end up in the last position and 2 must cross g positions to
end up in the first position. It follows that the length of w is
((p − 4)(q − 4)/2) + 2n − 4 + n − 4 − g + 1+ g + n − 2 − h + 1
+ h � pq/2.

If q is odd, then the length of w ∈ Sn− 4 ⋉Zn− 5
2 is

l(w) � (p − 4)(q − 4) − 1/2. After applying the same steps as
above, it follows that l(w) � (pq − 1)/2.

Case 2. +e permutation w contains the pair (− 1 − 2).
Note that this case only occurs if q is even. Since w is a

perfect harmonic permutation, the pair (− 1 − 2) sits in the
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last 2 positions of w. We remove the pair (− 1 − 2) from w to
obtain v. Since q is even, a similar argument to that shown
above shows that l(v) � (p − 2)(q − 2)/2 because q is even.
We put the pair (1 2) to the left of v. It follows that v � (1 2)v

has the same length as v. To split the sign of 1 and 2, each of
themmust cross n − 2 positions. Having made this move, we
then apply 2 reflections to obtain the pair (− 1 − 2) in the last
two positions. Hence, the length of w becomes
l(w) � ((p − 2)(q − 2)/2) + 2(n − 2) + 2 � pq/2.

Case 3. +e permutation w contains the pairs (− 1 2) and
(− 3 − 4).

Note that this case appears only if q is even. In this case,
these two pairs appear in w in the following form: (− 3 −

4 − 1 2) or (− 3 − 1 2 − 4), or the pair (− 3 − 4) sits in the last
two positions of w. If the pair (− 3 − 4) sits in the last two
positions of w, then the argument goes as in Case 2 above.

If we have the form (− 3 − 1 2 − 4), then we must add
n − 4 to (p − 2)(q − 2)/2 to put 3 in the last position and add
n − 2 to (p − 2)(q − 2)/2 to put 4 in the last position. +en,
we must add 1 to split the signs and 3 to send − 3 to its
position in the originalw; then, the length of w becomes
((p − 2)(q − 2)/2) + (n − 4) + (n − 2) + 1 + 3 � pq/2.

If we have the form (− 3 − 4 − 1 2), then we must add
n − 4 to (p − 2)(q − 2)/2 to put 3 in the last position and add
n − 1 to (p − 2)(q − 2)/2 to put 4 in the position before the
last position.+en, we must add 1 to split the signs, 3 to send
− 3 to its position in the original w, and 1 to send − 4 to its
position in the original w. It follows that the length of w is
((p − 2)(q − 2)/2) + (n − 4) + (n − 3) + 1 + 3 + 1 � pq/2.

Proposition 4. Every perfect harmonic permutation
w ∈ Sn ⋉Zn

2 has dimension pq/2.

Proof. +e argument goes exactly along the lines as that of
the above proposition. Here, it is in fact simpler because only
the pairs (− 1 2) and (− 3 4) appear. □

5. Intersection Points of Schubert Duality

Let w ∈WI be a perfect harmonic permutation, in particular
so that Sw is of complementary dimension to the cycles.
Recall that, in this case, either Sw ∩Cα � ∅ or is pointwise
TS-fixed (see Section 2.3). +e main goal in this section is to
compute all such intersection points. +e argument in the
case of SO(p, q) is carried out by means of algorithms.
Nevertheless, we are able to provide formulas for the car-
dinality of Sw ∩Cα when it is nonzero and the total number
of cycles Cα for which this intersection is nonempty (see
+eorem 2).

Proposition 5. If w is a perfect harmonic permutation so
that BI.Fw intersects a cycle Cα at a point given by the ε-basis
(ε1, . . . , εm) of TS-eigenvectors, then for any such eigenvector
εk, it follows that the ε-basis is given by εk � e2j− 1 + ie2j or
e2j− 1 − ie2j if q and p are even and εk � e2j− 1 + ie2j,
e2j− 1 − ie2j, eq, eq+1, or e2q+1 if q or p is odd, depending on the
dimension m and the signature α.

Proof. +is is a consequence of the following:

(1) w is a perfect harmonic permutation and the flag
basis is that of w(FI).

(2) We have the following cases:

(i) b.vj � ηj(er + e2q− r+1) + ζj(er − e2q− r+1)

+ ηj(er+1 + e2q− r) + ζj(er+1 − e2q− r) + Bj

� Kj + Bj

(ii) b.vj � ηj(e2q+r + ie2q+r+1) + Bj � Kj + Bj

Here, ηj � ± iηj and ζ � ± iζj and Bj does not
involve the basis vectors er, er+1, e2q− r+1, and
e2q− r.

(iii) b.vj � ηj(e2q+1) + Bj � Kj + Bj, if m � 2n + 1

(3) ηj ≠ 0 and ηj ≠ 0.
(4) +e intersection Sw ∩Cα is a flag defined by

TS-eigenvectors.

From the expression for vj, it is obvious that all of the
possibilities in the statement occur. Furthermore, since
ηj ≠ 0 and ηj ≠ 0, for every j, a nonzero contribution from Kj

occurs in the sum

vj � 
k≤j

ckjb.vwk
.

(40)

Since e2j− 1 + ie2j and e2j− 1 − ie2j and eq or eq+1 do not
occur in b.vwk

for k< j, it follows that εj � Kj + Ej in the
standard basis. Finally, since εj is a TS-eigenvector, it follows
that εj � Kj where Kj of the εj forms indicated in the
proposition.

As a result of the above proposition, the following
corollary gives us all intersection points of Sw ∩Cα. □

Corollary 1. Let Dα be a flag domain parametrized by a
sequence α and w ∈WI be a perfect harmonic permutation
such that Sw ∩Dα ≠ϕ.=en, the following algorithm produces
us all intersection points of Sw ∩Cα:

If q is even,

(i) Consider a copy of α denoted by β.
(ii) For any pair (− (2j − 1), 2j), 1≤ j≤ q/2, in w, if the

corresponding signature of it in β is +− , then re-
place this +− in β by

〈e2q− 2j+1 + ie2q− 2j+2, e2j− 1 − ie2j〉

or 〈e2q− 2j+1 − ie2q− 2j+2, e2j− 1 + ie2j〉,
(41)

and if the corresponding signature of it in β is − +, then
replace this − + in β by

〈e2j− 1 + ie2j, e2q− 2j+1 − ie2q− 2j+2〉

or 〈e2j− 1 − ie2j, e2q− 2j+1 + ie2q− 2j+2〉.
(42)

(iii) For any pair (− (2j − 1), − 2j), 1≤ j≤ q/2, in w, if the
corresponding signature of it in β is +− , then replace
this +− in β by
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〈e2q− 2j+1 + ie2q− 2j+2, e2j− 1 + ie2j〉

or 〈e2q− 2j+1 − ie2q− 2j+2, e2j− 1 − ie2j〉,
(43)

and if the corresponding signature of it in β is − +, then
replace this − + in β by

〈e2j− 1 + ie2j, e2q− 2j+1 + ie2q− 2j+2〉

or 〈e2j− 1 − ie2j, e2q− 2j+1 − ie2q− 2j+2〉.
(44)

(iv) For the remaining numbers, for each
q + 1≤ j≤ n − 1, replace the corresponding + in β by
(e2j− 1 + ie2j), and for ± n, replace the corre-
sponding + by (e2n− 1 ± ie2n).
If q is odd,

(i) For any pair (− (2j − 1), 2j), 1≤ j≤ (q − 1)/2, in w,
if the corresponding signature of it in β is +− , then
replace this +− in β by

〈e2q− 2j+1 + ie2q− 2j+2, e2j− 1 − ie2j〉

or 〈e2q− 2j+1 − ie2q− 2j+2, e2j− 1 + ie2j〉,
(45)

and if the corresponding signature of it in β is − +, then
replace this − + in β by

〈e2j− 1 + ie2j, e2q− 2j+1 − ie2q− 2j+2〉

or 〈e2j− 1 − ie2j, e2q− 2j+1 + ie2q− 2j+2〉.
(46)

(ii) For the number − q, replace the corresponding + in β
by eq+1.

(iii) For the remaining numbers, for each
q + 1≤ j≤ n − 1, replace the corresponding + in β by
(e2j− 1 + ie2j), and for ± n, replace the corre-
sponding + by (e2n− 1 ± ie2n).

Each point obtained from this algorithm is a point of the
intersection of Sw ∩Dα.

Theorem 2. A Schubert variety Sw which is parametrized by
a perfect harmonic permutation w intersects 2q/2 flag do-
mains if q is even and intersects the base cycles of these flag
domains in 2q points. If q is odd, it intersects 2(q− 1)/2 flag
domains and intersects the base cycles of these flag domains
in 2q− 1 points.

Proof. Let w ∈WI be a perfect harmonic permutation. We
first show that if q is even, then Sw ∩Cα consists of 2q points
and 2q− 1 points if q is odd. Since w is a perfect harmonic
permutation, we have two cases. In the first case, if w

contains the pair (− 1 2), then the pair (− 1 2) sits inside
consecutive boxes in w. +e goal here is to show that there
are exactly 4 possibilities for this pair which can be com-
pleted to the maximal isotropic flag. We begin by consid-
ering the BI-orbit of 〈e1 − e2q〉. By Remark 3, the elements in
this orbit have the form

β1 e1 + e2q  + · · · + β2n e1 − e2q . (47)

+e question is how many 1-dimensional subspaces
(spanned by vectors in Proposition 5) do we have such that
these subspaces can be completed to the maximal isotropic
flag. To compute this number, we denote by v1 the vector we
have from the first step which spans the 1-dimensional
subspace; in the second step, we consider the orbit
BI.〈e2 + e2q− 1〉, which has points of the form

β1 e1 + e2q  + β2 e2 + e2q− 1 . (48)

+e 2-dimensional subspace in the flag is spanned by
linear combinations of the form

v2 � β1 e1 + e2q  + β2 e2 + e2q− 1  + cv1. (49)

Note that v2 should be in E+ or in E− and of the form
stated in Proposition 5, and therefore, v1 should contain the
terms e1 and e2 or the terms e2q− 1 and e2q. +us, we have
the following 4 possibilities of v1 as follows: e1 − ie2,

e1 + ie2, e2q− 1 + ie2q, and e2q− 1 − ie2q.
If v1 � e1∓ie2, then for β1 � ± i, β2 � 1, and c � ∓i, the

vector v2 is v2 � e2q− 1 ± ie2q, so the 2-dimensional subspace
corresponding to the pair (− 1 2) is spanned by

〈e1 ∓ ie2, e2q− 1 ± ie2q〉. (50)

If v1 � e2q− 1∓ie2q, then for β1 � 1, β2 � ± i, and c � ∓i, it
follows that v2 is v2 � e1 ± ie2. +us, the 2-dimensional
subspace corresponding to the pair (− 1 2) is spanned by

〈e2q− 1 ∓ ie2q, e1 ± ie2〉. (51)

Having constructed the 2-dimensional space, we ignore
the pair (− 12) in w and repeat the same steps for the next
pairs step by step. So if w contains the pair
(− (2j − 1), 2j), 1≤ j≤ q/2, then in the same way, the only
possible 2-dimensional subspaces which can be completed to
maximal isotropic flags are the subspaces spanned by

〈e2j− 1 ∓ ie2j, e2q− 2j+1 ± ie2q− 2j+2〉

or 〈e2q− 2j+1 ± ie2q− 2j+2, e2j− 1 ∓ ie2j〉.
(52)

+e second case is where w contains the pair (− 1 − 2)

which sits inside consecutive boxes in w. Look at the orbit
BI.〈e1 − e2q〉, then this orbit has points of the form

β1 e1 + e2q  + · · · + β2n− 1 e2 − e2q− 1  + β2n e1 − e2q .

(53)

We also consider the orbit BI.〈e2 − e2q− 1〉 which has
points of the form

β1 e1 + e2q  + · · · + β2n− 1 e2 − e2q− 1 . (54)

+en, if we have 1-dimensional subspace spanned by v1
from the first step, the 2-dimensional subspace in our flag
spanned by v1 and a vector v2 is of the form
v2 � β1(e1 + e2q) + β2(e2 + e2q− 1) + β3(e2 − e2q− 1) + cv1. So
we have 4 possibilities of v1 which can be extended to the
maximal isotropic flag. +ey are e1 − ie2, e1 + ie2,

e2q− 1 + ie2q, an d e2q− 1 − ie2q.
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If v1 � e1 ∓ ie2, then for β1 � ∓i, β2 � 0, β3 � − 1, and
c � ± i, the vector v2 is v2 � e2q− 1 ∓ ie2q. +us, the 2-di-
mensional subspace corresponding to the pair (− 1 − 2) is
spanned by

〈e1 ∓ ie2, e2q− 1 ∓ ie2q〉. (55)

If v1 � e2q− 1 ∓ ie2q, then for β1 � 1, β2 � 0, β3 � ∓i, and
c � ∓i, the vector v2 is v2 � e1 ± ie2. As a result, the 2-di-
mensional subspace corresponding to the pair (− 1 − 2) is
spanned by

〈e2q− 1 ∓ ie2q, e1 ∓ ie2〉. (56)

Having determined the 2-dimensional subspace, we
ignore the pair (− 1 − 2) fromw and repeat the same steps for
the next pairs step by step. More generally, if w contains the
pair (− (2j − 1), − 2j), 1≤ j≤ q/2, then by the same method,
the only possible 2-dimensional subspaces which can be
completed to the maximal isotropic flag are

〈e2j− 1 ∓ ie2j, e2q− 2j+1 ∓ ie2q− 2j+2〉

or 〈e2q− 2j+1 ∓ ie2q− 2j+2, e2j− 1 ∓ ie2j〉.
(57)

+erefore, for each pair of w, we have 4 possibilities.
For the remaining numbers, recall that w is a perfect

harmonic permutation. In particular, all numbers in the
remaining boxes sit in an increasing order. +us, the only
possibility for these which can be completed to the maximal
isotropic flag is the following point: if n is positive, the point
is the flag associated with the ordered basis

e2q+1 + ie2q+2, . . . , e2n− 1 + ie2n, (58)

and if n is negative, then the point is the flag associated with
the ordered basis

e2q+1 + ie2q+2, . . . , e2n− 3 + ie2n− 2, e2n− 1 − ie2n. (59)

Hence, if q is even, then w contains q/2 pairs and each
pair has 4 possibilities. +erefore, in this case, the number of
possible intersection points is 4q/2.1 � 2q. If q is odd, then w

contains (q − 1)/2 pairs and each pair has 4 possibilities;
then, the number of possible intersection points is
4(q− 1)/2.1 � 2q− 1.

Finally, we show that the points described above be-
long to exactly q/2 flag domains if q is even and to (q − 1)/2
flag domains if q is odd. For this, recall that, for each pair in
w, we have 4 possibilities of 2-dimensional subspaces and
note that the signature of these subspaces is +− and − +, and
the signature of the remainder is + + . . . + +. +us, the
number of flag domains which have nonempty intersec-
tion with Sw for the given w is 2q/2 if q is even and is 2(q− 1)/2

if q is odd.
Also, since each two of these 4 possibilities of 2-di-

mensional subspaces have the same signature, then for any
fixed signature for a flag domain, there are 2q/2 points be-
longing to the base cycle of that flag domain if q is even and
2(q− 1)/2 points belonging to the same base cycle of that flag
domain if q is odd. □

Remark 6. In the case of the group SLC
2n with the real form

SU(p, q), Brecan [4, 5] shows that the number of
Iwasawa–Schubert varieties which intersect at least one
base cycle and have the minimal dimension pq is (2n − 1)

.(2n − 3) . . . (2n − 2q + 1). But for the group SO(2n,C)

with the real form SO(p, q), if q is even, the number of
Schubert varieties Sw which have the minimal dimension
pq/2 and intersect at least one base cycle is
n.(n − 2) . . . (n − q + 2), and if q is odd, the number of
Schubert varieties Sw which have the minimal dimension
(pq − 1)/2 and intersect at least one base cycle is
(n − 2).(n − 4) . . . (n − q + 1).

In the case of SO(2n + 1,C) with the real form SO(p, q),
if q is even, the number of Schubert varieties Sw which have
the minimal dimension pq/2 and intersect at least one base
cycle is (n − 1).(n − 3) . . . (n − q + 1), and if q is odd, the
number of Schubert varieties Sw which have the minimal
dimension pq/2 and intersect at least one base cycle is
(n − 2).(n − 4) . . . (n − q + 1).

+e following remark, which is a consequence of the
proof of +eorem 2, describes all intersection points of Sw

with the base cycles Cα.

Remark 7. To determine all intersection points between the
base cycles and the Iwasawa–Schubert variety Sw of
complementary dimension, we will define a set for each
case of q:

If q is even, let w ∈WI be a perfect harmonic per-
mutation and define the following:
Switew ≔ ψ(wr) : wr is obtained from w by switching
none, some, or all pairs (− (2i − 1), 2i) by (2i, − (2i −

1)) or (− 2i, 2i − 1) or((2i − 1), − 2i) and switching none,
some, or all pairs (− (2i − 1), − 2i) by (− 2i,

− (2i − 1)) or (2i, (2i − 1)) or ((2i − 1), 2i), 1≤ i≤ q/2}.
Define F e(FixTS) to be the set of all maximally b-
isotropic flags associated with the basis

e1 + ie2, e3 + ie4, . . . , e2n− 1 + ie2n, e2n− 1
− ie2n, . . . , e1 − ie2.

(60)

Let Mw ⊂ F e(FixTS) be the set of all maximally b-
isotropic flags associated with all elements in Switew.
Note that we have q/2 of the pairs (− (2i − 1), 2i) and
(− (2i − 1), − 2i), 1≤ i≤ q/2, in any w ∈WI, and for
each pair, we have 4 possibilities to switch it, so the
cardinality of Switew is 4q/2 � 2q. +e set Switew gives
us all intersection points of Sw, and each 2q/2 of these
points belongs to only one flag domain where these
points of intersection sit in the base cycle of that flag
domain.
If q is odd, let w ∈WI be a perfect harmonic per-
mutation and define the following:
Switow ≔ ψ(wr) : wr is obtained from w by switching
none, some, or all pairs
(− (2i − 1), 2i) by (2i, − (2i − 1)) or (− 2i, 2i − 1) or ((2i

− 1), − 2i), 1≤ i≤ q/2}. Define F o(FixTS) to be the set of
all maximal b-isotropic flags associated with the basis
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e1 + ie2, e3 + ie4, . . . , eq− 2 + ieq− 1, eq+2 + ieq+3, . . . , e2n− 1 + ie2n, eq,

eq+1, e2n− 1 − ie2n, . . . , eq+2 − ieq+3, eq− 2 − ieq− 1, . . . , e1 − ie2.

(61)

Let Mw ⊂ Fo(FixTS) be the set of all maximally b-iso-
tropic flags associated with all elements in Switow. Note that
we have (q − 1)/2 of the pairs (− (2i − 1), 2i), 1≤ i≤ q/2, in
any w ∈WI, and for each pair, we have 4 possibilities for

switching it. Hence, the cardinality of Switow is
4(q− 1)/2 � 2q− 1. +e set Switow gives us all intersection points
of Sw, and each 2(q− 1)/2 of these points belongs to only one
flag domain where these points of intersection sit in the base
cycle of that flag domain.

Example 5. In G0 � SO(6, 4), fix w � (− 35 − 142) as a
perfect harmonic permutation, then

Switew �

(251 − 3 − 4), (25 − 1 − 34), (− 2513 − 4), (− 25 − 134), (− 3512 − 4),

(351 − 2 − 4), (− 35 − 124), (35 − 1 − 24), (25 − 4 − 31), (− 25 − 431), (254 − 3 − 1), (− 2543 − 1),

(− 35 − 421), (35 − 4 − 21), (− 3542 − 1), (354 − 2 − 1)

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (62)

Example 6. In G0 � SO(5, 3), fix w � (− 124 − 3) as a perfect
harmonic permutation, then

Switow � (1 − 23 − 4), (− 213 − 4), (2 − 13 − 4), (− 123 − 4){ }.

(63)

Recall that, in the cases of SP(2n,R) and SO∗(2n), every
flag domain intersects all Schubert varieties of comple-
mentary dimension. But in the case of SO(p, q), we do not
have this property except in a very special case. We explain
this case in the following example.

Example 7. If n � q + 1, then the flag domain parametrized
by the sequence

α � + − + − . . . + − + − + (64)

intersects all Schubert varieties of dimension pq/2 if q is
even. And the flag domain parametrized by the sequence

β � + − + − . . . + − + − + + (65)

intersects all Schubert varieties of dimension(pq − 1)/2 if q
is odd.
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